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In the fragility analysis, researchers mostly chose and constructed seismic intensity measures (IMs) according to past experience
and personal preference, resulting in large dispersion between the sample of engineering demand parameter (EDP) and the
regression function with IM as the independent variable. *is problem needs to be solved urgently. Firstly, the existing 46 types of
ground motion intensity measures were taken as a candidate set, and the composite intensity measures (IMs) based on machine
learning methods were selected and constructed. Secondly, the modified Park–Ang damage index was taken as EDP, and the
symbolic regression method was used to fit the functional relationship between the composite intensity measures (CIMs) and
EDP. Finally, the probabilistic seismic demand analysis (PSDA) and seismic fragility analysis were performed by the cloud-stripe
method. Taking the pier of a three-span continuous reinforced concrete hollow slab bridge as an example, a nonlinear finite
element model was established for vulnerability analysis. And the composite IM was compared with the linear composite IM
constructed by Kiani, Lu Dagang, and Liu Tingting. *e functions of them were compared. *e analysis results indicated that the
standard deviation of the composite IM fragility curve proposed in this paper is 60% to 70% smaller than the other composite
indicators which verified the efficiency, practicality, proficiency, and sufficiency of the proposed machine learning and symbolic
regression fusion algorithms in constructing composite IMs.

1. Introduction

*e earthquake contains many pieces of random information
due to different conditions, such as source, propagation path,
and site. To meet the requirements of effectiveness, benefit,
adequacy, and robustness [1] in structural fragility analysis, the
seismic intensity measures (IMs) were proposed based on
three seismic aspects of amplitude, spectrum, and duration [2].

*e most basic IMs of seismic amplitude are the max-
imum peak ground motions, which include the peak ground
acceleration (PGA), peak ground velocity (PGV), and peak
ground displacement (PGD), denoted as aPG, vPG, and dPG.
Nuttli et al. [3] took the third peak value in the seismic
acceleration and velocity time history as the ground motion

intensity measure (IM), denoted by the sustained maximum
acceleration (SMA) and the sustained maximum velocity
(SMV), respectively. *e first and third peaks of the seismic
acceleration-time history after filtering the high-frequency
noise were used as the ground motion intensity index, which
is called the effective design acceleration (EDA) [4].

Based on a simplified single-point elastic or elastoplastic
model and considering the basic natural vibration period of
the structure, the spectrum IMs were proposed. In order to
include the dynamic characteristics of structures with dif-
ferent fundamental frequencies, Housner [5] proposed the
velocity spectrum IM SIv(ζ) of the structure period, where ζ
is the damping ratio. Mackie [6] extended the velocity
spectrum intensity to the acceleration spectrum intensity
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SIv(ζ). For large-span and high-rise structures, the damage
of the structure during ground motion was the result of the
superposition of multiple modes. Shome [7] and Brozovic�
[8] found that the contribution of higher-order modal effects
could not be ignored during the damage process. Cordova
[9], Lu [10], Tsantaki [11], Adam [12], and so on used the
multimode geometric mean response acceleration as the
earthquake IMs, respectively, denoted as SaC, SaL, SaT, and
SaA. Rathje [13] performed component fusion on the Fourier
spectrum of the groundmotion time history curves and used
the average period Tm as the ground motion IMs.

*e seismic duration IMs refer to the indexes related to
the duration of the ground motion. *ese IMs have little
effect on the peak deformation response of the structure, but
they will cause a huge difference in cumulative damage
[14–17]. Trifunac [18] took the duration t5to95 of cumulative
energy consumption from 5% to 95% as a seismic IM.
Foschaar [19] took the duration t5to75 of cumulative energy
consumption from 5% to 75% as a seismic IM. Malhotra
et al. [20] used the maximum response amplitude equivalent
cycles Ncy as a ground motion IM.

*e abovementioned three types of ground motion IMs
based on the amplitude, spectrum, and duration have rel-
atively low correlations, while the correlations of IMs in each
type are relatively high. According to this characteristic,
many scholars have proposed the multifactor seismic IMs
considering the three factors through empirical means. Arias
[21] took the integral value Ia of energy and square of
ground motion acceleration as the ground motion IM. Ayala
et al. [22] introduced spectrum parameters into the modified
Arias intensity measure Pd. Nau et al. [23] integrated the
square function of the acceleration time history over the total
duration to obtain the squared cumulative velocity index vsq.
Cosenza et al. [24] normalized squared cumulative accel-
eration ID by dimensionless processing the squared cu-
mulative acceleration asq with aPG and vPG. Kramer [25]
proposed the integral of the absolute value of the acceler-
ation time history to obtain the absolute velocity index vCA.
Based on the construction principle similar to the Arias
index, Vanmarcke [26] proposed average acceleration, ve-
locity, and displacement IMs, which were denoted as aRMS,
vRMS, and dRMS. Park et al. [27] constructed composite IM Ic

