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Asynchronous vibration was generated between the main bridge and approach spans or abutments due to differences in stiffness
and mass during an earthquake, thus further leading to pounding at the bilateral beam ends. By taking a T-shaped rigid frame
bridge as an example, the bilateral pounding model was abstracted, and the earthquake response spectra considering pounding at
the bilateral beam ends were studied, including the maximum displacement spectrum, the acceleration dynamic coefficient
spectrum, the pounding force response spectrum, and the response spectrum for the number of pounding events. An improved
precise pounding algorithm was proposed to solve the dynamic equation of the bilateral pounding model. -is algorithm is based
on the precise integration method for solving the second-order dynamic differential equation and reduces the order thereof by
introducing a new velocity vector and uses the series method to find the nonhomogeneous term.-e systemmatrix is simpler, and
the inversion of the system matrix can be avoided. On this basis, a multipoint earthquake-induced pounding response spectrum
program was developed. A total of 18 seismic waves from Class II sites were selected, and the response spectra of 18 waves were
analyzed using this new program. Furthermore, the effects of structural stiffness, mass, stiffness of contact element, pounding
recovery coefficient, and peak ground acceleration (PGA) on the earthquake response spectrum were studied. -rough the
analysis of earthquake response spectra and a parametric study, the phenomenon of earthquake-induced pounding of bridges was
clarified to the benefit of the analysis and engineering control of earthquake-induced pounding of bridges.

1. Introduction

-e pounding that may arise between adjacent structures
causes structural damage during earthquakes. Some
scholars have studied earthquake-induced pounding
through the analysis of earthquake response spectra con-
sidering pounding between adjacent structures. Kawashima
and Sato [1] studied the maximum displacement response
spectrum of adjacent structures; Ruangrassameeand and
Kawashima [2] presented the relative displacement re-
sponse spectrum under the impact of pounding; Jankowski
[3] studied the structural pounding response spectrum
under excitation by the El-Centro wave; and Yaghmaei-
Sabegh and Jalali-Milani [4] studied the pounding response

spectrum under both near-field and far-field earthquakes.
In recent years, Chinese scholars have studied the pounding
response spectrum from different perspectives, and the
pounding response spectrum based on the precise inte-
gration method has been studied [5, 6]. Furthermore, the
acceleration dynamic coefficient spectra under different
field wave excitations were examined [7].

-e single-point pounding based on two SDOF struc-
tures has been widely explored in previous studies, while
multipoint pounding events are more commonplace in
bridge structures. -e pounding between the main bridge of
common continuous beam, continuous rigid frame bridge,
or T-shaped rigid frame bridge, and the approach bridge or
abutment with their inherent differences in mass and
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stiffness can be produced due to asynchronous vibration
under seismic excitation. -e pounding between the main
bridge and the structure on both sides will affect the vi-
bration response of the main bridge structure, which in turn
will affect the pounding force and the number of pounding
events during an earthquake; therefore, a model containing
three SDOF structures and two contact elements is ab-
stracted to simulate pounding events of the main bridge with
bilateral abutments or approach spans. At present, most of
the research on pounding spectra focuses on the pounding
force spectrum, dynamic coefficient spectrum, or displace-
ment spectrum. -e number of pounding events is also
taken as an important evaluative indicator for earthquake-
induced pounding analysis of engineering structures, based
on which the concept of number of pounding events as a
response spectrum was proposed in the present research.

