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As a main source of power, diesel engines are widely used in large mechanical systems. Fire failure is a kind of common fault
condition, which seriously affects the power and economy of the diesel engine. Previously, scholars mostly used single-channel
signal to diagnose the misfire fault of the diesel engine. However, the single-channel signal has limitations in reflecting the
information of fault. A novel fault diagnosis method based onMEMD and dispersion entropy is proposed in this paper. Firstly, the
multichannel vibration signal of the diesel engine cylinder head is decomposed by multivariate empirical mode decomposition
(MEMD), which obtains the IMF component groups with the same frequency in the same order./en, the IMF component with a
large correlation coefficient with the original signal in each group is selected to reconstruct new signal, and dispersion entropy
(DE) of the reconstructed signal is calculated as a fault feature vector. Finally, the fault feature vector is input into the support
vector machine (SVM) for misfire fault classification. Compared with the other three methods, the results show that the diagnosis
method proposed in this paper can effectively extract the fault features and accurately identify the fault type, which is superior to
the comparison method.

1. Introduction

Diesel engine is the main power mechanism for a heavy
equipment, whose working conditions determine the reli-
ability and safety of the whole system. Misfire is a common
failure state of diesel engine, which attracts an increasing
amount of attention because it can cause serious deterio-
ration on the power and economic performance of engine
[1]. It is of great significance to diagnose misfire fault quickly
and accurately for the normal and stable operation of the
equipment.

At present, there are manymethods for diagnosing diesel
engine failures, such as vibration detection method, cylinder
pressure detection method, instantaneous rotation speed
detection method, and oil detection method [2–5]. /e
vibration signal of cylinder head is widely concerned because
of its rich information and easy access. However, due to the
complicated structure of diesel engine and many moving
parts, the vibration signal of cylinder head mixes the signals
of different frequency excitation sources and strong noise,

which makes it nonstationary and nonlinear [6]. It is the key
to extract the fault feature from the complex vibration signal
for the state recognition.

Traditional signal analysis method mainly contains time
domain analysis and frequency domain analysis [7], but only
for stationary signal. Considering the nonlinear nonsta-
tionary characteristics of diesel engine vibration signal,
traditional signal methods cannot effectively extract fault
feature information. In recent years, some new signal
processing methods have been introduced, such as wavelet
transform (WT) [8], wavelet packet transform (WPT) [9],
and empirical mode decomposition (EMD) [10]. /e EMD
decomposes the signal into a series of IMF components that
reflect the signal frequency based on the characteristics of
the signal itself. Compared with wavelet transform, em-
pirical mode decomposition overcomes the defects of its
fixed basis function. Due to its powerful ability to adaptively
decompose signals, it is widely used in mechanical, bio-
medical, weather, and financial data analysis and other fields
[11–14].
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/e EMD method is only suitable for processing one-
dimensional signals. /e multivariate signal can be divided
into multiple one-dimensional signals after processed by
EMD, which may cause the problem of different amount of
IMF components obtained after decomposition, or incon-
sistent frequency corresponding to the same order IMF
components. . It does not make any sense for signal analysis.
However, signals acquired by multichannel are most com-
monly used in engineering practice, so it is crucial to come
up with a new approach for multivariate signal analysis.
Rilling et al. proposed bivariate EMD in 2007 [15], which
uses the complex signal as a superposition of two kinds of
rotational components, fast and slow, and decomposes by
extracting the rotational component in three-dimensional
space, considering mutual information and morphological
logic between real and imaginary parts. /e physical
meaning of each component after decomposing is clearly
defined. For the three-dimensional signal, the trivariate
EMD method was proposed by Ur Rehman and Mandic
[16], which projects the multivariate signal on the three-
dimensional spherical direction vector and calculates the
mean value. In the later research, Rehman proposed mul-
tivariate empirical mode decomposition (MEMD) for high-
dimensional signal [17]. It projects multidimensional signals
to hyperspherical direction vector of multidimensional
space, calculates the mean value of envelope of each signal,
and obtains the local mean value of multivariate signals to
realize the same mode decomposition of the multisignal in
different frequency bands, which can decompose signals of
any dimension./eMEMD algorithm realizes multichannel
signal simultaneous joint analysis to ensure that the modes
of different channels are the same, that is, the IMF com-
ponents match and align in quantity and scale, which solves
the problem of multichannel signal mode calibration.