based on aRMS and t5to95. Riddell [28] used ground motion
amplitude parameters aPG, vPG, and dPG and duration pa-
rameters t5to75 to combine displacement IM ICd, velocity IM
ICv, and acceleration IM ICa. In addition, the earthquake IMs
also include the average period Tm and frequency fm of the
response spectrum, the maximum yield limit fyK of the
response spectrum, and the maximum ductility coefficient
μK of the elastic single-degree-of-freedom system. While
taking into account the effectiveness and benefit of multi-
factor IMs, their adequacy is constantly improved. While
taking into account the effectiveness and usefulness of
multifactor IMs, the adequacy is constantly improved.
However, the consideration process of multi-indicator
factors contains more subjective factors. For the charac-
teristics of different structures, there is no universal process
for the selection, fitting, and construction of a unified IM.
*e robustness of the combined IMs cannot be guaranteed.

To further improve the efficiency, practicality, proficiency,
and sufficiency of ground motion IMs [29, 30], scholars have
proposed vector-type parameter IMs and linear composite
IMs. *ese multiple linear combination IMs are constructed
through experience and have achieved good results in specific
cases, but there are also many defects. Kiani et al. [31] used
vPG and vCA as earthquake IMs and at the same time con-
sidered the influence of the two duration parameters of t5to95
and t5to75. It had a good effect on the fragility analysis of
specific structures. However, the multicollinearity of t5to95
and t5to75 was not excluded. Cheng et al. [32] used two-di-
mensional IM vectors [Samax,e, aRMS] and [Samax, e, vCA]
for probabilistic seismic demand analysis (PSDA) and ob-
tained better fitting results than single IM. Wang Xiaoping
[33] used the residual sum of squares (RSS) and goodness of
fit to prove that the two-dimensional vector IMs parameter
[Samax ,e, ICa] was relatively effective. However, Lv Dagang
and Wang Xiaoping used the cloud-stripe method to reduce
the dimensionality of parameter indicator of the two-di-
mensional vector [IM1, IM2], which believed that the var-
iability was caused by IM2 and eliminated the influence of
IM1. *e method was only suitable for considering a single
factor, which could not consider multiple factors. Using the
partial least squares (PLS) method, Liu Tingting [29, 34]
proved that the log-linear combination of the six IMs
[aPG, asq, vPG, vsq, Pd, SIv(ζ � 0.05)] has the best effect.
However, this method could not rule out the strong nonlinear
relationship among the selected IMs.

In order to take into account efficiency, practicality,
proficiency, and sufficiency of ground motion IMs, based
on machine learning and symbolic regression fusion al-
gorithms, composite earthquake IMs and fragility analysis
of reinforced concrete bridge piers were proposed in this
paper. Firstly, the ground motions were initially selected
according to the site conditions, and then the greedy
algorithm was used to reselect ground motions based on
the designed acceleration target spectrum. Secondly, the
finite element model was established, and the random
dynamic analysis was carried out. *irdly, the modified
Park–Ang index was used as the pier damage index, and
the damage grade was divided. Fourthly, based on the
sample space of IMs, a variety of machine learning
methods are used to select a specific number of IMs. *e
complex nonlinear relationship between IMs and engi-
neering demand parameter (EDP) was fitted and opti-
mized by symbolic regression, and then the probabilistic
seismic demand model was obtained. Finally, the fragility
curves of piers were established using the modified cloud
map-strip method, and the seismic fragility analysis was
carried out.

2. Finite Element Modeling and Seismic
Wave Selection

2.1. FiniteElementModeling. *eWuyi Avenue Bridge was a
three-span reinforced concrete continuous beam bridge.*e
bridge length was 65.04m.*e bridge deck adopted 3× 20m
prestressed concrete hollow slab beams. Each span of it was
composed of 9 prestressed concrete hollow slabs. *e hollow
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slabs were prefabricated with C50 concrete. *e wet joints
and the bridge deck were, respectively, cast with C50 and
C40 concrete on-site. In the substructure, the bridge piers
were column piers with a height of 6.3m and a circular
cross-sectional diameter of 1.1m. *e bridge abutments
were ribbed abutments with a height of 6.3m. *e foun-
dation was bored piles with a height of about 27.2m and a
circular cross-sectional diameter of 1.2m. C30 concrete was
used for the substructure. Grade 270 prestressing strands,
HRB335, and HRB400 steel bars were mainly used for all
components of the bridge. GJZ200× 250× 42 bearings were
adopted at piers 1 and 2, and GJZF4200× 250× 44 at
abutments.

