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Vehicle platform vibration (VPV) directly affects the measurement accuracy of precise measuring instrument (PMI) fixed on it. In
order to reduce the influences of VPV on measurement accuracy, it is necessary to perform vibration isolation between vehicle
platform and PMI. Analysis of vibration characteristics is a prerequisite for vibration isolation. However, empirical mode
decomposition (EMD) and ensemble empirical mode decomposition (EEMD) reveal that there is obvious mode mixing phe-
nomenon in the collected VPV signals. In this paper, a noise stretch ensemble empirical mode decomposition (NSEEMD)method
is proposed to suppress modemixing, and the specific operation process of NSEEMD is expounded. By NSEEMD,modemixing of
the collected platform vibration data is well suppressed, and the principal component of platform vibration can be obtained.

1. Introduction

A stable platform is the basis for the normal operation of
precision measuring instrument (PMI). )e vehicle mea-
surement platform is greatly affected by vibration instru-
ment such as vehicle engines and generators. )e vibration
can be directly transmitted to PMI and thus affects the
measurement results. To ensure the measurement accuracy
of PMI, a vibration isolation device is usually installed be-
tween the vehicle platform and PMI to provide a relatively
stable measurement environment.

In order to obtain vibration characteristics of the
vehicle platform, acceleration sensors are often used to
collect the vibration information of the vehicle platform.
In the information collection process, the vibration in-
formation is inevitably mixed with some interference such
as environmental and circuit noises. Consequently, the
collected platform vibration data must be further analyzed
to extract the real vibration information of vibration
sources, thus providing a reliable basis for vibration
isolation design [1, 2].

)e most important purpose of signal analysis is to
clearly express the time and frequency characteristics of the
signals. Traditional signal time-frequency analysis methods,
such as short-time Fourier transform, Wigner–Ville dis-
tribution, and wavelet transform, are all based on the Fourier
transform. )ese methods view the signal as a function of
time or frequency as a whole and cannot accurately describe
the characteristics of frequency over time. Hence, they are
greatly limited by obvious defects such as poor adaptability
in practical applications.

Empirical mode decomposition (EMD) method can
decompose the fluctuation or change trend of different scales
in the signal into a series of intrinsic mode function (IMF)
sequences with actual physical significance. Since IMF
comes from the signal itself, it is adaptive and has been
widely used in the nonlinear vibration analysis. )e Hilbert
transform of IMF is called Hilbert–Huang transform (HHT),
and the results can reflect the actual physical process of
original data and the distribution of energy on the spatial or
time scale [3].
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Figure 1: Flowchart of EMD.

2 Shock and Vibration



Ever since Huang proposed the EMD method, a large
number of scholars have carried out massive research work.

Currently, the related theoretical research mainly pays
attention to mathematical principles of EMD, end effect
processing, mode mixing problems, and mean curve fitting.
Wu and Huang studied the mathematical statistical char-
acteristics of EMD based on white noise and the noise-
assisted data processing method and revealed the binary
filtering effect of EMD [4, 5]. Qian explored the mathe-
matical roots of HHT [6]. Wang proposed the EMD end-
point extension method of the aggregation matrix [7]. Zhou
proposed a method to eliminate the end effect and false
mode of EMD [8]. Based on ensemble empirical mode
decomposition (EEMD), complementary ensemble empir-
ical mode decomposition (CEEMD), and partial ensemble
empirical mode decomposition (PEEMD), Huang developed
a new method that combines permutation entropy and
spectral substitution with ensemble EMD to solve the
problem of mode mixing [9]. Zheng proposed the PEEMD
method to resolve the mode mixing problem [10]. Yang used
the frequency shift of Hilbert to make the signal satisfy the
decomposition condition of EEMD [11]. Tang improved the
fixed-point algorithm based on independent component
analysis to separate the overlapping components [12]. Liu
discussed the measurement and elimination of mode
splitting in his study [13].

In terms of applied research, the EMD method has also
been widely used in many fields such as mechanical fault
diagnosis, weather forecasting, and financial market fore-
casting. Cheng applied the frequency family separation
method to gear fault diagnosis [14]. Li applied EMD on

railway wheel flat detection [15]. Li and Abdelkader applied
EMD to diagnose rolling bearing faults, respectively [16, 17].
Fang applied EMD to forecast agricultural product futures
prices and Willard applied EMD to analysis of rainfall and
temperature data [18, 19]. All the above applied research has
achieved good results.

