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Due to heavy and alternating loads of working conditions, spiral bevel gears are prone to broken tooth failures. To solve the
problem of vibration characteristic of spiral bevel geared transmission with broken tooth failures that is unknown, this study,
considering time-varying mesh stiffness and friction excitation, proposed a torsional vibration dynamic model of spiral bevel
geared transmission, which has more simple transmission path and the smaller signal attenuation. First, the time-varying
excitations of various broken tooth failure are calculated and introduced into the torsional vibration dynamic model. .e vi-
bration response of spiral bevel geared transmission with various broken tooth failures is analysed in the time-frequency domain.
.en, the sensitivity of the time-domain statistical index and the frequency domain components to different broken tooth failures
are studied. Finally, the correctness of the simulation is verified by experiment..e results show that the crest factor is sensitive to
minor tooth failure (10–30%), while kurtosis is sensitive to severe failure (30–60%). With the increase of degrees of broken tooth
failure, the energy of the low-frequency band increases obviously.

1. Introduction

Spiral bevel geared transmission system has been widely
used in industrial machinery, automobile, and aviation due
to its advantages of high speed, heavy load, and smooth
operation. Spiral bevel gears often suffer from alternating
loads in the working process and are prone to tooth failure
[1–5]. .e fracture of gear tooth will change the original
time-varying excitation of the transmission system, which
will aggravate the vibration of the transmission, reduce the
transmission efficiency, and endanger the safety of equip-
ment [6–9]. It is necessary to explore the relationship be-
tween the time-varying excitation and response
characteristics of the spiral bevel geared transmission system
for mechanical state evaluation and health maintenance.

.e spiral bevel geared transmission is a time-varying
nonlinear system. To study the torsional vibration charac-
teristics of the spiral bevel geared transmission system with
broken tooth, the time-varying excitation of the transmis-
sion under the failure state should be defined first. Time-
varying meshing stiffness, as a major time-varying excitation
of the geared transmission system, has become the focus of
domestic and foreign scholars [10–12]. For example, Chen
et al. [13] simplified the gear tooth into a cantilever beam to
study the analytical calculation model of time-varying
meshing stiffness and obtain the static meshing stiffness.
Wang [14, 15] calculated the analytic solutions of time-
varying meshing stiffness of spur and helical gears using the
slice method and explored the influences of factors such as
misalignment, lead crown relief, and axial mesh force on
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time-varying meshing stiffness of gears. Tang and Pu [16]
established the meshing model of spiral bevel gears by using
finite element software and then obtained dynamic and
more accurate time-varying mesh stiffness. In recent years,
the research results found that another important time-
varying excitation friction moment has caused the attention
of scholars [17, 18]. So, it is proposed that both time-varying
meshing stiffness and time-varying friction moment must be
considered in the analysis of transmission [19]. .e existing
research work is mostly based on cylindrical geared trans-
mission [20–22] and has few research studies on the spiral
bevel geared transmission system. In order to study the
vibration characteristics of gear transmission, scholars have
given a variety of dynamic models [23]. Since the geared
transmission mainly transmits torque, torsional vibration
more directly reflects the operating state of the system
compared with bending vibration, and the torsional vi-
bration transmission path is simple, with less signal atten-
uation [24]. .erefore, the torsional vibration model is
widely used in the fault dynamics analysis of the spiral bevel
gear transmission system. For example, Zhang et al. [25]
studied the mathematical model of the meshing process and
typical gear failures and demonstrated the superiority of the
torsional vibration analysis method in failure diagnosis of
geared transmission. Yang et al. [26] considered time-
varying meshing stiffness and time-varying friction to es-
tablish a failure model of spur gear with broken tooth and
studied the torsional vibration characteristics of the trans-
mission system. Doan and Karpat [27] established a dynamic
model of the spur geared transmission containing the
broken tooth failure and identified the broken tooth failure
using torsional vibration response. To sum up, scholars have
carried out extensive research studies on the vibration
characteristics of geared transmission with failures, among
which there are few studies about broken tooth failures with
time-varying excitation. .ese research studies that are
focused on torsional vibration response of spiral bevel
geared transmission are rarely involved.