-e time-history analysis of second-order dynamic differ-
ential equation with pounding force is the basis of reaction
spectrum calculation. Traditional solutions to second-order
dynamic differential equations include the explicit central dif-
ference method and the implicit Newmark-β method [8, 9].
-ese methods are widely used in commercial software
packages but have only second-order numerical accuracy. -e
precise integration method proposed by Zhong [10, 11] reduces
the order of the second-order differential equation to that of a
first-order equation by introducing dual variables and uses the
2N class algorithm to obtain the high-precision solution of the
exponential matrix. -is method has absolute numerical sta-
bility, zero amplitude attenuation rate, zero period extension
rate, and no transcendence.-e precise integration method has
been applied to many structural dynamics problems [12, 13],
and the structures involved have also been extended from linear
elastic structures to nonlinear structures [14, 15]. -e earth-
quake-induced pounding phenomenon of a bridge structure is a
nonlinear problem of state, which is more complicated than the
general structural nonlinear state. Zhang et al. [16, 17] extended
the precise integration method to solve the earthquake-induced
pounding problems of adjacent structures. -rough combining
it with a contact element model, a precise pounding algorithm
using the strategy of different lengths of time step was proposed
for use in different structural states, and the precise pounding
algorithm is applied to analyse multipoint pounding of elastic-
plastic structures. For the pounding dynamic equation [18, 19],
the dual variable is introduced to reduce the order of the
equation, and the analytical method based on the linear vari-
ation of load assumption is adopted to find the nonhomoge-
neous term. After order reduction, the order of the system
matrix is doubled, and the sparsity characteristic of the stiffness
matrix is lost. In addition, it is necessary to invert the system
matrix when solving the nonhomogeneous term, which is
onerous in terms of computational burden, and may also give
rise to the situation where the inverse matrix does not exist.

To avoid inversion of the system matrix and accelerate
the calculation process, researchers have improved the
precise integration method [18–23]. Gu et al. [19] proposed
an augmented dimensional precise integration method. By
expanding the scale of the system matrix, the nonhomo-
geneous terms were transformed into homogeneous terms
to avoid matrix inversion; however, this method requires

more data storage and is computationally more onerous.-e
direct integration of nonhomogeneous terms can also avoid
inversion of the system matrix. Lin et al. [20] proposed the
method of Fourier expansion for nonhomogeneous terms.
Wang and Au [21] developed a Gaussian quadrature method
and piece wise interpolation polynomial method [22]. In
addition, Simpson, Romberg, Cots, and other direct inte-
gration methods were used to find the nonhomogeneous
terms [23, 24]. For order reduction in systems of second-
order dynamic differential equations, others [25] have
combined the Newmark method therein for order reduction
and adopted series solution methods to deal with nonho-
mogeneous terms. However, the calculation accuracy of this
method is related to the step size, so it loses the superiority of
the precise integrationmethod of “increasing dimension and
order reduction.” Ding [14] reduced the order of the
equation by introducing a new velocity vector, thus sim-
plifying the calculation of the exponential matrix.

In time-history analysis considering pounding, contact
element was used to calculate the pounding force, and a
variety of contact element models were developed [26–30].
Based on the bilateral pounding model proposed herein, the
dynamic differential equation considering the bilateral
pounding was given by combining the Hertz-damping
contact element [29]. -e dynamic differential equation was
reduced by introducing a new velocity vector, and the
nonhomogeneous term was found by the use of a series
method, which simplifies the system matrix and avoids
inversion of the system matrix. -is improvement can not
only avoid the difficulty of solving the system matrix in
special cases, but also greatly improve the calculation speed,
especially in the case of response spectrum analysis, which
requires a lot of repeated time-history calculation. -e
improved precise pounding algorithm was verified, and then
a program for calculating multipoint pounding response
spectra was developed.

-e maximum displacement spectrum, acceleration
dynamic coefficient spectrum, pounding force spectrum,
and the number of pounding event spectrum of selected
seismic waves were analyzed, and the influence of abutment
stiffness, abutment mass, contact element stiffness, impact
recovery coefficient, and peak ground acceleration on dis-
placement, dynamic amplification coefficient, pounding
force, and the number of pounding events were studied.

2. Definition of Pounding Spectrum

-e pounding spectrum is a curve or surface relationship
that considers the variation in earthquake-induced response
with the natural vibration period of the SDOF involved in
pounding. In previous studies [3–6], the pounding reaction
involves structural displacement, a pounding force, or dy-
namic amplification coefficient, and the object of interest has
two elastic SDOF with only one pounding point. In fact, the
number of pounding points (or events) is also important; for
a T-shaped rigid frame bridge, in general, both sides of the
abutment have larger stiffness and smaller mass, while the
middle pier has a smaller antipush stiffness and larger pier
beam mass. Under longitudinal earthquake excitation, the
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main girder may collide with the abutment structure on both
sides (Figure 1), and in this simplified model, m1, k1, and ξ1
are the simplified mass, stiffness, and damping ratio of the
SDOF structural abutment on both sides; m2, k2, and ξ2 are
the simplified mass, stiffness, and damping ratio of the
SDOF structure of the pier andmain girder; and kc, e, and gp

are, respectively, the stiffness parameters, recovery coeffi-
cient, and clearance of the contact element.