In this study, we mainly focus on the methods and
applications of suppressing mode mixing of EMD. )e
EEMD method has a certain suppression effect on mode
mixing in some IMFs, but new mode mixing may appear in
other IMFs. To alleviate the drawbacks of EEMD in mode
mixing suppression for complex signals, the NSEEMD
method is proposed, and the experimental results show that
its mode mixing suppression effect is significantly better
than that of EEMD.

)e rest of this paper is organized as follows. Section 2
introduces the principles of EMD, HHT, and EEMD and
presents mode mixing of EMD. In Section 3, the NSEEMD
method is proposed and the procedures are provided. )en,
in Section 4, EMD, EEMD, and NSEEMD methods are used
to process specific VPV signals, and the experimental results
are presented. Finally, some conclusions are drawn in
Section 5.

2. EMD and Mode Mixing

In this section, the principles of EMD, HHT, and EEMD are
introduced, and mode mixing of EMD is presented.

2.1. Principle of EMD. )e EMD is a nonlinear nonsta-
tionary signal analysis method proposed by Huang in 1998
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Figure 2: Flowchart of EEMD.
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based on HHT. It is a powerful signal analysis technique for
nonstationary and nonlinear systems. )e algorithm of
EMD is adaptive and data-driven, which can decompose a
time series of multiple frequencies into a number of com-
ponents through a sifting process in time domain. Typically,
each component, referred to as an intrinsic mode function
[3], follows a trend characterized by a dominant frequency,
which usually varies with time. )is resembles the feature of
nonstationary and nonlinear systems.

Huang defines two conditions that an IMF needs to
meet:

(1) Within the entire data sequence, the number of zero
crossings is equal to that of maximum and minimum
values or differs from that by at most 1

(2) At any point on the signal data, the average value of
the upper envelope defined by the local maximum
and the lower envelope defined by the minimum is

Start

Input signal f(t) 

j > m;

Y

N

End

j++;

fi(t) = f(t) + random (Sj);

emd (fi(t));
(get IMFjih)

IMFh = (∑j
m
=1∑i

n
=1IMFjih/mn)

Figure 3: Flowchart of NSEEMD.
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Figure 5: IMFs of EMD on simulation signal.
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Figure 6: IMFs of EEMD on simulation signal. (a) EEMD with WGN in −10 dBW. (b) EEMD with WGN in −30 dBW.
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always 0, which means the signal is locally symmetric
around the time axis

)ese two limiting conditions make EMD similar to a
narrow-band filter, and each order IMF obtained by de-
composition is a set of narrow-band signals [20].

)e specific procedures of EMD are shown in Figure 1.

)e input signal is f(t). First, determine all extreme
points of f(t) by f′(t) � 0. )en, fit the upper envelope
Eu(t) containing all maximum points and the lower enve-
lope Ed(t) containing all minimum points, and average the
upper envelope and the lower envelope as m(t). Use h(t) as
the signal to be decomposed if h(t) � f(t) − m(t) does not
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Figure 7: IMFs of NSEEMD on simulation signal.
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satisfy the two IMF conditions; otherwise, h(t) is the first-
order IMF. Furthermore, continue to decompose the residual
m(t) obtained by decomposition to obtain higher-order
IMFs. )e EMD ends until the residual terms obtained by
decomposition are monotone functions.

)ere is a physical mapping relationship between a series
of IMFs obtained by EMD and the inherent mode function
of the system. )e IMFs of EMD represent the components
of the signal with different frequencies from high to low, and
the residual term represents the average trend in the signal.
)e frequency components contained in each order IMF
frequency band are different. In the same IMF component,
the instantaneous frequencies at different time points are
also different. )is local time distribution of different fre-
quency components varies with the signal itself [3].

2.2. Algorithm of HHT. )e following Hilbert Transform is
performed on each IMF function hi(t):

􏽢hi(t) � H hi(t)􏼂 􏼃 �
1
π

􏽚
∞

−∞

hi(t)

t − τ
dτ. (1)

Construct analytical signal:

zi(t) � hi(t) + j􏽢hi(t) � ai(t)e
jφi(t)

. (2)

Get the instantaneous amplitude function:

ai(t) �

�����������

h
2
i (t) + 􏽢h

2
i (t)

􏽱

. (3)

)e function of the instantaneous phase is

φi(t) � arctan
􏽢hi(t)

hi(t)
(4)

)e function of the instantaneous frequency is

fi(t) �
1
2π

ωi(t) �
1
2π

×
dφi(t)

dt
. (5)

)e function of Hilbert spectrum is

H(ω, t) � RP􏽘
n

i�1
ai(t)e

j 􏽚ωi(t)dt􏼒 􏼓
. (6)

)e function of Hilbert marginal spectrum is

h(ω) � 􏽚
T

0
H(ω, t)dt. (7)

)e Hilbert spectrum shows the joint distribution of
signal amplitude with time and frequency. )e Hilbert
marginal spectrum reflects the variation of signal amplitude
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Figure 9: Apparatuses of vehicle platform vibration test.
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Figure 11: Continued.
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with frequency. )e Hilbert marginal spectrum is equivalent
to the Fourier spectrum, but has higher resolution.