Nonlinear analysis has been widely used in fault di-
agnosis of various mechanical equipment as a feature ex-
traction method. /e nonlinear analysis method includes
Lyapunov exponent [18], fractal dimension [2], and in-
formation entropy [19]. Information entropy is used to
represent the uncertainty of the system and a variety of
entropy values are developed to describe the nonlinear
characteristics of the system. In 1991, Pincus [20] proposed
the concept of approximate entropy (ApEn), which char-
acterizes the complexity of dynamical systems with time
series dimensional changes. Subsequently, Richman and
Moorman [21] improved the approximate entropy and
proposed the sample entropy algorithm (SE), but the
sample entropy has the defects of slow calculation and poor
real-time performance, and the similarity measurement is
prone to mutation; Bandt and Pompe [22] introduced
permutation entropy (PE). Although the concept of per-
mutation entropy is simple and the calculation speed is fast,
the difference of amplitude of signal is not considered.
Rostaghi and Azami [23] proposed a new method to
measure the complexity of time series, namely, dispersion
entropy (DE), which solved the deficiency of sample en-
tropy and permutation entropy.

In this paper, MEMD is used to decompose the multi-
channel signal, and reconstructed signal is composed of the

IMF component with a large correlation coefficient with the
original signal. /e DE value of the reconstructed signal is
used as the fault feature vector to evaluate the diesel engine
state and fault diagnosis. /is paper is organized as follows.
Research background and significance are introduced in
Section 1. In Section 2, the MEMD theory is introduced and
comparison between EMD and MEMD is carried out with
simulation signal. In Section 3, DE algorithm is introduced
and the effect of parameter on DE is analyzed. In Section 4
and Section 5, the scheme of fault diagnosis is introduced
and the different fault is recognized by vibration signals of
four states of diesel engine. /e conclusion is given in
Section 6.

2. Multivariate Empirical Mode Decomposition

2.1. EMD. Empirical mode decomposition is a data-driven
method that can process nonlinear and nonstationary sig-
nals adaptively, which eliminates the limitation based on
Fourier transform./e main idea of EMD is to decompose a
univariate signal into several oscillatory modes called in-
trinsic mode function (IMF). Two conditions need to be
satisfied when the IMF generates: (1) in the whole dataset,
the number of extrema and the number of zero crossings
must be equal or differ at most by one, (2) at any point, the
mean of the upper and lower envelopes must be zero. /e
detailed procedure is showed in Algorithm 1.

2.2. MEMD. In engineering application, univariate signal
behaves inferior due to the small amount of information
contained, it cannot reflect the characteristics of the
system completely. With the development of sensor
technology, the method of obtaining signals by multiple
sensors is gradually developed. However, there is un-
certainty problem of scale arrangement in the decom-
position of EMD, which affects the results of
characteristic analysis. In order to solve this problem, the
multivariate empirical mode decomposition was pro-
posed by Rehman and Mandic [17] in 2009, which can
realize the same mode analysis of multiple signals in
different frequency scales. Considering the fact that the
local mean of the n-dimensional signal cannot be directly
defined, MEMD obtains a sequence of projection vectors
along different directions in the n-dimensional, and then
the local mean of each direction is obtained. /e number
of IMFs of each channel signal is equal after decompo-
sition, which realizes the alignment of frequency scales of
each IMF corresponding to each channel. /e detailed
procedure is showed in Algorithm 2.

