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Rapid execution is required in operation-oriented applications in underwater acoustic modelling. In this paper, the GPU graphic
pipeline is used to accelerate the calculation of high-resolution sound field image in the normal mode model of underwater
acoustic propagation. The computer times of the proposed graphic pipeline method, the MATLAB code, and the C# code are
compared for a stratified shallow water waveguide using the KRAKEN model at different frequencies. The research validates that
the graphic pipeline method outperforms the classic CPU-based methods in terms of execution speed at the frequencies where the
eigenvalue equation in normal mode models can be solved.

1. Introduction

Underwater acoustics entails the development and employ-
ment of acoustical methods to image underwater features, to
communicate information via the oceanic waveguide, or to
measure oceanic properties [1]. Sound waves are the main
carrier for long-distance transmission of information under-
water, so it is necessary to understand how they propagate in
oceanic media [2]. Underwater acoustic models analytically or
numerically predict the propagation of sound waves in the
ocean by translating our physical understanding of sound into
mathematical formulas solvable by computers. The primary
motivation for the research of underwater acoustic models is
related to antisubmarine warfare, and now, they are routinely
used in both civil and military applications [3, 4].
According to application scenarios, modelling appli-
cations in underwater acoustics generally fall into one of
the two categories: research-oriented or operation-ori-
ented [1]. Research-oriented applications are performed
in laboratory conditions where the available computing
platform is powerful, so accuracy is critical and computer
time is not important, such as the design of sonar systems.
To ensure accuracy, input parameters of these applica-
tions are usually detailed, so the marine environment
needs to be finely measured. However, operation-oriented

applications are executed in demanding conditions where
computing power is limited and a quick decision to the
current situation is required, such as fleet operations or
underwater acoustic communication. Therefore, the
challenge in operation-oriented applications is to achieve
high processing speed on low-performance computers. In
addition, it is usually not feasible to perform fine mea-
surement of the marine environment in demanding
conditions, so the input parameters of operation-oriented
applications are not as detailed as research-oriented
applications.

Underwater acoustic modelling has been developed for
decades [13, 14]. One of the most widely used models is
based on normal mode theory. An early normal mode model
is a simple two-layer model proposed by Pekeris [5]. Ini-
tially, normal mode theory assumes range independence that
the oceanic parameters (sound speed, bathymetry, etc.)
change with depth only. To extend to range dependence that
oceanic parameters change with both depth and distance,
distance segment and mode coupling are applied [6]. The
output of normal mode models is usually a sound field image
(sound field in a distance-depth grid) to intuitively show the
underwater sound field varying with distance and depth.
This intuitive representation of the underwater sound field is
essential in operation-oriented applications. However, when
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the resolution of the underwater sound field image is high,
calculating sound field may take up a lot of computing
resources. In [7], the computer times of two different nu-
merical solutions for normal mode theory are tested using a
one-thread CPU on Tianhe-2 supercomputer, and for both
numerical solutions, the times to calculate sound field image
are much longer than the times to calculate the modes. For
operation-oriented applications, the acceleration in calcu-
lating sound field image is necessary.

With the development of GPU hardware and graphic
interface, it is feasible to transfer large-scale parallel com-
putation from CPU to GPU, either by general purpose
computation on GPU (GPGPU) or by adopting graphic
pipeline for specific computation [15]. The purpose of
graphic pipeline is to generate or render a 2D image on the
screen from a 3D scene, and displaying a sound field image
on the screen is a subset of this purpose. Since OpenGL 2.0,
OpenGL ES 2.0, or DirectX 8.0, GPUs start to support
programmable graphic pipelines. Programmable graphic
pipelines provide developers an interface to customize the
2D texture output by the GPU by programming in the
geometry stage and rasterizer stage, such as implementing
lighting models, shadows, and transparency. Since calcu-
lation of sound field images is repetitive and parallel, in this
paper, calculating sound field in a distance-depth grid is
transferred to the fragment shader in the rasterizer stage, and
the parallel calculation of the sound pressure is realized by
the screen postprocessing operation. Three implementations
are compared in terms of computer times in this paper: the
proposed graphic pipeline program of high-level shading
language (HLSL) code, the MATLAB code based on vector
operations, and the C# code using a one-thread CPU.