OpenSees software was employed to build the finite el-
ement model of this bridge. ConcreteCM and Steel4 were
used to simulate the nonlinear material constitutive model of
concrete and steel bar, respectively. Elastic_Beam_Column
element was used to simulate the hollow slab. *e impact
element was used to simulate the interaction between the
main beam and abutment anticollision block.*e Elastomeric
Bearing Plasticity element was used to simulate the bearing.
Hinge Beam_Column element was used to simulate rein-
forced concrete piers. Fiber section was used to simulate the
plastic hinge part. Rigid body characteristics of main abut-
ment nodes were connected by the Rigid_Link element. *e
PySimple1 model was used to simulate abutment-soil in-
teraction. Link element was used to simulate pile-soil inter-
action. PySimple1, TzSimple1, and QzSimple1 were used to
simulate horizontal resistance of pile side, vertical friction
force of pile body, and vertical resistance of pile bottom,
respectively. *e others were simulated by Elas-
tic_Beam_Column element without considering nonlinearity.
*e bridge layout, typical section diagram, and modeling
method of the Wuyi Avenue Bridge are shown in Figure 1.

2.2. Selection of Ground Motions. *e Wuyi Avenue Bridge
was a class B bridge with two-stage fortification, which met
the requirements of no damage under minor earthquakes and
no collapse under severe earthquakes. Minor earthquakes and
severe earthquakes refer to the earthquake intensity with the
exceeding probability of approximately 63% and 3%, re-
spectively, in the region within 50 years. It was 6-degree
fortification intensity. *e soil of the site belonged to me-
dium-hard soil, with a shear wave velocity of 250–500 (m/s)
and an overburden layer thickness of about 8m. *erefore, it
belonged to the class II site. *e PGA was between 0.05 g and
0.8 g. According to the above conditions, 516 ground motions
were selected from 23014 seismic records in the database [34].

*e design acceleration response spectrum of the
highway bridge seismic code was

S(T) �

Smax
0.6T

T0 + 0.4
  T≤T0

Smax T0 <T≤Tg

Smax
Tg

T
  Tg <T≤ 10

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (1)

where T is the period; T0 is the maximum period of the
linear ascending segment of the reaction spectrum, with a
value of 0.1 s; Tg is the characteristic period, with a value of
0.35s [36, 37]; and Smax is the maximum value of the
designed acceleration response spectrum, as shown in the
following formula:

Smax � 2.5CiCsCdA. (2)

In Formula (2), Ci was the seismic importance coeffi-
cient, and the importance coefficient of two-level fortifica-
tion was 0.5 and 1.7, respectively; the site coefficient Cs was
1.0; the damping ratio of the structure was 0.05, the damping
adjustment coefficient Cd was 1.0, and the peak acceleration
A of horizontal basic ground motion was 0.05 g.

*e seismic acceleration records were modulated in the
range of 0.2–5 times of amplitudes [37]. *e horizontal
acceleration records were combined according to the square
root sum of squares (SRSS) method. *e greedy optimiza-
tion algorithm [38] was used to select 100 combined ground
motion records, and the mean square error was 0.72%. *e
acceleration response spectrum, average acceleration re-
sponse spectrum, and target acceleration response spectrum
of each seismic wave are shown in Figure 2. *e acceleration
response spectrum of 200 ground motions without com-
bined amplitude modulation also is shown in Figure 2.

2.3. Engineering Demand Parameters and Damage Grade
Classificationof Piers. Li et al. [39] defined the damage grade
of piers according to the curvature ductility ratio of the pier
section as the damage index, which did not consider the low-
cycle fatigue effect and used the damage value calculated by
the modified Park–Ang damage model as the damage index,
denoted as D [40]. *e criterion of damage states proposed
by Stong et al. [41] and Guo et al. [42] is shown in Table 1.