-erefore, the pounding displacement spectrum is depicted
as representing the variation of the pounding particle dis-
placement with the natural vibration period of the SDOF
considering the specific structural parameters, pounding pa-
rameters, and ground motion input. -e structural parameters
include the mass, stiffness, and damping ratio of the SDOF, and
the pounding parameters include the contact element model
type, pounding stiffness, pounding recovery coefficient, and gap
width. -e dynamic acceleration amplification coefficient is the
ratio of the peak acceleration to the peak seismic wave. -e
spectrum of the dynamic acceleration amplification coefficient,
m2, represents the variation in the dynamic acceleration am-
plification coefficient of a particle with its natural vibration
period.-e pounding force spectrum represents the variation in
themaximum pounding forces at two possible pounding points
with the natural vibration period of the SDOF. -e number of
pounding event response spectrum represents the variation in
the maximum number of pounding events arising from the
presence of two possible pounding points with the natural
vibration period of the SDOF.

3. PoundingDynamicDifferentialEquationand
Improved Precise Pounding Algorithm

3.1. Pounding Dynamic Differential Equation. -e beam
ends pounding model shown in Figure 1 contains three
SDOF particles, in which the mass, damping, and stiffness of
the left and right particles are the same. -e pounding force
time-history between the middle particle and the left particle
is assumed to be f1(t), and that between the right particle
and the middle particle is assumed to be f2(t). -e dynamic
balance equation of the system is as follows:

MX€+ CX_+ KX + F(t) � − Mg(t), (1)

where M �

m1 0 0
0 m2 0
0 0 m1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, C �

c1 0 0
0 c2 0
0 0 c1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

K �

k1 0 0
0 k2 0
0 0 k1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, X �

x1
x2
x3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, and F(t) �

f1(t)

− f1(t) + f2(t)

− f2(t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

-e structural damping coefficient is given by

ci � 2ξi

����

miki

􏽱

, i � 1, 2. (2)

-e Hertz damping contact element model is used for
the pounding between particles, and the viscous damper is
added on the basis of the Hertz model to allow energy loss.

-e spring stiffness and damping coefficient are vari-
ables. In the contact stage, spring stiffness β and damping

coefficient ηare related to the penetration displacement of
the two particles, as given by the following equations:

βi(t) � kc

�����������
xi − xi+1 − gp

􏽰
, (3)

ηi(t) � ζ xi − xi+1 − gp􏼐 􏼑
3/2

, (4)

ζ �
3kc 1 − e

2
􏼐 􏼑

4 _ui − _ui+1( 􏼁
, (5)

where kc, e, and gp are, respectively, the spring constant,
recovery coefficient, and initial gap of the contact element. xi

and xi+1 are the displacements of two adjacent particles at
time t, and _ui _ui+1 are the velocities of two adjacent particles
before contact.

-e pounding force on a contact element is obtained as
follows:

fi(t) � βi(t) xi − xi+1 − gp􏼐 􏼑 + ηi(t) _xi − _xi+1( 􏼁. (6)

In general, the pounding force can be treated as the
hysteresis force, that is, the displacement and velocity cal-
culated in the previous time step are used to calculate the
pounding force with equation (6), which is incorporated into
the right-hand side of the equation as the known load;
therefore, the calculated pounding force always lags by one
time step. To overcome this problem, the pounding force
column vector of the contact element in the model can be
written as follows:

F(t) � β(t)X + η(t) _X + γ(t)gp, (7)

where β(t)X + c(t)gp is the elastic restoring force vector

and η(t) _X is the damping force vector. In detail, β(t) �

β1(t) − β1(t) 0
− β1(t) β1(t) + β2(t) − β2(t)

0 − β2(t) β2(t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ refers to the stiffness matrix

of contact elements at time t.

