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As a promising device of vibration isolation for rocket engine turbopumps, turbine engines, and other kinds of rotordynamic
applications, the elastic porous metal mesh damper (MMD) has drawn large attention from researchers. It exhibits higher load
capacity and environmental adaptivity than traditional viscoelastic damping materials owing to the excellent combination of
metallic properties and the rubber-like damping performance. However, the design of a metal mesh damper relies heavily on the
trial-and-error methodology for tuning fabrication parameters, which prevents it from widespread use in rotor-bearing ap-
plications. )erefore, efforts are directed toward forging an explicit link between fabrication parameters and the dynamic
behaviors of MMDs in the present work. Quasistatic and dynamic mechanical tests are carried out to help determine the primary
factor that influences the damping performance of the MMD and to demonstrate how the dynamic behaviors of MMDs evolve
with the fabrication parameters. Furthermore, two different modeling methodologies, i.e., the FE method and the mixed damping
approach, are used to predict the hysteresis behaviors of the dampers. )e latter method not only properly reproduces the
experimental results but also makes it possible to build an intuitive connection between the fabrication procedures and the
dynamic mechanical behaviors of theMMDs.)e orthogonal test results determine that the mesh density plays a dominant role in
controlling both the load capacity and damping performance of the MMDs. By integrating mesh density and motion amplitude
into the expression of parameters including stiffness coefficient, damping coefficient, and damping component factor, the mixed
damping model demonstrates excellent predictive accuracy under different excitation conditions.

1. Introduction

)e vibration damping of rocket engine turbopumps, gas
turbine engines, and other electric components for
aerospace shuttles has long been a major challenge for
engineers due to the extreme environment those devices
are exposed to. For instance, the devices could suffer from
the pyrotechnic shock caused by separation events or
experience low-frequency vibration amplification gener-
ated by the engine thrust and aerodynamic loads [1–3].
Furthermore, a working temperature tolerance of
−157°C∼+121°C is required for the vibration isolators to
withstand the temperature change within the orbiting
Space Shuttle.

Viscoelastic materials such as rubber and composites
have been traditionally employed as vibration isolators for
aerospace devices. However, deterioration and structure
failure may frequently appear because of the poor working
conditions, which considerably increase the maintenance
cost of the vibration isolation system. Metal mesh dampers
constructed by intertwined helix metal wires have been
considered as alternatives to traditional viscoelastic dampers
owing to the increasing need for a higher load capacity in
extreme temperature conditions. By taking advantage of
abundant dry friction joints within the complicated wire
mesh structure, metal mesh dampers provide larger energy
dissipation than rubber dampers [4]. Exhaustive experi-
mental work has demonstrated the aerospace applications of

Hindawi
Shock and Vibration
Volume 2021, Article ID 8886480, 18 pages
https://doi.org/10.1155/2021/8886480

mailto:shaoyichuan612@fzu.edu.cn
https://orcid.org/0000-0001-7050-3453
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8886480


metal mesh dampers fabricated with shape memory alloys
(SMAs) [5–10].

A typical use of the radial direction of the metal mesh
damper is the vibration control of the rotor-bearing system
of turbomachinery [11], especially the turbopump, gas
turbine engines, and turbochargers where high vibration
amplitude could be produced over a wide range of frequency
[12–15]. Reported results [16] demonstrate excellent vi-
bration attenuation effects of metal mesh bearings on the
motion amplitude of the rotor. San Andrés [17] imple-
mented ring-shaped metal mesh foil bearings into an oil-free
microturbomachinery and achieved a structural loss factor
as high as 0.7. )e bearing stiffness is found sensitive to the
motion amplitude and frequency in this study. Lee’s work
[18] relates the damping capacity of the metal mesh damper
to its density and suggests that higher density leads to higher
stiffness and damping loss factor. Ryu [19] investigated the
effects of preload on the damping characteristics of the metal
mesh damper equipped on automotive turbochargers via
static loading-unloading cycles. )e test results indicate that
preload has a significant impact on the loss factor of the
metal mesh dampers with lower density.

Although promising results can be obtained by using
metal mesh dampers, a large number of fabrication tests are
usually required to optimize the performance of the final
products. One can hardly predict the damping character-
istics of the mesh damper based on experience because of the
complicated interactions between individual wires [20].
)erefore, a predictive model based on either mathematics
or microstructural considerations is necessary for wide-
spread use in rotordynamic applications. Cao [21] simulated
the static performance of metal mesh cushion by decon-
structing it as close-packed piles of microcurved beams and
furthermodeling the elastic behavior and Coulomb damping
of the individual wires. However, the dynamic response of
the metal mesh materials is quite distinct from the static
behavior. Choudhry and Vance [22] introduced a dynamic
model with consideration of factors including metal mesh
ring geometry, displacement amplitude, axial thickness, and
exciting frequency. Al-Khateeb [23] developed a model with
stick-slip behaviors considered and predicted the variation
of stiffness well. Recently, the hysteresis loop has frequently
been used to characterize the dynamic behavior of metal
mesh dampers. Hou [24] further developed this method-
ology by decomposing the hysteresis cycle into an asym-
metric nonlinear elastic restoring force, a viscous damping
force, and a bilinear hysteresis Coulomb friction force. By
doing so, hysteresis curves tested with different amplitudes
and exciting frequencies at temperatures between 20°C and
300°C can be well predicted by the model.