Compared with the damage state criterion prosed by
Strong, the damage state criterion considering the three-
dimensional extension of the criterion through experiments
proposed by Guo et al. could better reflect the real damage
state of structures, which was suitable for reinforced con-
crete piers in this article.
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3. The Calculation Process of Seismic Fragility

3.1. Earthquake IMs. According to the amplitude, spectrum,
duration, and combination of the earthquake IMs, 46 dif-
ferent IMs are listed in Table 2. In addition to the IMs
mentioned above, there were the following IMs: IMs of
acceleration, velocity, and displacement at the peak of elastic
seismic response spectrum were Samax ,e, Svmax ,e, and Sdmax ,e,
respectively. IMs of peaks of elastic pseudo acceleration

spectrum and pseudo velocity spectrum were Samax ,ep and
Svmax ,ep, respectively. IMs of acceleration, velocity, and
displacement at the peak of the elastoplastic acceleration
response spectrum were Samax ,p, Svmax ,p, and Sdmax ,p, re-
spectively. IMs of peaks of elastoplastic pseudo acceleration
spectrum and pseudo velocity spectrum were Samax ,pp and
Svmax ,pp, respectively. IMs of period and frequency of re-
action spectrum were Tm and fm, respectively. IMs of the
maximum values of the plastic yield limit and ductility
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Figure 1: Analysis model of the reinforced concrete continuous girder bridge; (a) reinforced concrete column; (b) rubber bearing;
(c) reinforced concrete pile; (d) elastic section beam.
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coefficient of the reaction spectrum of the elastic single-
degree-of-freedom system were fyK and μK, respectively.

3.2. Selection of Earthquake IMs Based on Machine Learning
Method. 46 different IMs of 100 seismic records in each of
the two horizontal directions were calculated. After nor-
malization, a ridge regression algorithm was used to initially
filter out irrelevant IMs, and the least squares regression of
the dependent variable and the independent variable was
fitted by the regularization coefficient β(k) as follows [43]:

β(k) � X
T
X + kI 

− 1
X

T
y, (3)

where X is a 100×46 full-rank matrix, the row represents the
number of samples, and the type of IMs is tabulated; y is the
vector of EDP observations; I is the unit vector; k is the
regularization coefficient, and the range of interpolation
value is from 0.1 to 1.

As k increased, if β(k) continued to tend to 0, it indicated
that this parameter had a low correlation with other pa-
rameters and was representative. *e parameter was

retained in the primary election. *e result of parameter
selection was not changed by ridge regression analysis.
However, the calculation efficiency was improved by ridge
regression analysis.

According to the correlation between dependent vari-
ables, the communication with local agent (CLA) clustering
method [44], K-means clustering method [45], and K-
medoids clustering method [46] were used for characteristic
parameter clustering. Among them, K-means clustering and
CLA clustering methods were suitable for the sample
clustering analysis with double precision data and small data
set size; the K-medoids clustering method was suitable for
cluster analysis with complex characteristic parameter types
(including strings and numbers) and large sample size. In
this case, the number of samples was small, and K-means
and CLA clustering methods were adopted to cluster the
parameters into 3 groups.

For the three groups of parameters, the univariate
correlation detection algorithm was used to calculate the
correlation between the sample of characteristic parameters
and the observed values within the group. *e univariate
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Figure 2: Seismic acceleration response spectrum: (a) the amplitude modulated spectrum by the maximum SRSS; (b) unmodulated
spectrum.

Table 1: Criterion of damage states for reinforced concrete continuous bridge piers.

Damage states (D) No damage or minor local damage Repairable Irreparable Collapse or complete destruction
Stong et al. [41] D< 0.11 0.11≤D< 0.4 0.4≤D< 0.77 0.77≤D< 1
Guo et al. [42] D< 0.08 0.08≤D< 0.3 0.4≤D< 0.68 0.68≤D< 1

Table 2: Classification of IMs.

Classification Amplitude Spectrum Duration Composites

IMs aPG vPG dPG SMA

SMV EDA1 EDA3

Samax ,e Svmax ,e Sdmax ,e Samax ,ep Svmax ,ep Samax ,p

Svmax ,p Sdmax ,p Samax ,pp Svmax ,pp SIv(ζ) SIa(ζ) Sa.C

Sa.L Sa.T Sa.A Tm fyK fm μK

t5to95 t5to75
Ncy

Ecum Iae Ia Pd asq vsq ID IF vCA

aRMS vRMS dRMS Ic ICd ICv ICa

Total: 46 7 20 3 16
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correlation detection algorithms were the Pearson correla-
tion coefficient (PCC) algorithm [47], Spearman’s correla-
tion coefficient (SCC) algorithm [48], Kendall’s correlation
coefficient (KCC) algorithm [49], distance correlation co-
efficient (DCC) algorithm [50], maximal information co-
efficient (MIC) algorithm [51], and so on. *e characteristic
comparison of the above correlation algorithms is shown in
Table 3. *e three IMs with the highest correlation with the
dependent variable in each category were selected as the final
IMs.