2. Materials and Methods

2.1. Normal Mode Model. Modelling underwater acoustic
propagation generally starts with the wave equation or
Helmholtz equation. Directly solving the time-varying wave
equation produces time-domain methods, such as finite
difference method (FDM), finite element method (FEM), and
boundary element method (BEM), while solving the Helm-
holtz equation assuming that density and sound speed of sea
water are independent of time produces frequency-domain
method, such as normal mode method (NM), parabolic
equation (PE) method, and ray theory (RT) method [9]. The
2D Helmbholtz equation in a stratified medium with depth z
and horizontal distance r is as follows:
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where p(z) and ¢ (z) are the density and sound speed of sea
water, respectively, z, is the source depth, w is the angular
frequency, and p(r,z) is the sound pressure.

In normal mode theory, sound pressure is decomposed
as p(r,z) = R(r)Z(z) using the separation variable method
to find a homogeneous solution of equation (1). The function
Z (z) satisfies
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where D is the bathymetry, k? is a separation constant in
solving the homogeneous equation, and y, and yp, are two
constants that define boundary conditions at sea surface and
sea bottom. Equation (2) is a Sturm-Liouville eigenvalue
problem. Pairs of eigen functions and eigenvalues
(Z,,(2), k), m =1,2,... can be solved from equation (2)
if sufficient boundary conditions at sea surface and sea
bottom are given. The sound pressure in the normal mode
theory is as follows:
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where H él) (+) is the first-type Hankel function.
Using the asymptotic approximation of Hankel function,
the sound pressure in equation (3) is as follows:
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—(in/4)
p(rz) = (S)VST Zz (z.)Z,, (z)m (4)

A sound field image is defined as the sound pressure in

equation (4) in a distance-depth gridasr = rmm, Tmin + A7,
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2.2. Graphic Pipeline Treatment of the Normal Mode Model.
Modern graphic pipeline usually includes three stages: ap-
plication stage, geometry stage, and rasterizer stage [8]. The
application stage is implemented by CPU, and developers
have absolute control over this stage. In this stage, rendering
data, including but not limited to vertex data, textures, and
buffers, are prepared and transferred to GPU. The geometry
stage performs per-vertex or per-polygon operations, and
the transformation of vertex positions from world coordi-
nates to screen coordinates is completed at this stage. The
main task of the rasterizer stage is to determine the color of
the pixels in each rendering primitive (usually a triangle),
and how these pixels should be drawn on the screen (such as
removing occluded pixels in the depth test or achieving
transparency in the blending operation). Triangle setting and
triangle traversal in the rasterization stage interpolate the
output registers of each vertex in the geometry stage, and the
interpolated registers are the input registers of the fragment
shader corresponding to each pixel on the rendering
primitive. Pixel colors are calculated in parallel in the
fragment shader.

Details of these stages are shown in Figure 1. The colors
indicate the configurability and programmability of different
stages. Green indicates that the stage is programmable,
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FiGure 1: Implementation for graphic pipeline.

yellow indicates that the stage is configurable but not
programmable, and blue indicates that the stage is fixedly
implemented by the GPU. For programmable stages, the
solid line indicates that the stage must be programmed by
the developer, and the dotted line indicates that the stage is
optional.

Figure 2 intuitively shows the process of rendering a
triangle on the screen. Three vertices of the triangle are
transformed from world space to screen space in the ge-
ometry stage. Then, the triangle in screen space is rasterized
and represented by a series of fragments. Finally, the color of
each fragment is calculated in parallel by fragment shader.
Note that DirectX defines the upper left corner of the screen
as the origin of the screen space, while the origin in OpenGL
is at the lower left corner.

In this paper, the gridding in distance r and depth z of
the sound field in equation (4) is mapped to the rasterization
in the screen space. Settings of graphic pipeline to imple-
ment the mapping are shown in Figure 3. Geometry setup on
the screen is shown in Figure 3(a). The image is represented
by two connected triangles that cover the screen. The four
vertices are located on the four edges of the view frustum in
world space. Figure 3(b) shows the texture coordinates (2D
vectors also known as UVs) as the output from vertex
shader. In the triangle traversal, output registers of vertex
shader are interpolated as the input of fragment shader.
Supposing that the screen resolution is W x H and (x, y) is
the center position of the pixel, the input UV of the fragment
shader is ((x/W), (y/H)).

The mapping from the input texture coordinate (u,v) of
a fragment shader to its grid (r,z) is as follows:

(7,2) = (Fin +ux (r + VX (Zmax = Zmin))>

(5)

) define the area of sound
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where (7> Zmin) and (r
field image.