)e essence of EMD is a binary filter. IMF1, the first
component, represents the highest frequency segment in the
signal. )e relationship between the center frequency the ith
IMF and the center frequency fi+1 of the (i+ 1)th IMF is

fi+1 �
fi

2
. (8)

)e EMD has the characteristics of frequency deter-
mination and adaptation. )e determination of the center
frequency of IMF depends on the signal itself and has
nothing to do with human factors. When the center fre-
quency f1 of the first IMF is determined, the center fre-
quencies of subsequent IMFs are all related to f1. When
there is no frequency component of a certain frequency band
in the signal, the center frequency of the next IMF is de-
termined by the actual frequency lower than that frequency
band [20].

2.3. Mode Mixing and EEMD. )e binary filtering charac-
teristic of EMD can decompose the signal into a series of
IMF components with different center frequencies, and the
center frequency of IMF is strictly kept at 1/2 of the previous
one. However, when one or some signal components in
original data are nonuniformly distributed on time and

frequency scales, some IMFs may contain two frequencies
that are not in the same frequency band. Mode mixing is
defined based on this chaotic phenomenon caused by the
loss of time scale during the EMD process. It is noticed that
such mode mixing phenomenon makes each order IMF lose
its physical meaning.

In order to suppress mode mixing, Wu and Huang
proposed the EEMD method. )e specific idea of EEMD is
to add an evenly distributed white noise sequence to the test
data f(t) and obtain a new data sequence f1(t). First,
perform EMD on f1(t) to obtain an IMFihIMF1h. )en,
repeat the above process and add different white noises to
the test data each time, thus obtaining a series of IMFih.
Finally, average IMFs of the same order as the final result
through the following mathematical expression:

IMFh �
􏽐

n
i�1 IMFih( 􏼁

n
. (9)

)e procedures of EEMD are shown in Figure 2:

3. NSEEMD Method and Simulation

During VPV signal processing, it is found that the signal is
affected by multiple vibration sources and circuit noise. As a
result, the obtained platform vibration data are complicated,
and the vibration frequencies are distributed in a wide range.
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Figure 11: IMFs of VPV data processing by different methods. (a) IMFs obtained by EMD. (b) IMFs obtained by EEMD with WGN in
0 dBW. (c) IMFs obtained by EEMD with WGN in −10 dBW. (d) IMFs obtained by EEMD with WGN in −30 dBW. (e) IMFs obtained by
EEMD with WGN in −50 dBW. (f) IMFs obtained by NSEEMD proposed in this study.
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Figure 12: Continued.
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When the vibration data are processed by EMD, there is
obvious mode mixing in some IMFs. When the data are
processed by EEMD, mode mixing in some IMFs can be
suppressed to a certain extent. It is also found in the

experiment that mode mixing suppression is affected by the
power spectral density (PSD) of white noise. However, white
noise with a certain PSD only suppresses mode mixing in a
certain frequency band. In order to achieve mode mixing
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Figure 12: Hilbert marginal spectrum of IMFs by different methods. (a) EMD. (b) EEMD with WGN in 0 dBW. (c) EEMD with WGN in
−10 dBW. (d) EEMD with WGN in −30 dBW. (e) EEMD with WGN in −50 dBW. (f) NSEEMD proposed in this study.
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suppression in a wider frequency range, this paper proposes
an NSEEMD method, and the specific procedures of
NSEEMD are as follows:

(a) Add a white Gaussian noise (WGN) sequence g1(t)

in a PSD S1 to f(t), obtain a new data sequence
f1(t), perform EMD on f1(t), obtain an IMF se-
quence IMF11h, and repeat the above process to
obtain a series of IMF1ih.

(b) Repeat (a). Add a WGN sequence g1(t) in PSD Sj to
f(t), and obtain a series of IMFjih.

