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Detection of out-of round (OOR) faults of metro vehicle wheels is very important to improve stationarity and stability in metro
vehicles and avoid accidents caused by OOR faults. Diagnosis of OOR faults demands extracting useful information accurately
from mass of vibration signals with poor signal-to-noise ratio (SNR) of metro vehicle wheels for complex running condition. In
this paper, we proposed a diagnosis method on OOR faults of metro vehicle wheels combined with variational mode de-
composition (VMD), kernel principal component analysis (KPCA), and deep belief network (DBN) to diagnose the OOR faults of
metro wheels. Vibration signals of China metro vehicle wheels collected while the metro vehicle is running are used to train the
diagnosis model and adjust parameters of DBN and KPCA based on testing accuracy. )e different dimensions of KPCA, epoch
number, and node number of DBN are compared, and the better parameters of diagnosis model based on vibration signals are
concluded in this paper.)e generalization of the diagnosis model is checked nine times by testing the calculation of each group of
parameters and using an error declining process. )e mean accuracy of diagnosis model proposed in this paper is 0.9136, and the
diagnosis model presented in this paper is very significant to detect OOR faults online.

1. Introduction

Metro vehicles are one of urban transportation modes in
most large and medium-sized cities for metro vehicles’
advantages of safety, fast speed, and comfort. However, wear
and fatigue damages of wheels will be unavoidable for the
running of metro vehicles and thus lead to out-of-round
(OOR) faults of metro vehicle wheels. OOR faults of wheels
impact rails and enhance vibration of metro vehicles, es-
pecially vertical vibration. )e increasing vertical vibration
and impact can also cause critical damages on contact
surface of wheel-rail, which will also shorten a service life
and even lead to damages of many key components of the
vehicle system, such as axle box bearing and braking system.
)ose damages and shortened life of key components cannot
ensure safe running of metric vehicles [1], and increased
vertical vibration and impact between rail and wheel may

even cause derail accidents. Nowadays, people pay more
attention to detection, collecting fault signals, diagnosis, and
failure causes of OOR faults [2–6]. However, it is hard to
separate fault information from complex vibration signals
collected by vibration sensors during metro vehicles
running.

Song et al. introduced some relationships between out-
of-round faults (OORF) and vertical dynamic performance,
and the secondary suspension of the vehicles has no damp
function caused by OORF [7]. Lan et al. [1] focused on the
effect of OOR faults for wear of wheels under normal
braking condition. )e wheels would slid, and the braking
torque dominate wear in braking condition. )ey also took
wheel unloading ratio as an indicator for the determination
of risk to derailment when the wheel contains OOR defect.
Tao [8] investigated OOR faults of electric locomotive wheels
through extensive measurement conducted at field sites. )e
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measurement results indicate that two types of freight traffic
locomotives suffer serious polygonal wear problems with
center wavelengths ranging from 160 to 315mm and the
dominating wavelength is 200mm.

Fu et al. identified the types of wheel faults in urban rail
trains based on improved ensemble empirical mode de-
composition (EEMD) andHilbert transform [9]. Zhang et al.
proposed a method of the online fault diagnosis of the train
wheels by characteristic spectrum analysis with noisy
background [10]. )ey all focused on extracting fault
characteristic under noisy background of trains.

Many excellent fault diagnosis methods are proposed
although those methods are not used to diagnose OOR of
train wheels. G. Adam et al. diagnosed ventilation faults of
angle grinder by means of infrared (IR) thermography and
IR image processing [11]. AlShorman et al. reviewed con-
dition monitoring and fault diagnosis based on sound and
acoustic emission for four types of faults: bearings, rotor,
stator, and compound [12]. Mass Laplacian discriminant
analysis was used to diagnose faults of gear and had a higher
diagnostic accuracy [13]. Yang et al. proposed a novel
multilayer domain adaptation method to diagnose the
compound fault and single fault of multiple sizes simulta-
neously [14].

All above, vibration signal, acoustics signal, and thermal
imaging are used as input signals of fault diagnosis. People
will choose one or more types of signals as input according
to the equipment structures, sensor locations, working
condition, and types of noise.

Monitoring and diagnosing out-of-round faults of
wheels accurately are very important for metro vehicle’s safe
running and reducing maintenance time and costs. In order
to diagnose accurately OOR faults of metro vehicles online,
we may build a system which includes noise reduction,
extraction of components of faults, improving diagnosis
accuracy, and online speed.