As revealed by the literature [25], the hysteresis behavior
is not only affected by the ambient temperatures, amplitude,
and exciting frequency but also dependent upon the fab-
rication parameters of the damper, such as density, criss-
cross angle, and wire diameter. )ose factors are usually
intertwined and interaffected, which makes it hard to es-
tablish an explicit relationship between those parameters
and the hysteresis behaviors.)erefore, of particular interest
to the authors is to determine the primary factor that affects

the hysteresis behavior. An additional concern is modeling
this hysteresis behavior with the primary factor involved so
that the simulation results can automatically respond to the
change of processing parameters or exciting conditions.

2. Experimental Setup and Test Methods

2.1. Fabrication of MMD. MMDs are typically constructed
either by spiral metal thread or by knitted metal mesh. )e
former type of MMDs usually presents chaotic wire pat-
terned structures, while the latter type has a layer-structured
typology [26]. Because the spiral thread-based type is chosen
as the objective of the present study, all the tested results and
conclusions from this paper might not apply to the knitted
metal mesh dampers.

As illustrated in Figure 1, the following procedures were
carried out to fabricate MMDs:

(1) 304 stainless steel wire was chosen as the raw ma-
terial to fabricate all the dampers used in the present
work.

(2) )e steel wire was encircled into a tight helical wire
which is prepared for the subsequent fabrication
steps.

(3) After that, the helix wire was pretensioned to some
extent to make sure the pitch is equal from one loop
to another and then wrapped around a mandrel and
arranged in a crisscross pattern to obtain a rough
porous soft roll. )e angle between the helix thread
and the transverse direction of the mandrel is taken
as θ for convenience.

(4) Finally, the soft roll was put into a mold and highly
compressed until the final damper geometry was
reached.

(5) )e outer diameter, inner diameter, and height of the
dampers used in the present work are 22mm,
12mm, and 15mm, respectively.

Experience shows that fabrication parameters including
the wire diameter, the crossing angle of helix wire, and the
density are all capable of adjusting the stiffness and loss factor
of the MMD. As shown in Table 1, fabrication parameters
representative of typical situations of manufacturing ring-
shaped MMDs are tested in the present work.

2.2. Quasistatic Compression Tests

2.2.1. Test Method. Static compression tests of the MMDs
were conducted by using a WDW-T200 electromechanical
universal testing machine with a constant loading speed of
5mm/min and a maximum load of 2 kN. As shown in
Figure 2(a), only the radial direction of the sample was tested
in the present work. )e outer surface of the damper is
subjected to the load from the fixture whereas the inner
surface is constrained by the mandrel.

An orthogonal test design was used to help determine
the key factor that mainly influences the equivalent stiffness
and loss factor of the MMDs. In this test, attention was
focused on four factors including mesh density ρ, crisscross
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angle θ, wire diameter d, and test load F. )e maximum
number of levels considered in the test is limited by the local-
made helix thread machine tool which is only applicable for
wires with diameters 0.1mm, 0.15mm, and 0.3mm. As a
result, an L9 (34) orthogonal array was adopted so that each
of the factors has 3 levels, as shown in Table 2.

2.2.2. Characterization of Static Stiffness and Loss Factor.
As shown in Figure 3(a), metal mesh materials typically
demonstrate nonlinear loading and unloading curves, of
which the tangent stiffness is not a comprehensive de-
scription of the hysteresis behavior. Instead, equivalent
stiffness keq is used here to characterize the load capacity of
the MMDs, as depicted in Figure 3(b). )e area under the
middle line of the hysteresis loop, which is also called elastic
potentialU, equals the area under the line with a slope of keq:

keq �
2U

x
2
max

, (1)

where xmax is the maximum loading displacement.
)e loss factor ηs can be calculated by

ηs �
ΔW
πU

, (2)

where the energy dissipation ΔW equals the area of the
hysteresis loop.

2.3. Dynamic Mechanical Test

2.3.1. Test Method. )e dynamic test of the MMDs was
carried out using an SDS-200 hydraulic universal testing
machine which provides a maximum load of 200 kN and a
maximum displacement of ±50mm. As shown in
Figure 2(b), the ring-shaped damper was positioned in the
fixtures to simulate the practical vibration conditions and
then gripped in the testing machine. )e sine test protocol
was performed with a peak amplitude of 0.1mm and a
constant frequency of 1Hz. It is undeniable that the stiffness
of MMD is frequency-dependent [17]. However, the change
of hysteresis loop versus frequency is hard to be noticed
when the frequency range narrows down to 1∼10Hz [27]. In
the present work, our efforts are directed toward modeling
the effects of fabrication parameters, and hence, a fixed
frequency was adopted in the test.