(c) Average IMFs of the same order obtained by each
EEMD as the final result through the following
mathematical expression:

IMFh �
􏽐

m
j�1 􏽐

n
i�1 IMFjih

mn
. (10)

)e procedures of NSEEMD are shown in Figure 3:
Mode mixing is caused by the loss of time scale in the

EMD process. Add the white noise signal ni(t) to the signal
f(t) to form a new signal Si(t) as

1
m

􏽘

m

i�1
Si(t) �

1
m

􏽘

m

i�1
f(t) +

1
m

􏽘

m

i�1
ni(t). (11)

Here, Si(t) is continuous on the time scale.
)e statistical characteristic of the white noise shows

1
m

􏽘

m

i�1
ni(t) � 0. (12)

)us, the IMF of f(t) can be obtained by averaging the
IMFs of all orders of Si(t).

Here, we construct a sinusoidal signal with high-frequency
intermittent disturbances, as shown in Figure 4. )e main
frequency signal is sin(πi/1000), and the disturbance signals
are 0.1 sin(πi/400) and 0.4 sin(πi/20).

We perform EMD on the above signals to obtain IMFs,
as shown in Figure 5. It can be seen that IMF1 has mode
mixing and that the modes of the two added disturbance
signals are not separated.

We perform EEMD on the simulation signal with GWN
in –10dBW and –30dBW, respectively, to obtain IMFs, as
shown in Figure 6. It can be seen that mode mixing is
suppressed to a certain extent.

We performNSEEMD on the simulation signal to obtain
IMFs, as shown in Figure 7. It can be seen that the modes of
the two added disturbance signals are well separated.

4. Vehicle Platform Vibration Process and
Result Analysis

In order to obtain the vibration information of the vehicle
platform, a sensor is fixed near the location where the
measuring instrument is connected to the vehicle platform.
)e sensor converts the vibration information into electrical
signals, which are collected by a data collector. )e data
collector then transmits the vibration information data to a

laptop, and the laptop stores the vibration information data.
Figure 8 shows the layout of vibration information
collection.

In this paper, the vehicle platform vibration data are
collected by the apparatuses shown in Figure 9. A piezo-
electric acceleration sensor 356A26PCB produced by PCB
Company is used as the sensor, and a YMC-9800 dynamic
data collector produced by YMKMeasurement and Control
Technology Co., Ltd. is employed for data acquisition. )e
connection position between the vehicle platform and the
measuring instrument is on the vibration transmission path,
and the acceleration sensor is placed in the sensitive posi-
tion. )e sampling frequency is set as 25 kHz.

)e number of sampling points is set as 10,000, and the
original sampling data of VPV are shown in Figure 10.

)e EMD, EEMD, and NSEEMD are, respectively,
performed on the sampling data, and the obtained IMFs are
shown in Figure 11.

)e HHT is performed on IMFs, and Figure 12 presents
the vibration Hilbert marginal spectrum (HMS) of IMFs.

From Figures 11 and 12, we can clearly draw the fol-
lowing conclusions:

(1) When the EMD method is used to process the vi-
bration data, there is obvious mode mixing in IMF3
and IMF5.

(2) When the EEMD method is used to process the
vibration data, if the power spectral density of WGN
is −10 dBW, mode mixing in IMF3 and IMF5 can be
suppressed, but new mode mixing appears in IMF4
and IMF6. If the power spectral density of WGN is
−30 dBW, mode mixing in IMF5 is suppressed, but
mode mixing in IMF3 is not suppressed. If the power
spectral density of WGN is −50 dBW, the power
spectral density is too low, and the suppression effect
on mode mixing is weak.

(3) When the NSEEMD method proposed in this study
is used to process the vibration data, mode mixing in
IMF3 and IMF5 can be well suppressed, and there is
no new mode mixing.

From mode decomposition, it can be seen that the vi-
bration energy of the vehicle platform is mainly concen-
trated at 105Hz. Figures 13 presents the Hilbert spectrum of
IMFs obtained by NSEEMD in the range of 0–500Hz, which
clearly displays the distribution of frequency and energy in
time domain.

5. Conclusion

In summary, there is obvious mode mixing phenomenon in
the collected VPV signals by EMD and EEMD, and
NSEEMD is proposed to suppress mode mixing in IMFs.

Mode decomposition of the VPV data by EMD can result
in obvious mode mixing of the obtained IMFs. EEMD can
only suppress partial mode mixing of complex signals, but
may create new mode mixing. Experimental results show
that the mode mixing suppression capability of EEMD is
related to the power spectral density of the added WGN,
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which determines the frequency band and suppression
ability of mode mixing that it can suppress.

Compared with EMD and EEMD, NSEEMD can ef-
fectively suppress mode mixing with no new mode mixing
and well maintain the adaptive characteristics of EMD. By
separating the signals of each frequency of the VPV data, the
obtained IMFs represent the actual vibration information of
the vehicle platform, and the vibration frequency distribu-
tion after mode decomposition can improve the design of
the vehicle platform.
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