Deep learning is often used to predict passenger flow and
safety prediction of rail transit system [15–17], and we try to
combine variational mode decomposition (VMD), kernel
principal component analysis (KPCA), and deep belief
network (DBN) to detect OOR faults of metro wheels in this
paper.

In this paper, we proposed a diagnosis method on OOR
faults of metro vehicle wheels combined variational mode
decomposition (VMD), kernel principal component analysis
(KPCA), and deep belief network (DBN) and match pa-
rameters of the diagnosis model to diagnose the OOR faults
of metro wheels.

2. Vibration Signals of Metro Vehicle’s Wheels

OOR faults of wheels may mainly cause vertical vibration of
wheels, but those faults are not the only factors of vertical
vibration. Irregularity state of railway and faults of rolling
bearings of axle box can also cause vertical vibration when
the vibration sensors are located on the axle box. Irregularity
state of railway and OOR faults of wheel are shown in
Figures 1 and 2. Reasonable locations of sensors, effective
signal collection, and accurately separating vertical vibration

of OOR faults are very important for diagnosing OOR faults
of metro vehicle wheels.

2.1. Collection of Vibration Signals of Metro Vehicle’s Wheels.
Reasonable locations of sensors can help to collect effective
vibration signals, which will contain state information of
OOR faults as much as possible. )at means vibration
sensors should be placed near to the vibration sources. Four
vibration sensors are located on axle boxes of four wheels,
respectively, as shown in Figure 3.

)e four vibration sensors are mainly used to collect
vertical vibration signals for OOR faults of wheels. Vertical
vibration of wheels may include vibration come from other
vibration sources, such as irregularity state of railway and
vibration of metro vehicle’s body. )e vibration sensors will
collect all the vertical vibration signals caused by all factors,
which are mixed and collected by vibration sensors and
include lots of noise. Furthermore, driving components
including gear box and motor will also produce vibration
while metro vehicle is running, and the final collected vi-
bration signals are mixed with vibration of motor and gear
box. As shown in Figure 1, vibration signals may show
difference in amplitude and frequency by sensors 1 and 2
when they are located in two axle boxes, because sensor 1 is
near to the gear box and motor, while sensor 2 is far from
them.

When the metro vehicles are running with good state,
collected vibration signals by vibration sensors will include
vertical vibration caused by lots of vibration sources, such as
irregularity state of railway and vibration of metro vehicle’s
body, and not only that caused by OOR faults of wheels. In
practice, vibration signals caused by different vibration
sources usually overlap and interact with each other, and
separating vibration signals of OOR faults from measured
vibration signals collected by sensors is the preprocessing
work for diagnosing OOR faults of metro vehicle’ wheels.

Figure 1: Irregularity state of railway.

Figure 2: OOR faults of wheels.
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In this paper, a separating principal component of OOR
faults and denoise method is presented to get rid of in-
terfering vibration of gears, motors, and vehicle bodies. We
propose a method of KPCA-DBN to diagnose OOR faults
rapidly and accurately without artificial feature extraction
and selection for effective information of raw data being
kept by KPCA [16, 17]. We choose matching parameters of
DBN and dimension of KPCA adapting vibration signals of
metro vehicle’s wheels to build a diagnosis method of OOR
faults.

2.2. Vibration Signals of Metro Vehicle’s Wheels. We choose
three groups of vertical vibration signals, which are three
states of normal, incipient OOR faults, and serious OOR
faults of metro vehicle’s wheels. Signal-to-noise ratio (SNR)
is below five when wheels are with incipient or serious OOR
faults (Table 1). Ten datasets of each group of vibration
signals are chosen to test the method of diagnosis and
denoise proposed in this paper. )e waves of vibration
signals collected by sensors in normal, incipient, and fault
states are shown in Figures 4–6, in which there are four
waves for each state without denosie and extracting
principal component. Spectra display of vibration signals
are shown in Figures 7–9, which are spectra display when
wheels are normal, incipient fault, and fault state,
respectively.

2.3. Vibration Signals Processing. )e SNRs of vibration
signals of incipient faults and faults states collected by
sensors are no more than four, which are all low SNR signals
with strong noise. )at means fault information may sub-
merge in strong noise, and we will enhance SNRs of vi-
bration signals by choosing wavelet threshold denoising
function and setting an optimal number of wavelet de-
composition layers to get rid of strong noises. )en, we
evaluate the effect of wavelet denoise by comparing SNR and
root mean square error between the original and denoising
signals.