Aiming at these problems, this study intends to propose
a dynamic model of spiral bevel geared transmission that
considering time-varying mesh stiffness and friction exci-
tation calculates the time-varying excitation with broken
tooth failure and then studies the torsional vibration re-
sponse characteristics in time and frequency domain. In the
end, the correctness of the simulation is verified by exper-
iments, which can provide theoretical reference for the fault
diagnosis of the spiral bevel geared transmission system.

2. Dynamic Model of the Spiral Bevel Geared
Transmission System

2.1. Mathematical Model of the Spiral Bevel Geared Trans-
mission System. .e geared transmission system is a con-
tinuous model with infinite degrees of freedom. .e finite
element method is used to simplify the continuous model
into a combination of finite elements connected to each
other at the nodes, so that the problem becomes a me-
chanical problem with finite degrees of freedom..us, it can
be solved by using linear equations. For torsional vibration,
the discrete mechanical model of the spiral bevel geared
transmission system includes mass element, elastic element,
and damping element. .e simplified dynamic model of the
transmission system is shown in Figure 1.

Ie and Ig are, respectively, the equivalentmoment of inertia
of pinion and gear. Suppose the system has n degrees of
freedom, its generalized coordinates are
θ1, θ2, . . . , θk, θk+1, . . . , θn−1, θn ..e dynamic equation of the
transmission system is established by using the finite element
method as follows:

I€θ + C _θ + Kθ � Q, (1)

where I is the rotational inertia matrix,
I � diag J1 J2 J3 · · · Jk Jk+1 · · · Jn− 1 Jn 

T, and J is the
moment of inertia of each microelement. .e moment of
inertia of pinion and gear are Jk and Jk+1, respectively.

C is the damping matrix:

C �

c1 −c1

−c1 c1 + c2 ⋱

−c2 ⋱

⋱ Ck−1 + Cg(t)r
2
g  −Cg(t)rgrp

−Cg(t)rgrp Ck+2 + Cg(t)r
2
p  ⋱

⋱

⋱

cn−3 + cn−2 −cn−2

−cn−2 cn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (2)
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Ci is the torsional damping of each element:

Ci � 2ζ
ki

1/Ji(  + 1/Ji+1(  
 

1/2

. (3)

Cg is the meshing damping:

Cg � 2ζm

Kg

r2g/Jk  + r2p/Jk+1  

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

, (4)

where rp and rg are the base radius of the main and driven
gears, respectively, ζ is the damping ratio of the axial ele-
ment, and ζm is the mesh damping ratio.

K is the torsional stiffness matrix:

q K �

k1 −k1

−k1 k1 + k2 ⋱

−k2 ⋱

⋱ kk−1 + Kg(t)r
2
g  −Kg(t)rgrp

−Kg(t)rgrp kk+2 + Kg(t)r
2
p  ⋱

⋱

⋱

kn−3 + kn−2 −kn−2

−kn−2 kn−1
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, (5)

where ki is the torsional stiffness of axial element, and Kg(t)

is the time-varying meshing stiffness.
Q is the excitation matrix:

Q � Tin 0 · · · FP(t)rp + Tfp Fg(t)rg − Tfg · · · 0 −Tout 
T
,

(6)
where Fp(t) and Fg(t) are, respectively, the dynamic
meshing forces of the pinion and gear, Tin and Tout are,
respectively, the input and load torque, and Tfp and Tfg are
the time-varying friction moments of the main and driven
gears, respectively.

