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+e remaining useful life (RUL) prediction of quay crane (QC) bearings is of great significance to port production safety. An RUL
prediction framework of QC bearing under dynamic conditions is proposed. Firstly, the load is discretized, and the corresponding
operating conditions are classified.+en, the Autoregressive IntegratedMoving Average (ARIMA) model is utilized to predict the
load and corresponding operating conditions. Secondly, a Wiener process considering degradation rates and jump coefficients
under different operating conditions is developed as the state transfer function. Finally, a condition-activated particle filter
(CAPF) is proposed to predict the system state and the bearing’s RUL.+e proposed prediction framework is verified by the hoist
bearing life cycle data from a port in Shanghai collected by the NetCMAS system. +e prediction results by the ARIMA-CAPF
framework in comparison with three other prediction strategies identify the effectiveness.

1. Introduction

As special equipment, QC is the most frequently used
equipment in the area of port container transportation. +e
health condition of the hoist gearbox determines the
working efficiency and production safety of QCs. As the
crucial components of the hoist system, bearings will
withstand the vibration shock caused by the strong dynamic
load in the periodical process of the containers’ lifting and
descending. In the long term, it will lead to bearings’ per-
formance degradation or even sudden failure, resulting in
downtime and even casualties [1, 2]. Condition monitoring
and life prediction of bearings can avoid the unnecessary
shutdown and improve the reliability and safety of QC
bearings [3, 4].

In some papers, the relationships between the bearings’
degradation and the evolution of vibration, temperature, and
other types of signals under unchanged operating conditions
have been studied. +ese researches can be divided into two
main categories: model-based methods and data-driven
methods [5]. Generally, the model-driven methods establish

a physical or mathematical model for bearings’ RUL pre-
diction. Lei et al. [6] established a bearing degradationmodel
based on the Paris–Erdogan model and predicted RUL with
a particle filtering algorithm. Liao et al. [7] employed a
proportional hazards model along with a logistic regression
model to predict the RUL of bearings. Qian et al. [8] used
recurrence quantification analysis (RQA) to generate deg-
radation states and combined autoregression (AR) model
with the Kalman filter (KF) to predict bearings’ RUL. On the
other hand, data-driven methods focus more on collected
data for RUL prediction when the failure mechanism is too
complex. Aye et al. [9] predicted the degradation trends of
rolling element bearings using an integrated GPR model.
Wang et al. [10] used multiple deep autoencoder models to
extract linear reliability indicators for RUL prediction under
certain load and speed conditions. Ali et al. [11] utilized
Simplified Fuzzy Adaptive Resonance +eory Map (SFAM)
neural network as a degradation model and proposed a
smoothing phase to find the optimal RUL prediction. +ese
two kinds of methods both have acquired accurate RUL
prediction results. But these pieces of literature assume that
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the main operating conditions of the system remain un-
changed throughout its life cycle. Unfortunately, excluding
the influences of operational conditions out of degradation
modeling is not always realistic and appropriate. +e vari-
ation of conditions may cause changes in signal amplitudes
and degradation rates and then affect the RUL prediction.
For example, the increase of load will cause a higher vi-
bration level, simultaneously accelerating the degradation
process of bearing. Hence, it is of vital importance to take the
changing operating conditions into consideration when
making RUL prediction.

Recently, some papers have considered how the dynamic
operating conditions influence the RUL prediction. +e
impacts of operating condition change on vibration signal
can be summarized as two parts [12]: (1) changes of deg-
radation rates in different operating conditions and (2)
signal jumps when the operating conditions switch. Liao
et al. [13] estimated the degradation rates by Bayesian
framework when the operating conditions were piecewise
constant, and the RUL was predicted by the Monte Carlo
simulation. Zhao et al. [14] used the Paris–Erdoganmodel to
describe the crack growth of spur gear.+e degradation rates
were adjusted according to the dynamic load, and the RUL is
predicted combined with finite element analysis. Peng et al.
[15] compared the constant, monotone, and S-type degra-
dation rates and predicted the RUL with the inverse
Gaussian process. Pradeep et al. [16] took load, speed,
temperature, humidity, and other factors as degradation
parameters and predicted the bearing life by using the
Weibull degradation model. Xu et al. [17] used a two-step
unbiased estimation method to estimate degradation rates,
and the Wiener process is adopted to predict the RUL. Li
et al. [18] introduced signal jumps as two jump coefficients
along with degradation rates into the two-factor state-space
(F2S2) model and gave the closed-form solution of residual
life distribution under time-varying operating conditions.