3. Fault Diagnosis Model Based on DBN

3.1. Structure and Pretraining of DBN. DBN is often used
for predicting and diagnosis [18–20], which is composed
of restricted Boltzmann machines (RBM), and the
number of layers of DBN will increase with increasing the
number of RBMs. Usually, DBN has multiple hidden
layer structure with multiple RBMs, and the first RBM is
the visible layer of DBN and the output layer of first RBM
is the input layer of the second RBM. By this way, two
adjacent RBMs are connected and the output layer of last
RBM is the output layer of DBN (Figure 10. DBN can
extract features of the data step by step and can realize
deep learning [21, 22].

Greedy algorithm [23] and backpropagation algorithm
(BP) are combined to train DBN so that the optimal initial
weight can be found and get deep information of data. BP is
adopted to adjust the initial weight for global optimization.

We will select proper number of layers, numbers of
nodes, and step size when DBN is used to diagnose faults of
wheels. Otherwise, underfitting or overfitting may appear
during learning for being not the best initial value, data
distribution, and other factors.

We try to match characters of DBN and vibration signals
of wheels with different wheel states by the following ways.

(1) Greedy algorithm and backpropagation algorithm
(BP) are combined to train DBN, and BP is adopted
to adjust weights for global optimization.

(2) )e structure of DBN is simplified into two RBMs in
diagnosing fault of OOR based on distributions of
vibration signals to escape overfitting.

(3) Upset all data so that training data and testing data
have the same distributions to escape underfitting.

(4) Collected vibration signals by sensors may include
much more noises when metro vehicles are running,
and the noises may affect mapping between input
and output of the DBN model. In this paper, wavelet
and VMD are combined to get rid of noises.

Vibration sensor 1
Vibration sensor 3

Vibration sensor 4Vibration sensor 2

Bogie frame

Gear box

Traction motor

Wheelset

Figure 3: Locations of vibration sensors.
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(5) Try to select fit training step and training times to
avoid overfitting and underfitting.

In addition, we select appropriate number of KPCA to
increase diagnosis accuracy of OOR and combine wavelet
and regularization method to increase generalization of
diagnosis model.

3.2. Denoise Processing by Wavelet and VMD. Frequency
range of wheels with OOR can be estimated by wheel di-
ameter and running speed of metro vehicle. Wheel diameter
is 840mm. We collect vibration signals when wheel speeds
are from 92 r/min to 592 r/min, and then, we can calculate
speed of metro vehicles to be from 14.56 km/h to 93.69 km/h
as follows:

v �
60πdn

1000
(km/h). (1)

Frequencies of vibration signals caused by OOR faults
can be expressed by

f �
Nn

60
(Hz), (2)

where N is an integer which is affected by wheels’ states
and if there are much more OOR faults, N will be larger
than that there are less OOR faults in wheels. n is the
rotation speed of wheels. When N equals one, the main
frequency range caused by OOR faults may be between
1.53 Hz and 9.87 Hz for different running speeds of metro
vehicles.

We adapt the variational mode decomposition (VMD)
to decompose vibration signals into five intrinsic mode
functions (IMFs) and reduce noise signals for IMF1 by
wavelet shown in Figure 11. )e envelope diagram in

Figure 11(b) shows more obvious frequency characteristic
than that of Figure 11(a), which is processed by wavelet.

3.3. OOR Fault Diagnosis Model. Vibration signals of metro
vehicle wheels collected by sensors are reduced noises by
denoise process in Figure 12 which are input data for
building OOR fault diagnosis model. 70% of the data is used
to train DBN after extracting the main components by
KPCA. KPCA dimension number is reduced to be 22 for
reducing calculation and overlap. )en, we tried to adjust
the parameters of DBN to match the data of vibration data of
metro vehicles and get more accurate diagnosis accuracy on
OOR faults of wheel sets. Layer number, node number,
literation number, and epoch number should be adjusted to
meet the data of metro vehicles, when we get the best pa-
rameters of DBN and we can get the fault diagnosis model of
OOR fault of metro vehicle wheels.)emodel can be used to
distinguish whether there are OOR faults on wheels or not.