3.3. PSDA Based on Symbolic Regression Method. *e non-
linear relationship between IMs and EDP was fitted and
optimized by symbolic regression [52, 53]. An initial set of
functions was defined that contains any combination of
basic mathematical operators, trigonometric functions, and
exponential logarithmic operators. Mean absolute error
(EMA) was used as the evaluation index. *e greater the
index value, the worse the fitness. In order to give con-
sideration to calculation efficiency and stability, EMA>0.6,
complexity less than 30, and a number of parameters less
than or equal to 3 were taken as the elimination criteria of
the genetic algorithm. Population size andmaximum genetic
algebraic limits were not set, and EMA <0.01 was only taken
as the final genetic target.

PSDA and seismic fragility were analyzed using the
cloud-stripe method. To make up for the shortage of sample
size of incremental dynamic analysis (IDA) and PSDA, the
PSDA model based on cloud map was changed to the
probabilistic intensity model based on strip approach using
the modified cloud-stripe method. It was assumed that the
probabilistic intensity model conformed to lognormal dis-
tribution [54]. *e fragility function (cumulative distribu-
tion function) of components under specific combination
IMs was

P d≥Dk|IMs � x(  � ϕ
In(d) − InSD

βDk|IMs

 , (4)

where d represents the component response (EDP) of a
component under random seismic loading; Dk represents
the damage state; SD represents the EDP of a component;
and βDk|IMs

represents the logarithmic standard deviation of
seismic demand.

*e logarithmic function SD of multiple IMs
InIM1, InIM2, ...InIMj, ...InIMm and established by sym-
bolic regression was

InSD � f InIM1, InIM2, . . . InIMj, . . . InIMm . (5)

Formula (5) could be abbreviated as

InSD � f(IMs). (6)

In formula (6), m represents the number of basic IMs in
multiple IMs; was the logarithmic combination of
InIM1, InIM2, ...InIMj, ...InIMm.

According to formula (6), random sample di of com-
ponent response was extracted between IMsk−1 and IMsk+1.

*e logarithmic standard deviation βDk|IMs of damage state
Dk was

βDk|IMs �

����������������������

 In di ≥Dk(  − f(IMs) 
2

N − n



. (7)

On this basis, the minimum andmaximum values within
the range of response bands of demand parameters in the
samples were calculated and denoted as di,min and di,max,
respectively. *e confidence factor ωi of random sample di

was constructed according to the logarithmic distance of
di,min⟶ Dk or Dk⟶ di,max, and ωi is as follows:

ωi � 1 −
InDk/di

max InDk/di,min, Indi,max/Dk 
⎛⎝ ⎞⎠

2

. (8)

*e confidence factor ωi was taken as the weight to
correct formula (7). *en, the following could be obtained:

βDk|IMs �

�������������������������

ωi In di ≥Dk(  − f(IMs) 
2

ωi(1 − n/N)



, (9)

where n is the number of parameters of the fitting function
and N is the number of samples. By comparing formulas (9)
and (7), it could be seen that the closer to Dk, the higher the
reliability of the sample value in calculating the fragility
function at the state.

4. Fragility Analysis of the Bridge Piers

4.1. Structure and FragilityAnalysis of Composite Seismic IMs.
Considering the coupling effects of bending, shear, and
bond-slip of reinforced concrete columns, a finite element
model was established and the top force-displacement curve
under monotone loading was simulated, as shown in
Figure 3.

*en, the parameters of the modified Park–Ang model
were calculated. *e ultimate displacement ductility ratio
μu,mo was 13.76mm. If the finite element calculation con-
ditions were not allowed, the curves and empirical value of
μu,mo could be calculated by referring to [55, 56], but the
accuracy of it would be affected.

*e loading path in the random calculation was
extracted. *e damage of the piers was evaluated by the
modified Park–Ang model. According to the criterion of
damage states in Table 1, the damage grade of the bridge
piers is divided according to the limit states in Table 4.

To analyze the correlation between 46 different IMs and
damage index D, irrelevant IMs were preliminarily excluded
by the least square regression coefficient curve calculated
using a ridge regression algorithm. After grouping cross-
validation and normalization, the ridge regression curves of
ground motion IMs are shown in Figure 4. k was the reg-
ularization coefficient, and its value ranges from 0 to 1.
However, in this example, when the value of k ranges from 0
to 0.04, the ridge regression curve fluctuates significantly,
which is convenient to distinguish its fluctuation law.