2.2. Mathematical Model of Time-Varying Meshing Stiffness.
.e contact ratio of gear is not an integer, and the number
of the tooth involved in the mesh process changes

periodically with time, so the meshing stiffness of the gear
teeth also changes periodically with time, and the stiffness
excitation makes the dynamic equation of the geared
transmission contain time-varying coefficient, which
makes it a time-varying nonlinear system. .e general
expression of time-varying mesh stiffness of single-teeth is
shown in

kn �
Fn(t)

un(t)
, (7)

where Fn(t) is the normal dynamic meshing force acting on
the tooth profile surface, and un(t) is the comprehensive
elastic deformation of single pair gear tooth, which includes
contact elastic deformation (uh) and the displacement of
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Figure 1: Dynamic model of the spiral bevel geared transmission system.
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tooth contact caused by tooth bending (ub), so un(t) can get
by

un � 
2

i�1
uhi + 

2

i�1
ubi. (8)

When multitooth meshing occurs, the multipair tooth
are coupled in parallel. .erefore, the time-varying mesh
stiffness of the gears can be expressed as follows:

km � 

p

i�1
kni, (9)

where p is the number of gear pair in contact process.

2.3. Mathematical Model of Time-Varying Friction Torque of
Spiral Bevel Gears. At present, the contact analysis theory
of spiral bevel gears is not mature. To simplify the cal-
culation, the spiral bevel gears are equivalent to helical
gears in this study. .e friction moment calculation model
in literature [15] was adopted, which defined that gear has
multiple contact lines. When the contact line is located
outside the pitch circle, the friction force is positive, while
the friction force inside the pitch circle is negative, and its
direction is perpendicular to the contact line. In this
study, the form of broken tooth perpendicular to the
direction of tooth width is studied. Assuming that the
contact line is uniformly distributed in the direction of
tooth width, the contact area of broken tooth is shown in
Figure 2, where Pt,Pn, and αb are the transverse pitch,
normal pitch, and base helix angle, respectively.L′ is the
length of the broken tooth along the width of equivalent
gear, and L1, L2, L3 are the lengths of contact line at dif-
ferent states. Equation (10) is a friction calculation for-
mula based on the dynamic engagement line. .e friction
on the ith contact line is as follows:

Ffi � −μ
F

L
ΔLi, i � 1, . . . , n, (10)

where F is the normal force acting on the tooth surface(N), L
is the total length of the contact lines(mm), ΔLi is the
difference between the length of two segments cutoff by the
nodal circle of the contact line (mm), and μ is the coefficient
of friction. .en, the total friction is calculated:

Ff � 
n

i�1
Ffi, i � 1, . . . , n. (11)

.e sign convention of the frictional torque is considered
as positive when it facilitates the rotation and negative
otherwise. .e formula for calculating the friction torque on
the contact line of the ith line is as follows:

Tfi � 
n

i

μFfiΔli, i � 1, . . . , n, (12)

where Δli is the friction arm on the ith contact line.

3. Analysis of Torsional Vibration
Characteristics of the Spiral Bevel Geared
Transmission System with Broken Tooth

3.1. Finite Element Model of Spiral Bevel Gear Pair. Spiral
bevel gears pair is compact in structure, stable in trans-
mission, and able to change the direction of power trans-
mission. In this study, a spiral bevel geared transmission is
taken as an example to study the dynamic response of the
transmission with time-varying excitation. Its structure is
shown in Figure 3, and its structural parameters are shown
in Table 1.

3D modelling software (UG) was used to establish the
solid model of spiral bevel gear pair with broken teeth, which
was imported into ANSYS for analysis. Contact area of tooth
pair use CONTA174 unit and TARGET170 unit, the solid
model adopt the SOLID186 unit, the broken area use the
tetrahedrons dividing method, and the normal region use
the hex-dominant division method. In order to save com-
puting resources, spiral bevel gears were cut and 5 pairs of
gear tooth were reserved for dynamic meshing analysis. .e
meshing simulation model of spiral bevel gears is shown in
Figure 4. .e ratio of the arc length of the gear tooth to the
length of the broken tooth represents the different degrees of
the broken tooth failure, namely,
L
−

/S × 100% � 20%, 30%, 40%, 50%, 60%{ }, and the geomet-
ric model of broken teeth is shown in Figure 5.