4. Testing Diagnosis Model by Metro Vehicle
Vibration Data

We tested the diagnosis model combined by wavelet, VMD,
KPCA, and DBN methods using three groups of metro
vehicle vibration data, which include normal, incipient, and
fault wheels’ vibration signals collected by vibration sensors,
and each state data group includes 10 sets of vibration
signals. )ere are 1024 points in each set of vibration signal.
First, we mix all vibration signals and divide them into
training datasets and testing datasets again. By dividing the
datasets again and all the data is mixed with random turn,
overfitting may be declined and diagnosis accuracy can be
increased.

All the vibration signals are reduced noise signals by
wavelet and VMD, and then, signals are declined dimensions
by KPCA. All the data are divided into 40 sets after being
mixed. Second, we choose two RMBs of DBN with 30 nodes
of the first layer and 20 nodes of the second layer. )e
learning rate is 0.001, and the iterations are 1000. Training
sets are input into diagnosis model of OOR faults, and
testing sets are input into the trained model to calculate the
diagnosis accuracy, which is 0.8611. Errors of testing test 1
nine times are declined with iterations (Figure 13. )ose of
test 2 are shown in Figure 14, those of test 3 are shown in
Figure 15, those of test 4 are shown in Figure 16, those of test
4 are shown in Figure 17 and those of test 5 are shown in
Figure 18.

)ough the same data and the same DBN parameters are
taken in the same test, the error decline process of each
testing is different for DBN and random initial weight values
may be assigned to each time test calculation.

First, choose the dimensions of KPCA to be 40 and the node
number of first layer to be 50 and that of second layer to be 30;

Table 1: SNRs of vibration signals without denoise and extracting principle principal component.

Vibration signals of normal state Vibration signals of incipient faults state Vibration signals of faults state
12.67 1.85 3.96
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Figure 4: Vibration waves of normal wheels.
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using these parameters, the testing accuracy of diagnosis is
0.80565. Second, change the dimensions of KPCA to be 20 and
the node number of first layer to be 30 and that of second layer
to be 20; using these parameters, the testing accuracy of di-
agnosis is 0.8611. )ird, change the dimensions of KPCA to be
25 and the node number of the first layer to be 20 and that of
second layer to be 20. )en, the testing accuracy of diagnosis is
0.8889. We continue to change the dimensions of KPCA to be
22 and the node number of the first layer to be 30 and that of
second layer to be 20. By those parameters, the testing accuracy
of diagnosis is increased into 0.9444. By further changing the
dimensions of KPCA to be 25 and other parameters not
changed, the diagnosis accuracy is 0.9722 (Table 2. In the sixth
test, the node number of the second layer is enhanced to be 30
and the other parameters are the same as test 5.

Each test is calculated nine times to check the generalization
of the diagnosis method proposed in this paper, and the average
accuracy of test 6 is 0.9136, which is the highest average accuracy
in all tests. )e results of the calculation show that the pa-
rameters of test 6 are the best optimal parameters of all the tests.

Test 6 may have the best generalization for ORR diag-
nosis of metro vehicle. )e number of iterations is enhanced

to be 1500, and the other parameters are as the same as test 6,
and the average accuracy almost equals 1000 literation times.
)at means that 1000 literation times are enough for the
vibration signals of metro vehicles taken in this paper.

In every test, the data have been calculated 1000 times
in one epoch, and many epochs may be taken in training
DBN model for each time of the calculation. We calcu-
lated each test nine times (Table 3. We chose 60, 45, 20
epochs for test 6 to find how test accuracy is going with
different epoch times (Figure 19. When epoch time is 20,
the test accuracy is more stable for different calculation
times and 20 epochs may be the best epoch times among
60, 45, and 20. When the epoch time is 45 and 60, there
are all the calculation accuracies below 80.00%. )is
means that when epochs are chosen to be 45 and 60,
overlap may occur and calculation accuracy declines with
the enhancing of epochs. Comparing with calculation
results, we chose the epoch times to be 22 in this paper.

We chose the parameters of test 6 with 22 epochs and
two RBMS of 30 and 30 for DBN, which, combined with
KPCA method, are taken to be the OOR fault diagnosis
model of metro vehicles in this paper.
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Figure 5: Vibration waves of incipient faults wheels.
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Figure 7: Spectra display of normal signals.
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Figure 8: Spectra display of incipient faults signals.