The flowchart of fragment shader is shown in Figure 4.
The input of fragment shader is the interpolated UV and the
output is the pixel color representing the sound pressure.
Color mapping is flexibly designed according to different
applications. Normal mode solutions (pairs of eigen func-

tions and eigenvalues of equation (2)) are transferred from

max? Zmax

RAM (memory directly accessible by CPU) to VRAM
(memory directly accessible by GPU) through buffer or
texture, depending on the shader model supported by the
GPU.

3. Results and Discussion

To test the computer time of calculating sound field image in
the graphic pipeline, the case of a stratified shallow water
waveguide is performed. The sound speed profile and
density are shown in Figure 5. In the test case, the surface is
assumed to be a pressure release boundary and the bottom is
assumed to be a rigid boundary, that is, y; = co and y, =0
in equation (2). The sound source depth is 30 m.

A general numerical method for solving the eigenvalue
problem of equation (2) of arbitrary boundary conditions is
FDM. In FDM, the sea water is divided into N equally spaced
grids in depth. By replacing differential operators with
difference operators, equation (2) is transformed into
computer-solvable discrete algebraic equations. One of the
widely used FDM is the KRAKEN model [10], where
equation (2) is transformed into the following matrix ei-
genvalue equation:

AZ =KWK Z, (6)
where h is the grid width (in the test case, it is 10% of the
wave length), A is an N-order tridiagonal matrix, and k? and
Z are defined in equation (2).

Solving equation (6) is a mathematical problem. In the
test case, equation (6) is solved by the function “eig (A)” in
MATLAB, and the eigenvalues and eigenvectors are
stored as a binary file as the input of the sound field image
module.

A simple way to implement the graphic pipeline in
Figure 3(a) is to use screen postprocessing. Screen post-
processing is a technique commonly used in game development
and film production, and it has been robustly implemented in
various commercial game engines. In the test case, Unity 5
(version 2018.3.11f1, 64 bit) is adopted to develop the screen
postprocessing program. Guidelines of developing screen
postprocessing in Unity 5 are accessible in [11], and a simple
framework can be accessed by [12].
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FIGURE 3: Settings of graphic pipeline. (a) Geometry setup of sound field image on the screen. (b) UVs of the four vertices.
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FiGuRE 4: The flowchart of fragment shader. Sound field images of the test case in Figure 5 are ob-
tained by the MATLAB code and the screen postprocessing
program (HLSL code), respectively. The frequency of the

A Sound speed ) sound source is 200 Hz. The scope in depth is from O m to
flr 0m 1505 / Density 160 m. The scope in distance is from 10m to 300 m. The
Surface e resolution is 1366 x 768. The sound field image calculated by
30m |- (1470 m/s the MATLAB code (MATLAB 2015a) is shown in Figure 7.
The screenshot of the HLSL code is shown in Figure 8. To
Water Lefem? compare the result of the HLSL code with that of MATLAB,
gem color mapping of the HLSL code is consistent with the color
bar of MATLAB.

Intuitively, the image in Figure 8 is essentially the same
Bottom 1535m/s with that ir.1 Figure 7. Although there is no obvious difference
160m N between Figures 7 and 8, the difference between MATLAB

Basement \ . T . . .
~ and graphic pipeline may still cause a slight difference be-
Depth Depth tween the two images. One of the most important differences

FIGURE 5: Sound speed profile and density in the test case.

In operation-oriented applications, transmission loss
(TL) is used more generally than sound pressure. Both the
sonar equation and the figure of merit (FOM) are measured
by TL. TL is defined as

is the word length. The word length on MATLAB is 64
(double precision), while in the graphic pipeline, the word
length is 32 (single precision). To numerically compare
Figures 7 and 8, it is necessary to obtain the TL calculated in
the fragment shader. A feasible method is to convert the
render texture maintained by the screen postprocessing into
a 2D texture in the format of RGBA32, and the RGBA
channels represent TL. The integer part of TL is represented
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FIGURE 7: Sound field image by MATLAB code. The color bar is
“gray” in MATLAB.

by the R channel, and the decimal part is represented by the
G, B, and A channels. The curves of TL at z = 30m by the
MATLAB code and the HLSL code are shown in Figure 9,
and the Taylor diagram [16] of the HLSL code and MATLAB
code is shown in Figure 10. In Figure 10, the points of these
two codes are close. From Figures 7-10, it is concluded that
the results of HLSL code are correct and reliable both in-
tuitively and numerically.