① 304 stainless steel wire ⑤ Metal mesh damperCrisscross angle 

② Tight helix wire ④ Compression

Metal mesh material
Die

③ Rough porous so� roll

θ

Figure 1: Fabrication of the metal mesh damper.

Table 1: )e tested fabrication parameters.

Parameter Value
Wire diameter (mm) 0.1, 0.15, 0.3
Crisscross angle (°) 15, 30, 45, 60, 75
Mesh density (g/cm3) 2.0, 2.5, 3.0, 3.5, 4.0
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(a) (b)

Figure 2: Mechanical test setup of the MMDs. (a) Quasistatic compression. (b) Dynamic mechanical test.

Table 2: Orthogonal array for static compression tests of MMDs.

Factor Level
1 2 3

Mesh density, ρ (g/cm3) A 2.0 3.0 4.0
Crisscross angle, θ (°) B 15 45 75
Wire diameter, d (mm) C 0.1 0.15 0.3
Test load, F (kN) D 1 1.5 2

Displacement (mm)

Loading

Unloading

Lo
ad

 (k
N

)

∆W

(a)

Equivalent stiffness

Elastic restoring force

Displacement (mm)

Lo
ad

 (k
N

)

U

(b)

Figure 3: Characterization of static stiffness and loss factor. (a) Hysteresis behavior ofMMDunder static load. (b) Elastic restoring force and
equivalent stiffness of an MMD.
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2.3.2. Characterization of Dynamic Stiffness and Loss Factor.
Dynamic stiffness can be viewed as the ability of theMMD to
resist an external oscillatory load. It differs from static
stiffness concerning the calculations and can be expressed by
the load that is required to produce unit displacement on the
damper, i.e.,

K �
Fmax − Fmin

2X0
, (3)

where the Fmax and Fmin are the maximum and minimum
restoring force sampled from the hysteresis curve and X0 is
the peak motion amplitude of the test.

)e loss factor can be written in the form of energy
dissipation, ΔW, divided by the elastic potential,W, within a
complete cycle of vibration, which gives

ηd �
ΔW
2πW

, (4)

where the energy dissipation can be obtained by

ΔW � 􏽚 Fdx

� −ωX0 􏽚
T

0
F sin(ωt + α)dt

� −
2πX0

N
􏽘

N

i�1
Fi sin

2πi

N
+ α􏼒 􏼓,

(5)

and the elastic potential is given by

W �
1
2

KX
2
0, (6)

Substituting equations (5) and (6) into (4), the dynamic
loss factor can be written as

ηd � −
4f

f0 Fmax − Fmin( 􏼁
􏽘

N

i�1
Fi sin

2πi

N
+ α􏼒 􏼓. (7)

3. Modeling Procedures

3.1. Finite Element Modeling

3.1.1. Material Models. It is necessary to use a hyperelastic
model in conjunction with a viscoelastic model for de-
scribing the hysteresis behavior of metal mesh material [28].
)e Mooney–Rivlin model [29] was adopted to simulate the
hyperelasticity of the MMD. )e mechanical strain energy
can be expressed as a sum of invariants as follows:

W � ΣiΣjCij I1 − 3( 􏼁
i

I2 − 3( 􏼁
j

+ D(J − 1)
2
, (8)

where Cij and D are empirically determined material con-
stants, I1 and I2 are the first and the second invariants of the
deviatoric component of the left Cauchy–Green deforma-
tion tensor, and J is the determinant of the deformation
gradient F. )e number of terms in the expansion depends
on the application’s accuracy requirements. For instance, the
first few terms of the series can be written as

W � C10 I1 − 3( 􏼁 + C01 I2 − 3( 􏼁 + C11 I1 − 3( 􏼁 I2 − 3( 􏼁 + C20 I1 − 3( 􏼁
2

+ · · · + D(J − 1)
2
. (9)

)e Cauchy stress for the Mooney–Rivlin model is given
by

σ �
2
J

C10 + C01I1( 􏼁b∗ −
2C01

J
b∗( 􏼁

2
+ 2D(J − 1) −

2I1C10

3J
−
4I2C01

3J
􏼢 􏼣I, (10)

where b∗ � (J)−2/3b and b is a dimensionless symmetric
fourth-order tensor of material parameters.

)e integral formulation for linear isotropic viscoelas-
ticity is given by

σ(t) � 􏽚
t

0
2G(t − τ)

de
dτ

dt + I􏽚
t

0
K(t − τ)

dϕ
dτ

dt, (11)

where e and ϕ are the mechanical deviatoric and volumetric
strains and K and G are the bulk modulus and the shear
modulus, which are functions of the reduced time t. )e
relaxation functions K(t) and G(t) can be defined indi-
vidually in terms of a series of exponentials known as the
Prony series:

K(t) � K∞ + 􏽘

nK

i�1
Kie

−t/τK
i ,

G(t) � G∞ + 􏽘

nG

i�1
Gie

−t/τG
i ,

(12)

where K∞ and G∞ represent the long-term bulk and shear
moduli; nK and nG are the number of terms of the bulk and
shear moduli; and τK

i and τG
i are relaxation times of the bulk

and shear moduli.