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140
Frequency

1

0.5

0A
m

pl
itu

de

1

0.5

0A
m

pl
itu

de

1

0.5

0A
m

pl
itu

de

0.5

0A
m

pl
itu

de

Figure 9: Spectra display of faults signals.
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Figure 11: (a) Envelope diagram without denoise processing. (b) Envelope diagram of denoise processing by wavelet.
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Figure 12: OOR faults diagnosis procedure of metro vehicle wheels.
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Figure 13: Errors declining with iterations for test 1.
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Figure 14: Errors declining with iterations for test 2.
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Figure 15: Errors declining with iterations for test 3.
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Figure 16: Errors declining with iterations for test 4.
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Figure 17: Errors declining with iterations for test 5.
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Figure 18: Errors declining with iterations for test 6.

0 1 2 3 4 5 6 7 8
Test times

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Te
st 

ac
cu

ra
cy

60 epoches
45 epoches
20 epoches

Figure 19: Calculation accuracy with different epochs of test 6.

Table 2: Parameters of diagnosis model and accuracies.

Parameters Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Number of iterations 1000 1000 1000 1000 1000 1000
Dimensions of KPCA 40 20 25 22 25 22
Nodes of first layer 50 30 20 30 30 30
Nodes of second layer 30 20 20 20 20 30
Testing accuracy 0.8057 0.8611 0.8889 0.9444 0.9722 0.9444
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Average accuracy of 9 times 0.8426 0.8704 0.8481 0.8364 0.8858 0.9136

Table 3: Testing accuracies of different tests by nine times calculation.

Test 1st 2nd 3rd 4th 5th 6th 7th 8th 9th Mean value
Test 1 0.8056 0.7500 0.9167 0.7500 0.8056 0.9444 0.8889 0.8333 0.8888 0.8426
Test 2 0.8611 0.9167 0.8611 0.8333 0.9167 0.8611 0.9167 0.7778 0.8889 0.8704
Test 3 0.8889 0.9444 0.8056 0.8166 0.8056 0.9444 0.8056 0.8166 0.8056 0.8481
Test 4 0.9444 0.8611 0.8056 0.8889 0.8056 0.7778 0.8333 0.7778 0.8333 0.8364
Test 5 0.9722 0.8056 0.8056 0.9167 0.9167 0.8889 0.8333 0.9167 0.9167 0.8858
Test 6 0.9444 0.8333 0.9722 0.8611 0.8889 0.9444 0.9722 0.9444 0.8611 0.9136
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5. Conclusion

We present a diagnosis method of out-of-round (OOR)
faults of metro vehicle wheels that combines kernel principal
component analysis (KPCA) and deep belief network
(DBN), named KPCA-DBN diagnosis model, and an
analysis to detect OOR faults of wheels even when signal-to-
noise ratios (SNRs) are below 5. A KPCA-DBN diagnosis
model is used to distinguish wheels with incipient and se-
rious OOR faults [24].

Vibration signals collected by vibration sensors on running
metro vehicles are used to train and test KPCA-DBN diagnosis
model. VMD and wavelet methods are used to extract the main
components and improve SNRs of vibration signals. Compare
the sample entropy to judge the components with strong noises
and adjust the parameters of the KPCA-DBN diagnosis model
and try to get the optimal parameters by calculating test ac-
curacy. Further, match six groups of parameters, including
dimensions of KPCA, number of iterations, nodes of first layer,
nodes of second layer, learning rate, and epochs. )e mean
testing accuracy is the best accuracy and is set at 0.9136 by the
diagnosis model with the parameters of test 6. Compared with
other tests, there is a better generalization by test 6. Analyze the
differences of error decline going with nine iteration times in all
tests. Epoch number is set at 22, which is better than 45 and 60,
compared with mean test accuracy. When epoch number is 45
and 60, there may be overlapping during training the diagnosis
model.

It is found that the KPCA-DBN diagnosis method can
enhance SNRs of vibration signals of metro vehicle wheels
and detect incipient ORR faults during metro vehicle run-
ning, which allows accurate detection of such early-stage
ORR faults of metro vehicle wheels.

)e mean accuracy of diagnosis model proposed in this
paper can be 0.9136, and the diagnosis model presented in
this paper is very significant to detect OOR faults online.

In conclusion, we presented a method to diagnose out-
of-round faults of train wheels, which can detect the faults
on time for making reasonable maintenance scheme. A
reasonable maintenance scheme will help reduce the cost of
maintenance and stopping time of trains and improve
stability and safety while trains are running.

)is method may also be extended to diagnose OOR
faults of high speed train, railway wagon, and other rail
transit vehicles.
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