2.3. Comparison between EMD and MEMD. In order to
verify the decomposition effect of MEMD on multichannel
signals, simulated multivariate signal composed of different
frequency is built up. /e frequencies are as follows:
f1 � 10Hz, f2 � 50Hz, and f3 � 200Hz, and Gaussian noise is
added to each channel to reflect working condition accu-
rately, as shown in equation (1). /e sampling frequency is
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set to 2048Hz, and the sampling time is set to 1 s. /e wave
of simulation signal is shown as Figure 1.

x1 � 0.6 sin 2πf1t( 􏼁 + sin 2πf2t( 􏼁 + 0.8 cos 2πf3t( 􏼁 + 0.1randn(1, N),

x2 � sin 2πf1t( 􏼁 + sin 2πf2t( 􏼁 + 0.5 cos 2πf3t( 􏼁 + 0.1randn(1, N),

x3 � 0.4 sin 2πf1t( 􏼁 + 1.2 sin 2πf2t( 􏼁 + 0.8 cos 2πf3t( 􏼁 + 0.1randn(1, N).

⎧⎪⎪⎨

⎪⎪⎩
(1)

/e simulated multivariate signal is decomposed by
EMD and MEMD, as shown in Figures 2 and 3, respectively.
/e multisignal processing method by EMD uses the signal
of each channel as an independent single signal for empirical
mode decomposition. After the decomposition by two
methods, a set of IMF components are extracted from
original signal; the following observations can be made:

(1) Whether using EMD or MEMD, the IMF compo-
nents are divided into three groups , and each group
of IMF components corresponds to the signal of
respective channel.

(2) /e number is different between IMF components
obtained by EMD and IMF components obtained by
MEMD. Furthermore, the number of IMF compo-
nents obtained by EMD is distinct in each channel. It
is easy to see from Figure 2 that x1 and x3 are
decomposed by EMD into 8-IMF components, while
x2 only decomposes into 7. /e reason is that x1, x2,
and x3 are treated as independent individuals,

without considering the internal correlation, while
MEMD overcomes it.

(3) /e same characteristic frequencies appear in the
same order after MEMD, while the phenomenon
does not occur after EMD, which illustrates that
MEMD can extract the same oscillation mode from
multisignals and be conducive to signal analysis
further.

3. Dispersion Entropy

/e reconstructed signal composed of IMF components
with large correlation coefficient filtered by MEMD re-
flects the fault characteristics effectively. It is crucial to
extract the fault feature from the reconstructed signal.
When a cylinder of diesel engine fails, the complexity of
vibration signal on cylinder cover changes due to the
evenness of the cylinder burst. /erefore, this paper
proposes to extract feature by dispersion entropy from
multichannel signal.

(1) Find all local extrema of the original signal x(t); fit the upper envelope u(t) and the lower envelope v(t) according to the cubic
spline function, v(t)≤x(t)≤ u(t).

(2) Calculate the local mean from the upper and lower envelopes m(t) � [u(t) + v(t)]/2, and then subtract it from x(t), h1(t)�m(t)−
x(t).

(3) Check whether h1(t) satisfies the two conditions. If satisfies, h1(t) is the first IMF component; otherwise, replace h1(t) with x(t) and
repeat (1)-(2) until the termination criterion is satisfied. /en, set the first IMF as c1(t).

(4) Repeat (1)–(3) until all the IMFs and the residual are extracted. Finally, the original signal x(t) can be decomposed as
x(t) � 􏽐

n
i�1 ci(t) + rn(t).

ALGORITHM 1: /e standard EMD algorithm.

(1) Choose a uniform sampling point set on (n− 1)-dimensional by the Hammersly sequence, and then establish an n-dimensional
spatial direction vector.

(2) Calculate the projection of the input signal v(t){ }
T
t�1 along all the directions xθk , and then obtain the projection set pθk (t)􏼈 􏼉

K

k�1.
(3) Find the maxima in each projection direction v(t

θk

j )􏽮 􏽯 and its correspondingmoment, and then calculate the multivariate envelope
curves eθk (t)􏼈 􏼉

K

k�1 by spline interpolation function.
(4) For a set of K direction vectors, calculate the mean of the envelope curves by m(t) � 􏽐

K
k�1 e

θk (t)/K.
(5) /e remaining value is subtracted as ci(t) � v(t) − m(t), and check whether ci(t) satisfies the stoppage criterion. If satisfies, ci(t) is

the first IMF component and apply (2)∼(5) to v(t) − ci(t); otherwise, apply it to ci(t). Finally, the multivariate signal can be
decomposed as v(t) � 􏽐

d
i�1 ci(t) + r(t).