3.1.2. Mesh and Boundary Conditions. All the FE simula-
tions were carried out using ANSYS workbench software.
)e static structural and transient structural modules were
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used for the quasistatic compression and dynamic loading
simulations, respectively. )e geometry of the FE analysis
was modeled based on the MMDs and fixtures used in the
experiment and then discretized by hexahedral elements, as
shown in Figure 4.

)e boundary conditions of the quasistatic compression
model and the dynamic model are the same as the exper-
imental conditions. It is worth mentioning that the surfaces
of the metal mesh ring and the mandrel are allowed to be
separated, and the frictionless condition is defined for this
contact pair.

To simulate the dynamic loading conditions, a sinusoidal
excitation is applied as displacement as A sin(π, t) to the
upper plane of the damper fixture, as shown in Figure 4. Both
ends of the mandrel are constrained by the fixture to keep the
loading condition identical to the experiment. )e inner
surface of the damper is not bonded together with the outer
surface of the mandrel and a frictionless definition is applied.

3.2. Nonlinear Elastic Mixed DampingModel. )e hysteresis
behavior of metal mesh damper can be decomposed into two
different terms including asymmetric nonlinear elastic re-
storing force, Fk(y), and nonlinear damping force, Fc(y, _y)

[30], which gives

F(y(t), _y(t)) � Fk(y) + Fc(y, _y)

� k1y(t) + k3y
3
(t) + c| _y(t)|

αsgn( _y(t)),

(13)

where k1 is combined with k3 to describe the nonlinear
elastic restoring behavior, and c and α are used to define the
type of damping force involved. Apparently, a greater value
of αwould lead to a higher sensitivity of damping force to the
velocity. Furthermore, equation (13) can be expressed as
Coulomb friction force if α equals 0 and can be simplified as
a definition of linear damping force if α equals 1. Mixing of
different damping force components would appear if α is
greater than 0 yet smaller than 1. )e identification of pa-
rameters k1, k3, c, and α is required to describe the hysteresis
behavior of MMDs.

By fitting the hysteresis loops of MMDs fabricated with
various densities against a 3-order polynomial,

Fk(y) � a0 + a1y + a2y
2

+ a3y
3
, (14)

we can obtain the first-order stiffness coefficient k1 � a1 and
the third-order stiffness coefficient k3 � a3, respectively. k1
and k3 can be further written as functions of excitation
conditions and fabrication parameters, i.e., k1 � k1(X, Y),
and k3 � k3(X, Y).

Once the term Fk(y) is determined, the nonlinear
damping force can be calculated by subtracting Fk(y) from
the hysteresis response fk, i.e.,

Fc yk, _yk( 􏼁 � fk − k1yk − k3y
3
k. (15)

Consequently, coefficients c and α can be identified by
using a Gauss–Newton approach.

4. Results

4.1. Orthogonal Test Results. )e key factor that primarily
influences the loss factor and stiffness of the MMDs is
determined by ordering the importance of all the four factors
involved via the orthogonal test. As shown in Table 3, the
statistical test parameter of factor set x can be calculated by
determining the sum of all the test result indices Kxy

containing level y of factor x, and thus, a range analysis can
be conducted by calculating the difference between the
maximum and minimum values of Kxy.

By comparing and ordering the R values for indices η0
and Keq, it is intuitive to determine the primary factor that
affects the performance of the MMDs. As for the loss factor,
the order of significance is test load>mesh density> -
crisscross angle>wire diameter. For the equivalent stiffness,
the order of significance is mesh density> test load> -
crisscross angle>wire diameter.

4.2. Parameter Identification of the FEModel. )e FE model
introduced in Section 3.1 is fitted against the compression
curve tested with a displacement of 0.5mm. A set of
Mooney-Rivlin parameters for different mesh densities are
obtained as listed in Table 4. )e Prony shear relaxation
parameters are obtained as shown in Table 5.

Prony shear relaxation parameters as shown in Table 5
are calibrated based on published results to ensure that the
curves are well fitted.

4.3. Parameter Identification of the Mixed Damping Model.
By fitting hysteresis loops of MMDs against equation (14),
we can obtain the first-order and the third-order nonlinear
stiffness coefficients as the following matrix.

)e matrix of k1 and k3 values presented in Tables 6 and
7 can be subsequently plotted as functions of mesh density
and amplitude, as shown in Figures 5(a) and 5(b),
respectively.

)e discrete points shown in Figure 5 are then fitted
against a continuous binary function k(ρ, A) to describe the
evolution of k values with mesh density and amplitude,
which gives

Metal mesh damper

Mandrel

Fixed support

① Quasistatic loading and unloading

Damper fixture

② Sinusoidal excitation
h damper Damper fix

Figure 4: FE models for the static compression and dynamic
loading of the MMD.
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k1(ρ, A) � 3.137 × 10−5
A
0.05217ρ9.108

, (16)

k3(ρ, A) � −836.7 − 367.4 · A + 975.6ρ − 183.1A
2

− 327.3A · ρ − 314.7ρ2

+ 2760A
3

+ 1299A
2

· ρ − 69.43A · ρ2 + 36.29ρ3.
(17)

Table 4: Mooney–Rivlin parameters adopted for the FE model.