3.2. Time-Varying Excitation Analysis of Spiral Bevel
Gears with Broken Tooth

3.2.1. Time-Varying Mesh Stiffness Analysis. .e broken
tooth failure will lead to reduction of time-varying meshing
stiffness. .e more serious the broken tooth failure is, the
more meshing stiffness of a single-teeth decreases, as shown
in Figure 6(a). Time-varying meshing stiffness of multiple
teeth is calculated according to the contact ratio and the
loading contact analysis, as shown in Figure 6(b).

3.2.2. Time-Varying Friction Moment Analysis. .e time-
varying friction torque under broken tooth failure is shown
in Figure 7. It can be seen from Figure 7 that the value of the
friction torque has a sudden change at the pitch circle..is is
because the direction of the tooth surface friction will change
to the opposite direction after crossing the pitch circle,
which conforms to the existing gear meshing principle. At
the same time, as the degree of broken tooth increases, the
value of time-varying friction torque decreases to varying
degrees. Because spiral bevel gears belong to multitooth
meshing, a single-tooth breaks down and causes a limited
reduction in friction torque.

3.3. Torsional Vibration Characteristics Analysis of the
Transmission System with Broken Tooth. Angular dis-
placement calculation is the basic content of torsional
vibration research. In this study, the numerical method is
used to solve equation (1). .is numerical method does
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not need to distinguish whether the system contains
proportional damping and has good stability. Generally,
when θ> 1.37, the algorithm can be guaranteed to be

unconditionally stable. In this study, θ � 1.4, and the input
speed is 1000 r/min.

3.3.1. Time-Domain Response Characteristics of the Trans-
mission System. Torsional vibration essentially reflects the
relative value of angular displacement between two points

L
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L
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L
3

Pn

S′

Pt

αb
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Broken area
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L′

Pt
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(b)

Figure 2: Diagram of meshing contact area of broken teeth.
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Figure 3: Diagram of spiral bevel gear pair.

Table 1: Design parameters of gears.

Parameter Pinion Gear
Modulus 7.98 7.98
Number of teeth 14 41
Pressure angle (°) 20 20
Helix angle (°) 35 35
Angle of shafts (°) 90 90
Base width (mm) 55 55
Mass (kg) 1.51 12.955
Moment of inertia (kg ∗ m2) 9.25 × 10− 4 6.8 × 10− 2

Broken area

Figure 4: Meshing simulation model of spiral bevel gear.

S

L
–

Figure 5: Geometric model of broken teeth.
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along the axis, so formula (13) is used to measure torsional
vibration of the spiral bevel geared transmission system.

xt � Rb2θ2 − Rb1θ1( , (13)

where θ1, θ2 represent the angular displacements at the
pinion and gear, respectively. Rb1, Rb2 represent the base
circle radius of pinion and gear, respectively.

It can be seen from Figure 8, when the spiral bevel gear
has broken tooth failure, the torsional vibration response of
the system has obvious periodic impact vibration. After the
friction force is included in the model, the vibration am-
plitude increases to some extent, and the more serious the
broken tooth failure is, the more the vibration amplitude
increases.

For further analysis, the influence of different degrees of
broken tooth failure on torsional vibration, three statistical
indexes, such as root mean square error (RMS), kurtosis, and

crest factor is used to analyse the time-domain response..e
statistics index of time-domain response of torsional vi-
bration with various degrees of broken teeth failures is
shown in Figure 9. .e crest factor increases significantly
before the broken tooth failure reaches 30%, that is, the crest
factor is more sensitive to the minor broken tooth failure,
while during 30–60% of the broken tooth failure, the change
is tiny, that is, the crest factor is not sensitive to the serious
broken tooth failure. Before the tooth failure reaches 30%,
kurtosis has a small change, 30–40% has an increase, and
40–60% has an obvious increase. Kurtosis is not sensitive to
minor tooth failure, but extremely sensitive to severe tooth
failure.