ALGORITHM 2: /e multivariate EMD algorithm.
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Dispersion entropy (DE) is a new algorithm for
measuring time series complexity proposed by Rostaghi
and Azami in 2016 [23]. It overcomes the defect that the
permutation entropy does not consider the magnitude
of the amplitude with good stability and fast
calculation speed. For a time series x � x1, x2, · · · , xN􏼈 􏼉

with the length of N, the calculation process of DE is as
follows:

(1) /e normal cumulative distribution function
(NCDF) is employed to map x to y from 0 to 1:

yj �
1
���
2π

√
σ

􏽚
xj

− ∞
e

− (t− μ)2/2σ2)dt .( (2)

(2) A linear algorithm is used to map y to the range of
[1, 2, · · · , c] and get a sequence z

(c)
j :
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Figure 1: /e original signal of simulation.
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Figure 2: EMD-based decomposition of simulation signal.
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z
(c)
j � int cyj + 0.5􏼐 􏼑, (3)

where c is the number of categories; int is the
rounding function.

(3) Calculate the embedding vector z
(m,c)
i using the

following formula:

z
(m,c)
i � z

(c)
i , z

(c)
i+d, · · · , z

(c)
i+(m− 1)d􏼐 􏼑, i � 1, 2, · · · , N − (m − 1)d,

(4)

where m is embedding dimension; d is time delay.
(4) Calculate dispersion pattern

πv0v1 ···vm− 1
(v � 1, 2, · · · , c), where z

(c)
i � v0,

z
(c)
i+d � v1,· · ·, and z

(c)
i+(m− 1)d � vm− 1. /e number of

possible dispersion patterns is equal to cm.
(5) For each potential dispersion pattern, the relative

frequency is calculated by
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Figure 3: MEMD-based decomposition of simulation signal.
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P πv0v1 ,···,vm− 1
􏼐 􏼑 �

num πv0v1 ,···,vm− 1
􏼐 􏼑

N − (m − 1)d
, (5)

where num(πv0v1 ,···,vm− 1
) denotes the number of z

(m,c)
i

mapped to πv0v1 ,···,vm− 1
.

(6) Reference the definition of Shannon’s entropy; dis-
persion entropy is defined as follows:

DE(x, m, c, d) � − 􏽘
cm

π�1
P πv0v1,···,vm− 1

􏼐 􏼑ln P πv0v1 ,···,vm− 1
􏼐 􏼑􏼐 􏼑. (6)

From the calculation process of dispersion entropy, we
can draw a conclusion that the DE takes the maximum value
when all dispersion patterns own the same probability. /e
larger the DE value, the more complicated the time series.
/e parameters recommendation for calculating DE is given
in [23]: the embedding dimensionm is preferably 2 or 3; the
number of categories c is an integer from 4 to 8; the time
delay d is generally taken as 1; the length of time series
should be greater than 2000.

In order to choose parameter more appropriately, the
influence of parameter on dispersion entropy is discussed. 50
sets of white noise and 1/f noise are randomly generated, and
the DE values are calculated under different parameters (the
length of signal, embedding dimension, and class number).
/e mean and standard deviation of DE for 50 sets are as
shown in Figure 4. It can be concluded as follows:

(1) As the length of signal increases, DE of white noise
shows an upward trend, and the pink noise is op-
posite. Meanwhile, the longer the length of signal is,
the smaller the standard deviation is, and the
stronger the stability is.

(2) As the embedding dimension increases, DE of white
noise and pink noise shows a significant upward
trend. Meanwhile, the higher the embedding di-
mension l is, the higher the standard deviation is, and
the worse the stability is.

(3) As the class number increases, the trend of DE value
is similar to embedding dimension.

Taking the abovementioned factors and actual condi-
tions into account, this paper selects parameters as follows:
the length of signal L� 10000, embedding dimension m� 2,
and class number c� 4.