In Figure 4, the dotted line did not show a monotonous
increase or decrease trend, nor did it converge to 0,
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indicating that D had a weak correlation with parameters
such as aPG, vPG, Ecum, pd, vsq, vCA, vRMS, ICv, Sdmax ,e, SIa,
SaC, SaL, SaT, Samax ,pp, Samax ,p, uk, Fm, and Ncy. Parameters
with weak correlation with D were removed. Others were
clustered into 3 groups by the K-means clustering method
and CLA clustering method for the remaining IMs. *e K-
means clustering method had high randomness in the
clustering trial calculation.*e clustering result using the K-
means clustering method was unstable, which was due to the
strong dependence of the method on initial point selection
and poor clustering effect on high-dimensional data.
However, the CLA clustering method had high accuracy and
stability, and the clustering results are shown in Table 5.

Comparing the characteristics of the five univariate cor-
relation algorithms in Table 3, the correlation ranking of IMs
and D in the group was carried out. Considering that the
calculation principles of the PCC, SCC, and KCC algorithms
were similar and the sorting results were basically the same, the
PCC and SCC algorithms were excluded. *e sequence

numbers obtained by the remaining three algorithms (KCC,
DCC, and MIC) were added and reordered according to the
size, and the relevance ranking of the comprehensive algorithm
was obtained. Taking the first group of IMs as an example, the
calculation results of correlation ranking are shown in Table 6.

It could be seen from Table 6 that the correlation be-
tween dPG and D was the highest in the above algorithms, so
dPG was used to represent the final parameter of the first
group. Using the same method for each group, IMs with less

Table 3: *e characteristic comparison of the correlation algorithms.

Correlation algorithm Application scope Computational complexity Robustness Correlation criterion
PCC Linear Low Low 0⟶±1, increased
SCC Linear and monotone nonlinear Low Medium 0⟶±1, increased
KCC Linear and monotone nonlinear Low Medium 0⟶±1, increased
DCC Linear and nonlinear High High 0⟶+∞, increased
MIC Linear and nonlinear Medium High 0⟶+∞, increased
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Table 4: Limit states of bridge pier.
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Figure 4: Ground motion IMs ridge regression curve.
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correlation between dPG, ICa, and SMA were selected which
were higher correlation with D.

Random samples were extracted. *en, the fragility can
be directly estimated from the capacity of each damage state
(see Table 4) as well as the probabilistic seismic demand
model (PSDM) parameters obtained from the regression
analysis in Figure 5. *ese parameters are utilized to gen-
erate the fragility curves of the piers using formula (9). *e
logarithmic function of D and composite IMs for bridge
column pier in the transverse direction were obtained as
formula (11). Fragility curves in the transverse direction are
established as shown in Figure 6.

InD � 21 · In ICa · exp −59.024 · In
2
ICa  − 0.320

· In (8.045e − 7)
4.483+IndPG − In dPG .

(10)

Similarly, the seismic IMs along the bridge were dPG,
fyK, and SMA. *e PSDM parameters of column pier in the
longitudinal direction are obtained from the regression
analysis as shown in Figure 7. *e logarithmic function of D
(EDP) and composite IMs in the longitudinal direction was
obtained as formula (12). Fragility curves in the longitudinal
direction are established as shown in Figure 8.

InD � 1.101 + 0.409 · IndPG − 0.106 · InfyK · InSMA

− 0.105 · In2dPG · exp 0.204 · IndPG( 
− 595

 .

(11)

4.2. Comparison of Fragility Analysis Results of Various IMs.
At present, the research on the combination of IMs has not
formed a system. In recent years, the log-linear composite

IMs have been proposed by Kiani [30], Lv Dagang [32], and
Liu Tingting [29], which were selected as the comparison
group. *e optimal single IMs could also be selected by the
comprehensive algorithm of KCC, DCC, and MIC. Based on
the random ground motion response, the linear combina-
tion coefficients of the four IMs were refitted. *e basic IMs
and logarithmic fitting functions of D in the direction of the
longitudinal and transverse bridge are shown in Table 7. A
comparison of EDP fitting degree evaluation indexes of
single IM and various multivariate IMs is shown in Table 8.

In Table 8, the goodness of fit and correlation coefficient
of the combination index based on the machine learning
algorithm and the fitting function of the modified Park–Ang
damage index of piers both exceed 98%, much higher than

Table 5: Seismic IMs grouping based on the CLA clustering method.

Groups 1 2 3

IMs dPG SMV asq Ia IF aRMS dRMS Ic ICd Svmax ,e Svmax ,ep SIv(ζ) Sa.A Svmax ,p

Sdmax ,p Svmax ,pp Tm

t5to95 t5to75 ID Samax ,e

Samax ,ep ICa

SMAEDA1EDA3
μK

Table 6: Relevance ranking of IMs and D in the first group.