+ese pieces of literature studied bearings’ RUL pre-
diction under dynamical operating conditions, but all as-
sume that the future operating conditions of the same
bearing are predetermined and piecewise constant but ig-
nored the fact that operating conditions could change dy-
namically and cannot be predetermined during system
deterioration.+is phenomenon is consistent with the actual
operating scenario, and therefore, it is necessary to predict
the load in order to determine the corresponding operating
condition before RUL prediction. At present, the main
challenge is that the prediction of operating conditions in
bearing RUL prediction has not been considered.

In order to study the impacts of dynamic conditions on
RUL prediction, we try to establish the life prediction model
under no-predetermined dynamic operating conditions. We
add load prediction and operating condition classification
steps before life prediction and put forward the updating
method of parameters changing with operating conditions
in the prediction process, which has not been considered
comprehensively before. On the basis of this, the method
proposed in this paper divides the RUL prediction proce-
dures of bearing into two parts: first, the load is predicted,
and different operating conditions are classified by load

discretization result. Second, the system state is updated, and
the RUL of the bearing is predicted based on the prediction
results of load and corresponding operating conditions.

Specifically, the equidistant discretization method is
adopted to classify the load and determine different oper-
ating conditions, and the ARIMAmodel is utilized to predict
the load.+en, a developedWiener process is adopted as the
state transition function to describe the degradation process
of the system state. +e particle filter algorithm improved by
a condition activation vector is applied to predict the system
state and update the degradation rates and signal jump
coefficients so as to realize the RUL prediction.

+e main contributions of this work are as follows:

(1) A framework of RUL prediction based on the
ARIMA model and CAPF method under off-design
operating conditions is proposed.

(2) A system state prediction method based on PF under
dynamic conditions is improved.

(3) +e impacts of the jump coefficients and degradation
rates under dynamic operating conditions are
discussed.

+e remainder of this paper is summarized as follows.
In Section 2, the involved background theories are briefly

introduced. In Section 3, the procedure of the RUL pre-
diction framework is proposed. In Section 4, the effective-
ness of the proposed method is verified, and the results are
discussed. Finally, the conclusion of this paper is given in
Section 5.

2. Theory Background

2.1. ARIMA Model. Load prediction can be regarded as the
prediction of time series. +e time series model can express
the change of time series by extrapolationmechanismwithout
considering the influence of other variables on the target
value. ARIMA model is one of the time-domain analysis
methods dealing with time series [19]. It is developed based on
the autoregressive (AR) model and moving average (MA)
model.+eARIMAmodel stabilizes nonstationary time series
by a difference process, which can overcome the disadvantage
that the AR model and MA model can only deal with sta-
tionary time series. At the same time, compared with the
autoregressive conditional heteroskedasticity (ARCH) model
and its derived models, the ARIMA model has a simpler
structure and fewer input variables [20]. It has been widely
used in short-term [21–23] and mid- and long-term load
prediction [24–26]. ARIMA model is formulated as ARIMA
(P, D, Q), where P, D, are AR model order, differential order,
and MA model order, respectively. +e general expression of
the ARIMA model is defined as follows:

Zt � μ + 
P

i�1
αiZt−i + 

Q

j�1
βjεt−j, (1)

where Zt is stationary series after differential operation and μ
is the constant term and represents the mean of the sto-
chastic time series. αi and βj are AR and MA model
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parameters, respectively. εt−j is the error between the pre-
dicted value and the actual value at time t-j.