3.3.2. Frequency-Domain Response Characteristics of the
Transmission System. As the increase of degrees of broken
tooth failures, the response characteristics of torsional
vibration of the system in frequency domain are shown in
Figure 10. It can be clearly seen from Figure 10 that there is
obvious meshing frequency (fe � 233Hz) and its har-
monic frequency. After the gear tooth failure occurs, the
rotation frequency (fr � 16.6Hz) and the side frequency
band of mesh frequency appear in the spectrum diagram.
With the aggravation of failure degree, the side bands of
meshing frequency have enriched, especially the low-fre-
quency bands before the first-order meshing frequency. As
the single-tooth failure is studied in this study, the first-
order rotation frequency (16.6Hz) is distinct, and the
multifold rotation frequency appears in the spectrum
diagram.

4. Experimental Verification

4.1. Vibration Test of the Spiral Bevel Geared Transmission
System with Broken Teeth. In order to verify the correctness
of the simulation results, the vibration experiment of the
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Figure 6: Time-varying meshing stiffness of spiral bevel gears with broken teeth: (a) tvms of single-teeth and (b) tvms of multitooth.
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spiral bevel geared transmission system with broken tooth
failure was carried out. .e spiral bevel gearbox used for the
vibration test is shown in Figure 11. .e test equipment is

composed of a governor, a motor, couplings, a pair of spiral
bevel gears, and a load. .e driving gear is used as the test
gear to simulate three typical failure gears, namely, normal
tooth, 1/3 broken tooth, and 2/3 broken tooth. Vibration
signals were collected using B&K’s PULSE data acquisition
system. During the test, the speed of the motor was kept
constant at 1000 r/min by adjusting the governor, and the
sampling frequency was 6.4 kHz.

4.2. Frequency Domain Response Analysis of Experimental
Result. As can be seen from Figure 12, when there are
different degrees of broken teeth faults, the system response
has obvious meshing frequency. When the system is a
normal gear, the amplitude of low-frequency band is small,
and the rotating frequency and its component is not obvious,
as shown in Figure 12(a). When the system has a broken
tooth failure (30%), the amplitude of the rotating frequency
component caused by the broken tooth failure increases
significantly, which also has an obvious fr, as shown in
Figure 12(b).
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4.3. Analysis of the Influence of Time-Varying Friction Exci-
tation on Low-Frequency Band. It can be seen from Fig-
ures 10 and 12 that the more serious the broken tooth
failure is, the more abundant the low-frequency band is,
and the more energy it contains. .erefore, the energy of
low-frequency band can be used to further study the
influence of time-varying friction excitation on the dy-
namic response of the geared transmission system. .e
energy ratio is defined to represent the contribution of
time-varying frictional excitation to low-frequency band
energy, as shown in

ηlfb � Efb − Eb/Efb × 100%, (14)

where Efb is the sum value of energy of the low-frequency
band with the frictional excitation, and Eb is the sum value of
energy of low-frequency band without frictional excitation.

.e variation of the contribution of experiment and
simulation with different failure degrees of broken tooth is
shown in Figure 13. It can be seen from Figure 13 that the
contribution of friction excitation to low-frequency band is
12% with no broken tooth failure. After broken tooth failure
occurs, the friction excitation decreases, resulting in the
decrease of the contribution to low-frequency band as the
increase of failure degrees. .e variation trend of the ex-
periment and the simulation results are basically consistent,
but the time-varying frictional excitation in the experiment
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Figure 10: .e spectrum diagram of the broken tooth failure. (a) Normal teeth. (b) 20%. (c) 30%. (d) 40%. (e) 50%. (f ) 60%.

Figure 11: Spiral bevel gearbox test equipment.
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has a greater contribution to the low-frequency band than
the simulation results..e contribution is about 21% and 6%
with normal tooth and 60% broken teeth failures, respec-
tively. .e difference may be caused by unbalanced exci-
tation and mesh error excitation generated by tooth failures,
both of which can provide energy for the low-frequency
band.