Correlation algorithm IMs KCC DCC MIC Total Comprehensive algorithm
dPG 1 5 7 14 1
SMV 4 1 10 21 7
asq 7 13 27 54 2
Ia 6 12 24 48 9
IF 5 2 11 21 5
aRMS 12 4 26 50 4
dRMS 3 3 9 18 8
Ic 8 8 24 48 6
ICd 2 6 10 20 3
Svmax ,e 11 11 36 75 12
Svmax ,ep 15 14 45 91 14
SIv(ζ) 13 7 29 54 16
Sa.A 14 15 44 89 10
Svmax ,p 9 9 29 60 13
Sdmax ,p 16 16 45 87 11
Svmax ,pp 10 10 32 66 15
Tm 17 17 51 102 17
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Figure 5: *e logarithmic function of D (EDP) and composite IMs
for column pier in the transverse direction.
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the other indexes which were 56%–90%. *e mean square
errors and absolute errors were lower than 25%, much lower
than 73%–188% of other indexes. *e formula complexity
was also high, but the basic condition of 30 was guaranteed.
It could be seen that the machine learning composite IMs
were superior to other single and multiple composite IMs in
describing the response of piers in structures.

*e logarithmic standard deviation of fragility function
in different damage states was calculated according to for-
mulas (4)∼(9). *e logarithmic standard deviation of bridge
piers fragility curve in different IMs is shown in Table 9.

*e linear fitting coefficients of Kiani, Lv Dagang, and
Liu Tingting composite IMs in the corresponding reference
cases were 0.970, 0.642, and 0.903, and the logarithmic
standard deviation was 0.271, 0.5, and 0.3, respectively. *e
standard deviations of Kiani, Lv Dagang, and Liu Tingting
composite IMs were about 1.35, 1.44, and 0.88 in this case. It
indicated the robustness of the composite IMs was even
lower than that of the single IM because of the bias in the
selection of the seismic IMs.
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Figure 7: *e logarithmic function of D (EDP) and composite IMs for column pier in the longitudinal direction.
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Table 8: *e comparison of fitness evaluation index of single IM and various multivariate IMs.

Direction IMs Goodness of fit Correlation coefficient MSE MAE Fitting complexity Number
of parameters

Transverse

Machine learning and
symbolic regression fusion

algorithms
0.984 0.993 0.100 0.234 30 5

Single 0.701 0.837 1.880 1.070 2 2
Kiani 0.711 0.843 1.816 1.156 5 5

Lv Dagang 0.564 0.751 2.736 1.200 3 3
Liu Tingting 0.715 0.846 1.790 1.071 7 7

Longitudinal

Machine learning and
symbolic regression fusion

algorithms
0.997 0.998 0.012 0.084 30 5

Single 0.796 0.892 0.755 0.731 2 2
Kiani 0.763 0.874 0.875 0.788 5 5

Lv Dagang 0.624 0.791 1.387 0.891 3 3
Liu Tingting 0.793 0.891 0.765 0.697 7 7

MSE is the mean square error; MAE is the mean absolute error.

Table 9: βDk |IMs
of column pier vulnerability curve.

Direction IMs
Damage states

DS1 DS2 DS3 DS4

Transverse

Machine learning and symbolic regression fusion algorithms 0.385 0.375 0.372 0.371
Single 1.257 1.246 1.242 1.240
Kiani 1.362 1.355 1.353 1.352

Lv Dagang 1.455 1.431 1.423 1.420
Liu Tingting 1.271 1.265 1.262 1.261

Longitudinal

Machine learning and symbolic regression fusion algorithms 0.112 0.106 0.105 0.105
Single 0.867 0.834 0.827 0.825
Kiani 1.145 1.126 1.122 1.121

Lv Dagang 1.141 1.066 1.052 1.047
Liu Tingting 0.919 0.882 0.875 0.873

Note. DS1, DS2, DS3, and DS4 represent four types of damage states: slight damage, moderate damage, severe damage, and complete damage.

Table 7: *e EDP fitting function of multivariate IMs and single IMs.