2.2. Particle Filter. +e PF is a filtering method based on the
Bayesian estimation theory and Monte Carlo method. A set
of random particles are adopted to describe the state of the
system. +e PF has been widely used for bearing RUL
prediction in both bearings [10, 27] and lithium-ion batteries
[28–30] under unchanged operating conditions since it
applies to any form of state-spacemodel (linear or nonlinear;
Gaussian or non-Gaussian) [31]. Consider a dynamic system
model as follows:

θt � f θt−△t, φt−△t( ,

xt � h θt, ωt( ,
(2)

where f(·) and h(·) are the state transition and the mea-
surement functions, respectively. φt−△t and ωt are the
corresponding noises. xt is the system state at time t.

+e systemmodel can be developed based on some data-
driven empirical models, such as Wiener process models
[32, 33] and gamma process models [34, 35]. In this paper,
we apply a common Wiener process model as the basis
degradation function of our modeling framework, and we
will introduce it in the next section.

Suppose that the prior probability density function of
initial state x0 is p(x0). +e main procedure of system state
estimation through PF is presented as follows:

(1) Initialization: generate N particles xi
t from the prior

distribution p(x0) and N corresponding weights ωi
t,

i� 1, 2, . . ., N.
(2) Prediction: predict the prior probability of the

current state xt by utilizing equation (1).
(3) Update: calculate and normalize the weights of

particles by

ωi
t �

ωi
t−△t����
2πσ2

 exp −
yt − x

i
t 

2

2σ2
⎛⎝ ⎞⎠,

ωi
t �

ωi
t


N
i�1 ωi

t

,

θt � 
N

i�1
ωi

tθ
i
t,

(3)

where ωi
t is the weight of ith particle at time t.

q(xi
t | xi

t−△t, yt) is the importance density function
and p(yt | xi

t) and p(xi
t | xi

t−△t) are the likelihood
function and the state transition probability density
function.

(4) Resampling: remove particles with small weight and
copy particles with large weights. +e weights of
resampled particles are reset to ωi

t � 1/N.

2.3. RUL Prediction. +e RUL is defined as the time interval
from the current time to the end of the useful life [36], which
is expressed as

rk � tEoL − tk, (4)

where tEoL is the end of the useful life, tk is the current time,
and rk is the RUL at tk. For a PF model, the RUL can be
defined as the time interval between the current time and the
time when the system state reaches the failure threshold,
which is expressed as

rk � inf l : x l + tk( ≥ c( , (5)

where x(l + tk) is the system state at l+ tk, inf(·) represents
the inferior limit of a variable, and c is the failure threshold.

3. RUL Prediction Method Based on
ARIMA and CAPF

In this section, we will elaborate on our ARIMA-CAPF RUL
prediction framework. +is framework mainly includes
three steps: (1) operating condition initialization, (2) real-
time prediction and update, and (3) degradation assessment
and RUL prediction. +e ARIMA-CAPF RUL prediction
flowchart is shown in Figure 1. Each step is described in
detail in the following subsections.

3.1. State Equation Development. +e operating condition
parameters are mainly divided into two parts: the state
jumps when the operating condition changes and the
degradation rates assigned to each operating condition. +e
first order linear Wiener process is considered as

W(t) � W(0) + ηt + σBB(t), (6)

where W(t) represents the state of the system at time t and
W(0) represents the initial state value of the system. It is
determined by the initial system quality and usually set as 0.
η is the degradation rate (assumed to be a constant under
fixed operating conditions but will change with the changes
of operating conditions), B(t) is the standard Brownian
motion, and σB is the diffusion term. Based on the con-
sideration of the dynamic operating conditions, we establish
the following degradation equations:

x(t) � aot−Δt,ot
x(t −△t) + ηot

△S + bot−△t,ot
  + ωt, (7)

where x(t) represents the state of the system at time t, △t

represents the time interval, and ot−△t and ot represent the
operating conditions at time t −△t and time t, respectively.
For example, if there are three different conditions, ot will
take values from the set {1, 2, 3}. aot−△t,ot

and bot−△t ,ot
are two

signal jump coefficients when the operating condition
transfers from ot−△t to ot, and these two variables together
with ηot

represent the effects of load level on degradation. ηot

reflects the signal transfer direction. It could be positive or
negative. For example, if the operating condition transfers
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from a high load level to a lower one, ηot
could be negative. If

the operating condition remains unchanged, then ηot
will be

set as 1. ωt is the measurement noise at time t. It represents
the measurement error caused by the noise from sensors or
working environment, which can be obtained by long-term
statistics of the data measured by the sensors. △S denotes
the load increment from time t −△t to time t.