5. Conclusion

In this study, the torsional vibration characteristics of the
spiral bevel geared transmission system with various degrees
of broken tooth failures are studied by considering the time-
varying excitation. .e following conclusions are drawn:

(1) .e sensitivity of three time-domain statistical in-
dexes, RMS, kurtosis, and crest factor to broken teeth
failures were compared. It was found that the crest

factor was sensitive to minor broken teeth failures
(10%–30%), while kurtosis is sensitive to severe
failure (30%–60%);

(2) As the degrees of broken tooth failures increase, the
energy of low-frequency band increases obviously.
Frictional excitation of normal teeth contributes
approximately 12%–21% of the energy to the low-
frequency band by a further study on the low-fre-
quency band. And with the increase of the failure
degrees, the value decreases from 17% to 5%.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author or the second
author upon request.
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U. Kumar, “Vibration signal analysis for gear fault diagnosis
with various crack progression scenarios,” Mechanical Sys-
tems and Signal Processing, vol. 41, no. 1, pp. 176–195, 2013.

[6] S. A. Mohamed, T. Moez, C. Fakher, F. Tahar, and
H.Mohamed, “Dynamic behaviour modeling of a flexible gear
system by the elastic foundation theory in presence of de-
fects,” European Journal of Mechanics, vol. 29, pp. 887–896,
2010.

[7] Z. Chen and Y. Shao, “Mesh stiffness calculation of a spur gear
pair with tooth profile modification and tooth root crack,”
Mechanism and Machine @eory, vol. 62, pp. 63–74, 2013.

[8] H.Ma, X. Pang, Q.Wang, R. Song, and B.Wen, “Commentary
on effects of tip relief on vibration responses of a geared rotor
system,” Proceedings of the Institution of Mechanical Engi-
neers, Part C: Journal of Mechanical Engineering Science,
vol. 231, no. 11, pp. 2159–2169, 2017.

[9] H. Chen, Y. Shang, and K. Sun, “Multiple fault condition
recognition of gearbox with sequential hypothesis test,”
Mechanical Systems and Signal Processing, vol. 40, no. 2,
pp. 469–482, 2013.

[10] R. L. Li and J. J. Wang, Dynamics of Gear System: Vibration,
Impact and Noise, Science Press, Beijing, China, 1997.

[11] H. Ma, J. Zeng, R. Feng, X. Pang, Q. Wang, and B. Wen,
“Review on dynamics of cracked gear systems,” Engineering
Failure Analysis, vol. 55, pp. 224–245, 2015.

[12] H. Ma, R. Song, X. Pang, and B. Wen, “Time-varying mesh
stiffness calculation of cracked spur gears,” Engineering
Failure Analysis, vol. 44, pp. 179–194, 2014.

[13] Z. Chen, W. Zhai, Y. Shao, K. Wang, and G. Sun, “Analytical
model for mesh stiffness calculation of spur gear pair with
non-uniformly distributed tooth root crack,” Engineering
Failure Analysis, vol. 66, pp. 502–514, 2016.

[14] Q. Wang, “A mesh stiffness method using slice coupling for
spur gear pairs with misalignment and lead crown relief,”
Applied Mathematical Modelling, vol. 90, pp. 845–861, 2011.

[15] Q. Wang, B. Zhao, Y. Fu, X. Kong, and H. Ma, “An improved
time-varying mesh stiffness model for helical gear pairs
considering axial mesh force component,” Mechanical Sys-
tems and Signal Processing, vol. 106, pp. 413–429, 2018.

[16] J. Tang and T. P. Pu, “Spiral bevel gear meshing stiffness
calculations based on the finite element method,” Journal of
Mechanical Engineering, vol. 47, no. 11, pp. 23–29, 2011.

[17] H. Xu, “Development of a generalized mechanical efficiency
prediction methodology for gear pairs,” Electronic @esis or
Dissertation, Ohio State University, Columbus, OH, USA,
2005.
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