Density (g/cm3)
Material parameter (MPa)

C10 C01 C11 D1
2.0 1.9 −0.5 31 0.35
2.5 60 −54 100 0.35
3.0 4 −0.1 60 0.35
3.5 60 −54 90 0.35
4.0 40 −14 36 0.35

Table 5: Prony shear relaxation parameters adopted for the FE model.

Parameter a1 t1 a2 t2
Value 0.5548 0.4 0.4336 0.2

Table 6: k1 values identified for hysteresis loops of MMDs fabricated with various densities.

Amplitude
k1 values of MMDs with different densities (kN/mm)

2.0 g/cm3 2.5 g/cm3 3.0 g/cm3 3.5 g/cm3 4.0 g/cm3

0.05mm 0.3365 0.2235 1.5273 4.3051 7.5503
0.10mm 0.2823 0.3538 1.0539 2.5246 8.3948
0.15mm 0.2957 0.2490 0.7007 2.1466 8.8699
0.20mm 0.4368 0.5272 0.5333 1.7452 8.9133
0.25mm 0.6376 0.9585 0.4655 1.2470 9.3548

Table 3: Orthogonal test results of quasistatic compression of the MMDs.

No.
Factor and level Index

Density Crisscross angle Wire diameter Test load Loss factor Equivalent stiffness
A B C D η0 Keq

1 1 1 1 1 0.0281 0.022
2 1 2 2 2 0.09 0.0566
3 1 3 3 3 0.206 0.07
4 2 1 2 3 0.0681 0.129
5 2 2 3 1 0.0462 0.215
6 2 3 1 2 0.0113 0.1433
7 3 1 3 2 0.0279 0.3462
8 3 2 1 3 0.0582 0.1779
9 3 3 2 1 0.043 0.48
Range analysis for the index η0(x � A, B, C, D)

ΣKx1 0.3241 0.1241 0.09 0.1173
ΣKx2 0.1256 0.1944 0.2011 0.1292
ΣKx3 0.1291 0.259 0.28 0.3323
R 0.1985 0.1349 0.19 0.215
Range analysis for the index Keq(x � A, B, C, D)

ΣKx1 0.1486 0.4972 0.3432 0.717
ΣKx2 0.4873 0.4495 0.6656 0.5461
ΣKx3 1.0041 0.6933 0.6312 0.3769
R 0.8555 0.2438 0.3224 0.3401
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It is noteworthy that the maximum order of A in
equation (16) is limited to a low level. In so doing, the
dependency of k1 on amplitude can be considerably reduced
to ensure that the discrete points are well fitted.

)e nonlinear damping force can be obtained via
equation (15), and then, we obtain the matrix of damping
coefficient c as shown in Table 8.

)e matrix of damping coefficient c presented in Table 8
can be plotted as a function of mesh density and amplitude,
as illustrated in Figure 6.

)e discrete points shown in Figure 6 are then fitted
against a continuous binary function c(ρ, A) to describe the
evolution of c values with mesh density and amplitude,
which gives

c(ρ, A) � −6.705 + 9.596A + 6.924ρ + 0.7754A
2

− 7.209A · ρ

− 2.286ρ2 + 0.1469A
3

+ 1.297A
2

· ρ + 0.2459A · ρ2.
(18)

)e identification of the damping component factor, α, is
similar to that of the damping coefficient c. First, a matrix of
α can be obtained via equation (15), as shown in Table 9.

)e matrix of α values presented above can be plotted as
a function of mesh density and amplitude, as illustrated in
Figure 7.

)e discrete points shown in Figure 7 are then fitted
against a continuous binary function α(ρ, A) to describe the
evolution of α values with mesh density and amplitude,
which gives

10

8

6

4

2

0

Fi
rs

t-o
rd

er
 st

iff
ne

ss
 (k

N
/m

m
)

4
3.5

3
2.5

2

Mesh density (g/cm 3)

0.25
0.2

0.15
0.1

0.05 Amplitude (mm)

(a)

Th
ird

-o
rd

er
 st

iff
ne

ss
 (k

N
/m

m
3 )

4
3.5

2.5
2

0.25
0.2

0.1
0.05

200

150

100

50

0

0.15

Amplitude (mm)
3Mesh density (g/cm 3)

(b)

Figure 5: Stiffness coefficient plotted as a function of mesh density and amplitude. (a) k1 and (b) k3.

Table 7: k3 values identified for hysteresis loops of MMDs fabricated with various densities.