3.2. Load Discretization and Operating Condition
Initialization. As special equipment, each QC has its unique
mechanical characteristics, so it is difficult to obtain prior
degradation information such as degradation rate from the
historical data of other QCs. Generally, the degradation
process of the bearing of the hoist gearbox can be divided
into three stages: stable stage, fault stage, and failure stage
[37]. In the stable stage, the system state is relatively stable
with slight change under corresponding operating condi-
tions, and the degradation process of the machine in this
stage can generally traverse the whole load range. Some
researchers have utilized discretization methods to classify
the working load [38, 39]. In this paper, an equidistant
discretization method is adopted to discretize the load and
calculate the operating condition boundary because it is easy
to operate and fast to calculate. +e specific steps are as
follows.

Suppose that there are k operating conditions, the load
sequence is S� S1, S2, . . . , Sm , and Smax and Smin are the
maximum and minimum values of the load sequence, re-
spectively; then

(1) calculate the length of each load interval:

LC �
Smax − Smin

k
. (8)

(2) Generate n cut points:

C � c0, c1, c2, . . . , cn , (9)

where n� k + 1, c0 � Smin, cn � Smax, ci+1 �

c0 + i∗ LC, 1≤ i≤ n − 1;
(3) Set operating condition criterion:

ot � i, if ci ≤ Si ≤ ci+1. (10)

3.3. Real-Time Prediction and Update. +e real-time pre-
diction includes two parts: load prediction and system state
prediction. We will describe the two parts in the following
subsections.

3.3.1. Load Prediction by ARIMA. Before predicting the state
of the system, it is necessary to predict the load first. In this
paper, we apply the ARIMA model to predict the load with
the following steps:

(1) Check the stationarity of the historical load Zt. If not,
differ Zt until it is stable.

(2) Determine the AR model order P and MA model
order Q by using the Box-Jenkins approach [19].

(3) Estimate the ARIMA parameters αi and βj by the
Akaike information criterion (AIC) [40].

(4) Predict the load Zt+△t by equation (1) at time t +△t.
(5) Operating condition initialization: the operating

condition ot at time t is determined according to
equation (13).

Load Prediction

Operating Condition
CriteriaLoad Instance

Operating Condition Initialization

Real-time Prediction & Update 

Load Discretization

Operating Condition
Selection 

State PredictionParameters Update

Historical Load

Real Time State 

Stage Assessment

Healthy Stage

Severe Stage

Failure Stage

Degradation Assessment 

RUL Prediction

Figure 1: Flowchart of ARIMA-CAPF RUL prediction framework under dynamic operating conditions.
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3.3.2. State Prediction by CAPF. After the load and op-
erating conditions are predicted, the system state can be
predicted by PF. In the traditional RUL prediction, the
operating condition is assumed to be unchanged, so the
degradation parameters are considered to be assigned to
only one operating condition. However, when the op-
erating conditions change with time, it is necessary to set
different coefficients for each different operating condi-
tion and make a selection before state prediction.
+erefore, in this paper, we add a condition coefficient
selection procedure in the state prediction process by
utilizing a proposed CAPF method. +e method uses a
condition activation vector to select the operating con-
dition and match the corresponding parameters. +e
specific steps are as follows:

(1) Operating condition factor processing: consider
parameters appearing in equation (10)

ηt � η1, η2, . . . , ηi, . . . , ηk 
T

,

at �

a11a12 . . . . . . a1k

a21a21 . . . . . . a2k

. . . . . . aij . . . . . . . . .

ak1 ak2 . . . . . . akk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

bt �

b11b12 . . . . . . b1k

b21b22 . . . . . . b2k

. . . . . . bij . . . . . . . . .

bk1 bk2 . . . . . . bkk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(11)

where ηt � [η1, η2, . . . , ηk]T is the degradation rate
vector, ηi(1≤ i≤ k) represents the degradation rate
under ith condition, at and bt are jump coefficient
matrices, and aij and bij represent two jump co-
efficients when operating conditions switch from
i to j.
In order to select an operating condition, we set the
activation vector at time t:

Vt � v1, v2, . . . , vi, . . . , vk . (12)

Among them,

vi �
1, if ot � i,

0, else.
 (13)

Once the operating condition is determined, the
degradation rates and jump coefficients at time t can
be derived as follows:

ηot
� Vtηt−△t,

aot−△t,ot
� Vt−△tat−△tVt

T
,

bot−△t,ot
� Vt−△tbt−△tVt

T
.