4. Scheme of Fault Diagnosis

Based on the above algorithm, a novel method for fault
diagnosis of engine misfire is proposed, which is divided into
four steps as shown in Figure 5. Firstly, the multivariate
signals can be collected by multiple sensors and acquisition
system from different position of machine./en, theMEMD
is applied to multivariate signals adaptively, which can
obtain IMF groups with the same frequency components in
the same order. After decomposition, reconstructed signals
are composed of IMF components with large correlations of
the original signals, and the feature can be extracted from it.
Finally, as an outstanding classifier in small samples, support

vector machine (SVM) is introduced to train the model to
achieve fault recognition.

5. Misfire Test and Fault Diagnosis

5.1. Test and Signal Acquisition. In order to verity the su-
periority of the proposed algorithm, the misfire fault test was
carried out on a 12-cylinder diesel engine with four-stroke.
/e core parameters of the diesel engine are as follows:
cylinder bore (180mm), compression ratio (13∼14), rated
power/speed (588 kW/2200 rpm), and V-type. Acceleration
sensors were installed on four different positions of cylinder
head cover to measure the vibration signals of diesel engine.
/e positions are located on the cover of 1st cylinder head of
left row (position 1), the cover of 6st cylinder head of left row
(position 2), the cover of 1st cylinder head of right row
(position 3), and the cover of 6st cylinder head of right row
(position 4), as shown in Figure 6. /e sensitivity of ac-
celeration sensors is 10mV/(m/s2). Different misfire faults
were artificially set under 2200 r/min with no load, as shown
in Table 1. /e misfire fault was simulated by disconnection
of fuel supply to one cylinder of engine. /e sample fre-
quency was set as 20 kHz, and the sampling time is 0.5 s for
each sample, so there are 10000 points in each sample.

5.2. Analysis of Data

5.2.1. Decomposition by MEMD. /e original multivariate
signals under four working conditions are collected on the
diesel engine bench test, and the waveforms of data in time
domain are shown in Figure 7. It is hard to find rules in
variation signal directly although there are some difference
between different states, so we need to do further processing
to variation signals.

In order to discuss the composition of signal clearly, the
original multivariate signals are decomposed by EMD firstly.
Taking the normal state as an example, decomposition result
of multivariate signal using EMD is shown as Figure 8. /e
number of IMF decomposed by EMD at four positions is 13,
13, 14, and 14./ere is no graph for position 1 and position 2
on IMF 14 in Figure 8. Since the internal relationship of the
multivariate signals is not considered, the number of IMF
components after decomposing the signal of each channel by
EMD will be different. Meanwhile, 44 samples of each state
are decomposed by EMD to calculate the number of IMF. As
is shown in Figure 9, only four samples (two in normal state,
one in neighbor cylinder misfire state, and one in far cylinder
misfire state) appear the situation that the number of IMF at
each point is equal, and there are different characteristic
frequencies in the same order of IMF component./erefore,
the next analysis step of the IMF components of each order
cannot be performed.

/en, the same multivariate signals are decomposed by
MEMD, as shown in Figure 10. /e number of IMF
decomposed by MEMD at four positions is all 15. Similarly,
all samples have the same number of IMF at each point due
to the characteristics of MEMD and the same characteristic
frequencies appear in the same order, which provides the
basis for further analysis.
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In addition, taking the normal state as an example,
comparing the correlation coefficient between original and
IMFs in Figure 11, it can be seen that the correlation co-
efficients between original and IMFs decomposed byMEMD
are mostly higher than the correlation coefficients by EMD
and also own the smaller standard deviation and the stronger
stability. /us, the MEMD for analyzing multiple signals has
significant advantages.

5.2.2. Feature Extract by Dispersion Entropy. In the data
analysis, the correlation between two signals can be con-
sidered on the situation that correlation coefficient is greater
than 0.3. /e higher the correlation coefficient is, the
stronger the correlation is. It can be seen from Figure 11 that

the correlation coefficient at four positions between original
signal and IMFs decreases as the IMF order increases, and
correlation coefficient of first 4th order IMF component is
greater than 0.3. /erefore, this paper selects first 4th order
IMF component to reconstruct signal.