IMs Direction Basic IM *e EDP fitting function

Single
Transverse dPG InD � 6.325 + 1.907 · IndPG

Longitudinal dPG InD � 5.244 + 1.617 · IndPG

Kiani [30]

Transverse vPG, t5to95, t5to75, vCA

InD � 9.128 + 3.107 · InvPG + 0.992 · Int5to75
−0.925 · Int5to95 − 1.1 · InvCA

Longitudinal vPG, t5to95, t5to75, vCA

InD � 6.515 + 2.295 · InvPG + 0.906 · Int5to75
−0.891 · Int5to95 − 0.544 · InvCA

Lv Dagang [32]
Transverse Samax ,e, vCA InD � 2.023 · InSamax ,e − 0.184 · InvCA−3.022

Longitudinal Samax ,e, vCA InD � 1.209 · InSamax ,e + 0.305 · InvCA−2.759

Liu Tingting [29]

Transverse aPG, asq, vPG, vsq, Pd, SIv

InD � 8.712 + 1.916 · InvPG + 0.783 · InSIv + 0.275 · Invsq

−0.162 · InPd + 0.142 · InaPG − 0.880 · Inasq

Longitudinal aPG, asq, vPG, vsq, Pd, SIv

InD � 6.622 + 0.908 · Invsq + 0.458 · InvPG + 0.343 · InSIv

+0.286 · InaPG − 0.129 · InPd − 0.693 · Inasq
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*e standard deviation of fragility curves of the composite
IMs based on the fusion algorithm of machine learning and
symbolic regression was 60%∼70% smaller than that pro-
posed by Kiani, Lv Dagang, and Liu Tingting, indicating that
the machine learning method was more effective, beneficial,
adequate, and robust in selecting the index fitting function.

5. Conclusion

Based on machine learning and symbolic regression fusion
algorithms, structure and fragility analysis of composite
earthquake IMs for reinforced concrete bridge piers was
presented in this article. *e main conclusions were as
follows:

(1) *e existing seismic parameters were sorted out and
46 common earthquake IMs were given, which were
used to describe seismic wave characteristics.

(2) Based on the ridge regression algorithm, CLA
clustering algorithm, comprehensive algorithm in-
cluding KCC, DCC, and MIC, and symbolic re-
gression method, the grouping and selection of
seismic IMs were complied by MATLAB software.
*e functional relationship between D and com-
posite IMs was finally obtained.

(3) A probabilistic intensity model based on the mod-
ified cloud-stripe method was proposed. *is
method revised random samples under various
damage states by introducing confidence factors,
which made up for the inaccurate calculation of the
fragility function of the original PSDA in the case of
insufficient samples.

(4) A pier column of a three-span continuous reinforced
concrete hollow slab bridge was taken as an example,
and the composite IMs were obtained based on
machine learning and symbolic regression fusion
algorithms. Compared with other composite IMs
proposed by Kiani, Lv Dagang, and Liu Tingting, it
could be concluded that the goodness of fit and
correlation coefficient of the IMs and EDP in this
article was over 98%, and the mean square error and
absolute error were less than 25%, indicating that the
IMs proposed in this article could better meet the
requirements of seismic fragility evaluation.

(5) At present, this method cannot calculate the com-
ponent composite IMs index under multiobjective
EDPs. In the future, new fitting and optimization
methods need to be used.
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[52] R. Dubčáková, “Eureqa: software review,” Genetic Program-
ming and Evolvable Machines, vol. 12, pp. 173–178, 2011.

[53] S. Wasik, F. Fratczak, J. Krzyskow, and J. Wulnikowski,
“Inferring mathematical equations using crowdsourcing,”
Plos one, vol. 10, no. 12, Article ID e0145557, 2015.

[54] O. C. Celik and B. R. Ellingwood, “Seismic fragilities for non-
ductile reinforced concrete frames - role of aleatoric and
epistemic uncertainties,” Structural Safety, vol. 32, no. 1,
pp. 1–12, 2010.

[55] M. S. Lodhi and H. Sezen, “Estimation of monotonic behavior
of reinforced concrete columns considering shear-flexure-
axial load interaction,” Earthquake Engineering & Structural
Dynamics, vol. 41, no. 15, pp. 2159–2175, 2012.

[56] H. Jiang, B. Fu, X. Lu, and L. Chen, “Seismic damage as-
sessment of RC members by a modified Park-Ang model,”
Advances in Structural Engineering, vol. 18, no. 3, pp. 353–364,
2015.

[57] T. T. Liu, D. G. Lu, and X. H. Yu, “Development of a
compound intensity measure using partial least-squares re-
gression and its statistical evaluation based on probabilistic
seismic demand analysis,” Soil Dynamics and Earthquake
Engineering, vol. 125, Article ID 105725, 2019.

Shock and Vibration 13

https://rdrr.io/cran/Kendall/
https://rdrr.io/cran/Kendall/