(14)

(2) Particle initialization: let θot
� [ηot

, aot−△t,ot
, bot−△t,ot

] be
the parameter vector and generate N particles

θi
0 

i�1：N
at the initial time and the corresponding

weights wi
0 i�1：N.

(3) Predict state: take θot
into equation (10) and predict

the state.
(4) Updating weights and parameter matrices:

Capture the new state yt at time t and update the
particle weights and condition parameters by

ωi
t �

ωi
t−△t����
2πσ2

 exp −
yt − x

i
t 

2

2σ2
⎛⎝ ⎞⎠,

ωi
t �

ωi
t


N
i�1 ωi

t

,

θot
� 

N

i�1
ωi

tθ
i
ot

.

(15)

(5) Resampling: obtain a new particle set by resampling
scheme, and reset all weights to 1/N.

3.4. Stage Assessment and RUL Prediction. +e state of
bearing will not change dramatically in the first two stages,
so RUL prediction is only needed in the failure stage. Since
the system states would jump dramatically when stages
switch under any operating conditions, the 3 σ principles
[41] can be applied to monitor the bearing degradation stage,
and the RUL prediction will begin when the bearing deg-
radation reaches the failure stage.

Traditional RUL prediction methods will predict the
future states based on the current parameters and operating
conditions or assume that the future operating conditions
are scheduled profiles. However, most operating conditions
in the production process are changing over time.+erefore,
before RUL prediction, it is necessary to predict the oper-
ating conditions at the future time and estimate the cor-
responding parameters. +e specific steps are as follows:

(1) Set t� t+ △t, and use the method mentioned in
Section 3.3.1 to predict the load Zt and corre-
sponding operating condition ot.

(2) Use the method expressed in Section 3.3.2 to predict
the system state xt and update the condition pa-
rameters assigned to ot.

(3) Check whether xt ≥ c is true. If yes, rt � △t; else,
repeat (1)∼(2) until xt ≥ c.

4. Case Study

4.1. QuayCraneHoistingMechanismGearbox Full-Life Load-
State Data. In this section, the validity of the proposed
method is verified by the life cycle dataset of a QC hoisting
mechanism gearbox obtained from the long-term moni-
toring by the NetCMAS system. +e QC comes from a
container terminal in Shanghai. +e overview of the QC’s
structure and relevant measuring points is shown in
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Figure 2. Since the QC was installed, the NetCMAS system
has been continuously running for monitoring the me-
chanical system online for nearly 5 years and 4 months until
the bearing, on the high-speed shaft inside the hoisting
gearbox, failed with roller abrasion. In this paper, the full-life
vibration energy spectrum is utilized as the system state,
which is acquired from the accelerometer placed on the
surface of the hoist mechanism gearbox, vertical to the high-
speed input shaft. A stress measuring point is installed on the
boom surface between the inner forestay and outer forestay
to capture stress signals.+e stress signals recorded the stress
variation during the operation and are regarded as the load
sets afterward. +e above-mentioned measuring points and
their placement are shown in Figure 3. +e sampling fre-
quency is set as 2500Hz. Each sampling time is 0.8s, and the
sampling interval is 8s. +e effective values of the collected
vibration data andmean values of stress are calculated online
to form the online vibration energy spectrum and stress time
series.

4.2. Operating Condition Setting and Degradation Stage Di-
vision Method. +e acquired full-life vibration energy
spectrum of the gearbox and stress dataset are shown in
Figures 4 and 5, respectively. +e average amplitude of every
10000 points was calculated to reflect the bearing’s degra-
dation, and the waveform of vibration and stress signals after
processing is shown in Figure 6. According to the commonly
used “light-medium-heavy” classification pattern of port
load, we set k� 3. It can be seen from the smoothed vibration
energy spectrum shown in Figure 7 that the bearing deg-
radation can be divided into three stages and RUL prediction
will start from the failure stage. +e threshold is pre-
determined as the RMS value when the port maintenance
personnel detect abnormal noises.