Amplitude
k3 values of MMDs with different densities (kN)

2.0 g/cm3 2.5 g/cm3 3.0 g/cm3 3.5 g/cm3 4.0 g/cm3

0.05mm 86.7 151.1 131.9 185.9 160.9
0.10mm 24.2 105.4 10.5 125.6 180.5
0.15mm 11.9 54 10.1 46.5 5.2
0.20mm 11.2 39.6 7.4 21.5 15.7
0.25mm 9.4 34.9 4.7 8.1 18.5

Table 8: c values identified for hysteresis loops of MMDs fabricated
with various densities.

Amplitude
c values of MMDs with different densities (kN·s/mm)

2.0 g/cm3 2.5 g/cm3 3.0 g/cm3 3.5 g/cm3 4.0 g/cm3

0.05mm 0.0235 0.0694 0.1397 0.1436 0.1107
0.10mm 0.0409 0.0899 0.1114 0.1359 0.2937
0.15mm 0.0446 0.1339 0.1252 0.1452 0.4147
0.20mm 0.0657 0.1657 0.1219 0.1320 0.5329
0.25mm 0.0899 0.2247 0.1263 0.1280 0.6592
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Figure 6: c values plotted as a function of mesh density and
amplitude.
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α(ρ, A) � −0.8135 + 0.6189A + 1.188ρ − 0.7935A · ρ

− 0.3195ρ2 + 0.1205A · ρ2 + 0.02337ρ3.
(19)

As a result, we obtain the nonlinear mixed damping
model of the MMD by substituting all the identified pa-
rameters to equation (13):

F(y(t), _y(t), t) � 3.137e − 5A
0.05217ρ9.108

􏼐 􏼑y(t)

+

−836.7 − 367.4 · A + 975.6ρ

−183.1A
2

− 327.3A · ρ − 314.7ρ2

+2760A
3

+ 1299A
2

· ρ

−69.43A · ρ2 + 36.29ρ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
y
3
(t)

+

−6.705 + 9.596A + 6.924ρ

+0.7754A
2

− 7.209A · ρ − 2.286ρ2

+0.1469A
3

+ 1.297A
2

· ρ

+0.2459A · ρ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
| _y(t)|

−0.8135 + 0.6189A + 1.188ρ − 0.7935A · ρ
−0.3195ρ2 + 0.1205A · ρ2 + 0.02337ρ3 sgn( _y(t)).

(20)

4.4. Effect of Mesh Density on the Hysteresis Behavior of
MMDs. Figure 8 illustrates the effect of mesh density on the
hysteresis loop of MMDs. )e crisscross angle θ and wire
diameter are 60° and 0.3, respectively, while the mesh density
is varying from 2.0 to 4.0. )e hysteresis loops exhibit a
counterclockwise rotation as the mesh density increases,

which indicates that a stiffness change is produced. )e area
of the hysteresis loop differs from one to another, suggesting
that the energy dissipation of MMDs is affected by the mesh
density as well.

To quantify the testing data, the stiffness and loss factors
are depicted as functions of mesh density in Figure 9. Both

Table 9: α Values identified for hysteresis loops of MMDs fabricated with various densities.

Amplitude
α Values of MMDs with different densities

2.0 g/cm3 2.5 g/cm3 3.0 g/cm3 3.5 g/cm3 4.0 g/cm3
0.05mm 0.4014 0.5571 0.4429 0.4187 0.2569
0.10mm 0.4441 0.4797 0.3969 0.3370 0.3279
0.15mm 0.3930 0.4461 0.3820 0.3516 0.2053
0.20mm 0.3736 0.4304 0.3869 0.3143 0.1806
0.25mm 0.3724 0.2722 0.3941 0.2484 0.1581
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Figure 7: α Values plotted as a function of mesh density and amplitude.
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stiffness and loss factors vary with mesh density mono-
tonically but demonstrate opposite tendencies. )e in-
creasing mesh density results in a rise in stiffness but, on the
contrary, a drop in loss factors. )e increased mesh density
leads to more compacted wires and multiplied dry friction
joints in unit volume. On the one hand, this reduces the
length and increases the stiffness of the microbeams, the
basic components that constitute the entire metal mesh
material according to [21]. On the other hand, the motion of
one single pair of friction joints is restricted to a smaller
range due to the densified helix wires, thereby attenuating
the friction dissipation. )e elastic potential, meanwhile,
becomes greater owing to the increased stiffness, which gives
rise to a lower value of loss factor.

4.5. Effect of Crisscross Angle θ on the Hysteresis Behavior of
MMD. Figure 10 shows the effect of crisscross angle on the
hysteresis loop of MMDs. )e mesh density and wire

diameter are kept at fixed values of 3.0 g/cm3 and 0.3mm,
respectively, while the crisscross angle is varying from 15° to
75°. )e hysteresis loops spin clockwise as the crisscross
angle increases, indicating a different stiffness change in
contrast to Figure 8.

)e stiffness and loss factors are shown as functions of
the crisscross angle in Figure 11. )e stiffness of MMDs
decreases rapidly from 3.5 to 1.0 as the angle increases from
15° to 45° and then tends to stay at a low level. )e crisscross
angle only produces a slight change to the loss factor which
slowly declines from 0.5 to 0.35 and then bounces back to a
local maximum.