Table 1 shows the computer times of the MATLAB code
and the HLSL code. To exclude that the difference in
computer times may be caused by platform differences, the
computer time of the C# code running in the main thread
(one-thread CPU) on the Unity 5 platform is also shown in
Table 1. Due to the long running time of the C# code, image
resolution in the C# code is 683 x 3 (1/512 of 1366 x 768
resolution), and the computer time is multiplied by 512 to
convert to that of 1366 x 768 resolution. The CPU is Intel
Core i5-5200U, and the GPU is NVIDIA GeForce 920M. The
result of MATLAB code is the average time of ten repeated
runs. The HLSL code and C# code are executed once per
frame, and their computer times are measured by their frame
counts over a long period of time, as follows:

T eode = i - L (8)
€N code N ambient

where T 4. is the computer time, N 4. is the frame count in
T, when HLSL code or C# code is running, and N, piene 1
the frame count in T; when neither code is running.

\/

\/

TL

FIGURE 8: Screenshot of the HLSL code. A scaled mapping of 64
color scales is used, and the maximum and minimum values of TL
are —18.0972 dB and —92.1202 dB.

As shown in Table 1, HLSL code has a great improve-
ment in computational efficiency compared to MATLAB
code and C# code. However, it may still be an accidental
result caused by specific CPU and GPU. Moreover, the
number of normal modes that depend on the acoustic
frequency has an influence on the amount of calculation. To
make the test general, the three codes are run on four
computers over acoustic frequencies from 100Hz (107
modes) to 100 kHz (106667 modes). Table 2 shows the CPU
and GPU models of the four computers. Figure 11 shows the
computer times of HLSL code, MATLAB code, and C# code
on the four computers. Figure 12 shows the HLSL gain over
MATLAB code or C# code (defined by the ratio of computer
times).

It is shown in Figure 11 that for each computer, the
calculation time of the HLSL code is significantly lower than
that of the MATLAB code and C# code. It is worth noting
that even HLSL code running on a low-performance GPU
(that of computer 1) has a shorter computer time than that of
MATLAB code running on a high-performance CPU (that
of computer 4). In Figure 12, below 10 kHz, HLSL gain over
MATLAB code decreases as the number of modes increases,
and above 10kHz, it tends to be a constant. In addition,
HLSL gain over C# code keeps high in the entire test fre-
quency band. Moreover, when the frequency is at 100 Hz,
HLSL gain over MATLAB code even exceeds 1000 on
computer 3 and computer 4. Therefore, it is reasonable to
conclude that the HLSL code is much faster than the
MATLAB code and the C# code in calculating the sound
field image in normal mode models.
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FiGure 10: Taylor diagram of the HLSL code (point B) and
MATLAB code (point A). The correlation coeflicient is 0.9993, and
the root mean square is 0.2811.

TaBLE 1: Computer times of MATLAB code, HLSL code, and C#
code.

Method Computer time (s)
MATLAB code 9.5578576
HLSL code 0.058186365
C# code 69.41085745

TasLE 2: CPU and GPU models of the four computers.

Computer CPU GPU

1 Intel Core i5-5200U NVIDIA GeForce 920M

2 AMD Ryzen 5 2500U NVIDIA GeForce GTX 960M
3 Intel Core i7-8706G 1\ v IPIA GeForce GTX
4

1060M
Intel Xeon E-2286M NVIDIA GeForce RTX 2080
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Figure 12: HLSL gain over MATLAB code or C# code on four
computers.

4. Conclusions

In this paper, the calculation of the sound field image in the
normal mode model is implemented by the fragment shader
in GPU graphic pipeline. The calculation is accelerated
because the fragment shader is calculated in parallel. In a test
case of a stratified shallow water waveguide, the computer
times of the GPU-based HLSL code, the CPU-based
MATLAB code, and C# code are compared. The results show
that the computer time of the HLSL code is much shorter
than those of the other two codes at the frequencies where
the eigenvalue equation in normal mode models can be
solved.

Although the method proposed in this paper is based on
the normal mode model, it provides a possible acceleration
method to the general problem set of calculating the sound
field image in a 2D grid. For example, in the ray method and
parabolic equation method, the simulation results are also
represented by the sound field image on the depth-distance
grid in general cases.
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