4.3. RUL Prediction by ARIMA-CAPF Framework

4.3.1. Load Prediction by ARIMAModel. Before system state
and RUL prediction, the ARIMA model is first adopted to
predict the load and corresponding operating conditions.
+e one-step load prediction results are shown in Figure 8.
As can be seen, the ARIMAmodel can accurately predict the
load one step ahead, and the trend of the predicted load is the
same as that of the real-time load. In order to describe the
accuracy of operating condition prediction more compre-
hensively with different steps, we have also considered the
condition prediction accuracy, which is expressed as

CPA �
ntrue

npre
× 100%, (16)

where ntrue is the number of accurately predicted operating
conditions and npre is the number of operating conditions to
be predicted. And the accuracy of multistep condition
prediction is shown in Table 1. From Table 1, we can
conclude that the prediction accuracy decreases as the
prediction steps increase but generally remains in a relatively
high range. +is is acceptable because when the bearing’s
degradation process is closer to the failure time, fewer

prediction steps would be needed, which means the pre-
dicted load and corresponding operating conditions are
more reliable.

4.3.2. RUL Prediction by CAPF Method. In order to dem-
onstrate the effectiveness of our proposed CAPFmethod and
RUL prediction in dealing with dynamic conditions, we
compare it with three methods, M1, M2, and M3:

M1: xt � at xt−△t + ηtΔSt−△t + bt(  + ωt,

M2: xt � a xt−△t + ηot
ΔSt + b  + ωt,

M3: xt � aot−△t ,ot
xt−△t + ηΔSt + bot−△t ,ot

  + ωt.

(17)

+emain differences between the three methods and our
method are as follows.

M1 does not take the influence of load prediction into
consideration, and the change of loads is represented by that
of the last time step ΔSt−△t instead of the predicted ΔSt at
time t. +e jump coefficients and degradation rates are
selected according to the operating condition at time t −△t;
M2 ignores the operating conditions’ influence on the jump
coefficients, while M3 does not consider the influence of
operating conditions on degradation rates and only con-
siders the influence of operating conditions on jump coef-
ficients. +ose omitted factors are set as constants.

Figure 9 shows the one-step state prediction results for
the methods mentioned above. ARIMA-CAPF and M1 both
cause no false alarms. M2 and M3 generate more violate
fluctuations and cause more false alarms. +is is because
both jump coefficients and degradation rates are of vital
importance when state prediction is conducted.

Furthermore, ARIMA-CAPF has more accurate per-
formance and matches the failure point, while M1 does not
generate true alarms at failure time. We can find the reason
from the perspective of uncertainty management. +e dis-
tributions of the predicted system states shown in Figure 10
can reflect the uncertainties of the state prediction. We can
find that the predicted states by the M1 method are dis-
tributed in a wider region, which indicates large uncer-
tainties. +is is because M1 has a limited ability to manage
uncertainties when its operating condition information is
out-of-date. Hence, M1 cannot make accurate state pre-
diction. On the contrary, ARIMA-CAPF utilizes the oper-
ating condition information to decrease uncertainties,
resulting in a narrowly distributed region and smaller errors
for state prediction.

To quantitatively evaluate the accuracy of the system
state and RUL prediction results, the mean absolute error
(MAE) between the predicted values and the actual values is
calculated using the following equation:

MAE �
1
N



N

1
yt − yt


 × 100%, (18)

where yt is the predicted value at time t and yt is the actual
value at time t.