4.6. Effect of Wire Diameter on the Hysteresis Behavior of
MMDs. Figure 12 shows how the hysteresis loops evolve
with the wire diameter. )e extent to which the peak re-
storing force varies is much smaller as compared to Figures 8
and 10, which proves again that the wire diameter plays a
relatively minor role in hysteresis behavior. )e hysteresis
cycles just rotate at a small angle in a counterclockwise
direction, which turns out to be a little improvement in
stiffness as shown in Figure 13. On the one hand, the en-
larged diameter increases the rigidity of every single wire,
hence a higher stiffness of the entire metal mesh ring. On the
other hand, the number of friction joints is reduced to some
extent due to the shortened length of the helix wire, leading
to a slight reduction in the loss factor.

4.7.Comparison of FESimulationandMixedDampingModel.
)e hysteresis loops simulated by the FE method and a mixed
damping model are compared with experimental results
under different conditions. Figure 14 demonstrates the
simulated and experimental results of hysteresis loops that
evolve with different mesh densities. Apparently, both the FE
approach and the mixed damping method can capture the
“counterclockwise spin” that is representative of the in-
creasing stiffness of the MMDs. However, the FE model
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achieves an exaggerated area of the hysteresis loop in the case
of mesh density 4.0 g/cm3, which is radically different from
the experimental result. In contrast to that, the mixed
damping model is well in accordance with the experimental
hysteresis loops in every single case of mesh density. Even the
inflection points that are omitted in FE results can be correctly
predicted by the mixed damping model.

)e RMS error between the simulation and experimental
hysteresis loops is evaluated using the following equation:

σ �

�����������������������

1
N

􏽘

N

i�1

Esimul(i) − Eexp(i)

Eexp(i)
􏼠 􏼡

2
􏽶
􏽴

(21)

and then plotted as histogram shown in Figure 15. For all the
cases of mesh densities, the error of the mixed damping
model is steadily kept at a level lower than 0.375 whereas the
FE approach presents a higher error 2∼30 times larger than
the mixed damping model.

Figure 16 demonstrates how the simulated stiffness and
loss factor respond to the variation of mesh density. )e
mixed damping model predicts the way experimental
stiffness and loss factor change with mesh density. However,
the FE results deviate significantly from the experimental
results, especially the simulated values of the loss factor.

Apart from mesh density, displacement amplitude is
another key factor that affects the hysteresis behavior.
Figure 17 compares the simulated and experimental results
of hysteresis loops with different loading amplitudes. It can
be found that the inflection points are still neglected in the
FE results which crudely depict the hysteresis loop as an
ellipse. Furthermore, the two modeling approaches present
nearly opposite ways in the prediction of stiffness changes, as
shown in Figure 18(a). )e stiffness values simulated by the
mixed damping model, which show good agreement with
the experiment, decrease with loading amplitude rapidly first
and then slowly approach a steady value. On the contrary,
the stiffness values simulated by the FE model demonstrate a
concave feature. )at is, the decreasing tendency of calcu-
lated stiffness becomes even larger as the loading amplitude
increases. )e FE model also fails to predict the way loss
factors vary with the amplitude. As shown in Figure 18(b), a
considerable difference can be observed between the FE
results and the experimental values of the loss factor.

5. Discussion

5.1. Comparing the Implementation of the Two Different
Modeling Methods. Two different modeling approaches are
adopted in the present work, aiming to predict how the
dynamic behavior of MMDs responds to excitation condi-
tions and fabrication parameters. )e first approach is FE
modeling based on the transient structural module of the
ANSYS workbench. External excitation conditions and
material parameters are required for the input, and the
material model plays a critical role to solve the dynamic
response of the MMDs. On the contrary, the material model
is no longer required for the mixed damping approach, the
second method adopted in the present work.
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Phenomenological parameters describing mechanical be-
haviors including nonlinear restoring and damping are
simply identified by fitting hysteresis loops against mathe-
matical models.

It is noteworthy that different sets of material pa-
rameters are required for the FE model when MMDs are
fabricated with various mesh densities, as is reflected in
Table 4. In fact, metal mesh material which consists of a
great number of helix microstructures is a kind of

structure instead of material. Once the mesh density is
changed, the microstructures within the MMDs are
modified accordingly. As a result, a unified set of material
parameters for metal mesh materials are hard to be ob-
tained, and the FE model calibrated for one density would
fail to capture the dynamic mechanical behavior when the
density is changed to another. In addition to that, the
viscoelastic material model is unable to simulate critical
features that are revealed in the experimental results. For
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Figure 14: Simulated and experimental hysteresis loops of MMDs with different densities. (a) Mesh density 2.0 g/cm3. (b) Mesh density
2.5 g/cm3. (c) Mesh density 3.0 g/cm3. (d) Mesh density 3.5 g/cm3. (e) Mesh density 4.0 g/cm3.
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instance, the inflection points are missing from the
hysteresis loops. In contrast to the FE model, the mixed
damping approach can capture the details by taking
advantage of identifying the first-order and the third-
order stiffness coefficient, although those are not pa-
rameters correlated with any physical properties of the
material.