/e feature of each working state can be obtained by
calculating dispersion entropy of reconstructed signal. In
this paper, the parameters are set as embedding dimension
m= 2, class number c = 4, time delay d = 1. /e 44 sets of
dispersion entropy on different position under each state are
calculated, shown as Figure 12. Some conclusions can be
seen that the DE values of different positions are roughly
equal when the diesel engine is working properly, while DE
values of some positions will change if misfire occurs. /e
DE value of position 1 (the cover of 1st cylinder head of left
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row) changes significantly for the reason that the misfire
cylinder contains 1st cylinder of left row. /e DE values on
the four positions can be characteristic parameter to rec-
ognize the state.

5.3. Diagnosis Results of Misfire Fault. Support vector ma-
chine (SVM) is a machine learning method that deals with
pattern recognition, probability estimation, and other issues,
which has advantages when dealing with small sample data

classification. /e kernel function is the main factor de-
termining the performance of SVM; RBF kernel function can
effectively deal with nonlinear problems, so this paper selects
RBF kernel function for diagnosis recognition.

According to the method in the previous section, the 44
sets of samples on four positions under each working
condition are calculated, among which 20 sets are randomly
selected as the training sample and the remaining 24 sets are
used as the test sample. Figure 13 shows the classification
results of SVM. It can be seen that both of training sample
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Figure 6: /e measuring positions.

Table 1: Diesel engine misfire fault states.

Number Misfire cylinder Corresponding fault
State 1 None Normal
State 2 1st cylinder of left row Single cylinder misfire
State 3 1st cylinder of left row and 6st cylinder of right row Neighbor cylinder misfire
State 4 1st cylinder of left row and 4st cylinder of left row Far cylinder misfire
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Figure 7: Original multivariate signals under four states.
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Figure 8: Decomposition result of multivariate signal using EMD (normal state).
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Figure 10: Decomposition result of multivariate signal using MEMD (normal state).
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Figure 11: Continued.
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and test sample have a high recognition rate, the training
sample has a far cylinder misfire set that is misclassified to
the neighbor cylinder misfire set, and the test sample has a
correct classification rate of 100%. /e results show that the
method proposed by this paper can identify different types of
misfire faults of diesel engine effectively and accurately.

In order to verify the superiority of the proposed method,
the other three commonmethods are introduced to extract the
fault feature of the cylinder head vibration signal, including
EMD-PE, MEMD-PE, and EMD-DE. EMD-PE method rep-
resents the combination of empirical mode decomposition

(EMD) and permutation entropy (PE) and calculates the value
of permutation entropy after EMD. MEMD-PE method rep-
resents the combination of multivariate empirical mode de-
composition (MEMD) and permutation entropy (PE), and
EMD-PE method represents the combination of empirical
mode decomposition (EMD) and dispersion entropy (DE)./e
classification results of different methods for the same sample
are as shown in Table 2. Comparing the four methods, it can be
found that the total accuracy of EMD-PE, MEMD-PE, and
EMD-DE is lower than the total accuracy; the MEMD-DE
method performs better on identification between normal state
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Figure 11: /e correlation coefficient between original signal and IMFs (normal state).
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and different types of misfire states, while the other three
methods show poor recognition ability on it.

6. Conclusions

In this paper, a novel diagnosis method is proposed based on
MEMD and dispersion entropy, which realizes fault diag-
nosis accurately. /e main conclusions are as follows:

(1) /e multivariate signal collected from different po-
sitions of the machine is analyzed by MEMD, which
obtains the same number of IMF at each point.What’s
more, the same characteristic frequencies appear in
the same order, which illustrates that MEMD can
extract the same oscillation mode from multisignals
and be conducive to signal analysis further. It is an
effective attempt to expand EMD to MEMD.

(2) /e complexity of the cylinder head vibration signal
will increase when the fire failure occurs. Compared
with permutation entropy, dispersion entropy is more
suitable for the extraction of nonlinear fault features
due to the consideration of vibration amplitude.

(3) Compared with the other three approaches (EMD-
PE, EMD-DE, and MEDM-PE), the fault feature
extracted from MEMD-DE method is identified by
SVM with a higher recognition of 100%.

However, there are some problems to be solved in the
future:

(1) /e calculation speed of this method is flawed due to
the high-dimensional operation involved. /e cal-
culation efficiency should be improved further.

(2)More types of diesel engine should be attempted.
We will carry out more experiment to verify this
method.
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