+e prediction MAEs is shown in Table 2. It can be seen
that the MAEs of the proposed ARIMA-CAPF method and
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Figure 3: Measuring points on QC: (a) accelerometer on gearbox and (b) strain gauge on the boom.
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Figure 5: Life cycle stress signal acquired on the boom.
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Figure 6: Transformed signals: (a) mean of vibration RMS and (b) mean absolute value of stress.
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Figure 8: One-step stress prediction result.
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M1 are both low in one-step system state prediction. But in
multistep prediction, the MAE of the M1 method increases
dramatically and becomes the highest in different predicting
steps, according to Table 2. +is is because M1 lacks the
predicting information of load changes and operating
conditions. With the increase of prediction step, the lack of
operating condition information would cause gradually
uncontrollable state prediction errors. +e predicting result
of M1 indicates that accurate system state prediction cannot
be completed without load prediction under dynamic load
conditions. M2 andM3 generate larger MAEs than ARIMA-
CAPF in system state prediction with every prediction step.

+e reason is that the two methods ignore the influence of
operating conditions on jump coefficients and degradation
rates, respectively. Specifically, the MAE of M2 is larger than
that of M3, which indicates that the dynamic jump coeffi-
cients have a greater influence on the prediction of system
state than degradation rates. +is is consistent with the
conclusion drawn by Li et al. [18].

It also can be noticed from RUL prediction results shown
in Figure 11 that M1 has no ability to predict the RUL; the
prediction was not accurate almost for a lifetime. +is is
because when it comes to multistep prediction, the load
information only relies on that of the current time and

Table 1: Condition prediction accuracy comparison.

Prediction step (group) 1 10 20 30 40
Condition prediction accuracy (%) 100 93.5 80.7 73.1 71.7
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Figure 9: One-step state prediction results: (a) ARIMA-CAPF, (b) M1, (c) M2, and (d) M3.
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Figure 10: Comparison of state prediction uncertainties.

Table 2: State prediction MAEs of four methods.

Predict time step (group) Method 1 10 20 30

MAE (%)

ARIMA-CAPF 0.37 0.42 1.08 1.50
M1 0.36 1.93 3.66 5.84
M2 0.96 1.77 2.44 3.56
M3 0.72 1.53 2.10 2.44
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Figure 11: Comparison of RUL prediction results.
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cannot be updated further. Furthermore, it is impossible to
predict RUL without accurate estimated loads and operating
conditions. Once the operating condition at the current time
is set as “heavy” mode, the RUL prediction result will de-
crease dramatically.+e prediction points abruptly dropping
to the horizontal axis of the coordinates of M1 have verified
this inference. +is also explains why M1 generates max
MAEs shown in Table 3.

+e RUL prediction results derived by M2 and M3 are
much lower than actual RUL, and this is mainly because the
system states estimated from these two methods cause lots of
false alarms. Among these two methods, the predicted states
of M2 are lower than that of M3, and the MAE of M2 is
higher than that of M3 presented in Table 3, which once
again confirms that jump coefficients have a greater impact.

However, the proposed ARIMA-CAPF method acquires
the most stable and accurate predicting result among all four
methods because all factors omitted inM1,M2, andM3 have
been evaluated, and therefore, the effectiveness of the
ARIMA-CAPF method is verified.

5. Conclusion

+e dynamic operating conditions bring challenges to the
hoisting gearbox bearing RUL prediction. Without condi-
tion prediction, the uncertainty of degradation rates and
signal jumps will lower the RUL prediction accuracy. To
solve this problem, we propose a framework for RUL pre-
diction under dynamic operating conditions. Specifically,
the main technical contributions of our work are summa-
rized as follows:

(1) +e proposed RUL prediction framework aims to fill
the blank of load prediction in traditional RUL
prediction and improve the prediction accuracy.
Under this framework, the ARIMA model is able to
predict the load and can maintain relatively high
prediction accuracy of operating conditions with
limited prediction steps.

(2) +e presented CAPF algorithm can solve the
problem of parameter selection when conditions
switch dynamically. By this method, the system state
prediction equation can adaptively select the cor-
responding condition parameters and update them
in real time. +erefore, the ARIMA-CAPF frame-
work is able to obtain more accurate state prediction
results with fewer false alarms and realize more
accurate and stable RUL predictions.

In addition, only the stress measurement point on the
forestay of the quay crane is taken as the feature of the
operating conditions in this study. For a complex system, a
single measuring point may not be able to fully reflect the
changes of the external operating conditions. We will

consider the multisensor fusion technology to predict the
dynamic operating conditions and RUL in future work.
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