)e damping mixed approach proves a better solution to
describe the dynamic behaviors as compared to the FE
model. Although a heavy reliance on experimental results is
inevitable, this approach does reflect the internal essence of
the experimental phenomenon. )e first-order and third-
order stiffness coefficients are heavily dependent on mesh
density other than motion amplitude. )is proves again the
importance of mesh density to the hysteresis behaviors of the
metal mesh material.

In future work, a user-defined material subroutine will be
developed to define how themicrostructures inside theMMDs
change with the mesh density and to modify the constitutive
law by relating the microstructures to the viscoelasticity. In so
doing, a predictive FE model for MMDs can be implemented
without heavy reliance on experimental results.

5.2. Applicability of the Methodology of the Present Work.
A set of parameters representative of the typical fabrication
procedure of ring-shaped MMD is selected in this paper to
conduct all the tests and simulations in consideration of the
fabrication quality of the ring-shaped MMD. For instance, a
crisscross angle smaller than 10° will weaken the interlocked
structures between the different layers of the wrapped helix
wire, which results in structural failure under the vibration
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Figure 17: Simulated and experimental hysteresis loops of MMDs of mesh density 2.0 g/cm3 excited with different amplitudes.
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environment. In addition, an extreme wire density smaller
than 1.0 g/cm3 or larger than 5.0 g/cm3 would lead to either
poor loading capacity of the MMD or higher fabrication cost.

Although a limited range of fabrication parameters is
employed in this paper, one can still extend the application
of the mixed dampingmethod to situations outside the given
range of the parameters in Table 1. As a modeling technique
based on system identification theory, a mathematic relation
between the external excitations and the response of the
MMD can be constructed by decomposing the nonlinear
restoring force in terms of elastic force and damping force
and then identifying the free parameters involved in the
“grey box model.” )erefore, the methodology is applicable
as long as the force-displacement inputs and outputs are
given. As reported in [31], a crisscross angle as high as 90° is
used by the authors to improve the durability of the ring-
shaped MMDs under fatigue loading cycles. Metal rubber
sheets as thin as 2.5mm were fabricated with a density of
1.8 g/cm3 and wrapped around the corrugated pipe to isolate
vibrations [30]. In both works where the fabrication pa-
rameters of MMDs do not fall within the given range of
Table 1, the mixed damping method was successfully applied
to predict the dynamic mechanical behavior of the metal
rubber devices. Apart from that, the mathematical function
of dynamic response versus excitation conditions or even
environmental conditions can be conveniently established
via the mixed damping method. For instance, the dynamic
response of MMD was built as a function of restoring force
versus excitation frequency and ambient temperature in the
published work [25].

6. Conclusions

In the present paper, efforts are directed toward modeling
the dynamic behavior of metal mesh damper subjected to

sinusoidal excitation. Dynamic mechanical tests are con-
ducted as well to verify the predicted results. Conclusions
can be drawn as follows:

(1) By using orthogonal test design and ranging analysis,
the effect of fabrication procedure on the dynamic
behavior of the MMD is evaluated by ordering the
significance of every single fabrication parameter,
i.e., mesh density> crisscross angle>wire diameter.
)e single-factor test indicates that the maximum
variation of the dynamic stiffness and loss factor
caused by adjusting the mesh density is 6.9 and 6.2
times higher than that caused by changing the wire
diameter

(2) As revealed in the experiments, the three fabrication
parameters influence the performance of MMDs in
different ways. Increasing the mesh density leads to a
higher dynamic stiffness but a lower loss factor. A
greater crisscross angle results in a decrease in dy-
namic stiffness and loss factor. Using thicker wire to
fabricate the MMD only increases its dynamic
stiffness and has little effect on the loss factor

(3) )e predictive accuracy of the FE method and the
mixed damping approach is assessed by comparing
the calculated results of hysteresis loops against
experimental ones. )e mixed damping approach
turns out to exhibit higher agreement with the ex-
perimental results. )e shape of the hysteresis loop
can be depicted more accurately by the mixed
damping approach by taking advantage of identi-
fying key parameters including the stiffness coeffi-
cient, the damping coefficient, and the damping
component factor. Furthermore, this approach can
automatically respond to the change of fabrication
parameters and external excitation conditions by
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Figure 18: Simulated values of (a) stiffness and (b) loss factor plotted as a function of amplitude.
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defining internal variables as functions of the mesh
density and the motion amplitude

(4) Although optimization of fabrication parameters is
not concerned in this paper, the mixed damping
model proposed in the present work can help con-
struct the desired MMDs when design requirements
are given. Since the model automatically responds to
the change of mesh density and excitation amplitude,
one can use it reversely to determine which mesh
density should be chosen when specific loss factor
and dynamic stiffness of the MMD are required
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