η(t) �

η1(t) − η1(t) 0
− η1(t) η1(t) + η2(t) − η2(t)

0 − η2(t) η2(t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ refers to the damp-

ing coefficient matrix of contact elements at time t, and

m1 kc

k1

ξ1 ξ2 ξ1

k2

g (t)

k1

gpe e
gp

kc
m2 m1

Figure 1: Bilateral pounding model.
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c(t) �

− β1(t)

β1(t) + β2(t)

− β2(t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ is the column vector to calculate

elastic restoring force related to the initial gap.
-e decomposed pounding force column vector is in-

troduced into the pounding dynamic differential equation,
which can be rewritten as follows:

M €X +[C + η(t)] _X +[K + β(t)]X � − Mg(t) − γ(t)gp.

(8)

3.2. Improved Precise Integration Method. To reduce the
order of the dynamic balance equation of the system, we
introduce vector p. Let p � M _X, then _X � M− 1p in the
dynamic equilibrium equation, which can be written as
follows:

_p � − [K + β(t)]X − [C + η(t)]M− 1p − γ(t)gp − Mg(t).

(9)

Assuming v �
X
p􏼢 􏼣, we have

_v � Hv + f(t), (10)

where the system matrix

H �
0 M− 1

− [K + β(t)] − [C + η(t)]M− 1􏼢 􏼣 and nonhomoge-

neous term f(t) �
0

− c(t)gp − Mg(t)
􏼢 􏼣.

Assumming that the solution of the reduced first-order
equation of state at time tk is vtk

, the systemmatrixH is time-

variant, so tk is denoted asHtk
, and the general solution at

time tk+1is as follows:

vtk+1
� exp Htk

· Δt􏼐 􏼑vtk
+ 􏽚

tk+1

tk

exp Htk
tk+1 − τ( 􏼁􏼐 􏼑f(τ)dτ.

(11)

-e exponential matrix of the first term on the right of
the above equation is represented as follows:

T � exp Htk
· Δt􏼐 􏼑 � exp Htk

·
Δt
2N

􏼒 􏼓􏼒 􏼓
2N

� exp Htk
· s􏼐 􏼑􏼐 􏼑

2N

� I + Ta( 􏼁
2N

.

(12)

-e matrix Ta is expanded by Taylor series as follows:

Ta � 􏽘
∞

l�1

Htk
· s􏼐 􏼑

l

l!
. (13)

In equation (13), the truncation order of the series ex-
pansion is five, and N is 20, so a more accurate solution can
be obtained. After matrix Ta is found, matrix T is found by
the addition principle as applied to an exponential function.
Specifically, the matrix is iterated N times the following
equations:

Ta � 2Ta + Ta × Ta, (14)

T � I + Ta. (15)

-e series method is used to solve the nonhomogeneous
integral, suppose s � τ − tk, then

􏽚
tk+1

tk

exp Htk
tk+1 − τ( 􏼁􏼐 􏼑f(τ)dτ � 􏽚

Δt

0
exp Htk

(Δt − s)􏼐 􏼑f tk + s( 􏼁ds � T􏽚
Δt

0
exp − Htk

s􏼐 􏼑f tk + s( 􏼁ds. (16)

Suppose the nonhomogeneous term varies linearly over
time ti ti+1􏼂 􏼃, that is, f(tk + s) � f(tk) + Δf · s. -en, the
solution of the integral term of equation (16) is as follows:

􏽚
Δt

0
􏽘

∞

l�0

− Htk
s􏼐 􏼑

l

l!
f tk( 􏼁 + Δf · s( 􏼁ds � 􏽘

∞

l�0

− Htk
􏼐 􏼑

l

l!
f tk( 􏼁 ·
Δtl+1

l + 1
+ Δf ·
Δtl+2

l + 2
􏼠 􏼡. (17)

Suppose the truncation order of the series expansion l

in equation (17) is five, then, the precise recursion format
of the pounding dynamic differential equation is as
follows:

vtk+1
� T vtk

+ 􏽘
5

l�0

− Htk
􏼐 􏼑

l

l!
f tk( 􏼁 ·
Δtl+1

l + 1
+ Δf ·
Δtl+2

l + 2
􏼠 􏼡⎛⎝ ⎞⎠.

(18)

-e elements in the first half of the vector vtk+1
constitute

the displacement X at time tk+1, then the rest elements
constitute the vector p. -e velocity at time tk+1 can be
calculated by _X � M− 1p, and substitution into the dynamic
balance equation yields the acceleration at time tk+1.

-e above derivation process is derived from the dy-
namic balance equation of the full state. For problems
considering structural nonlinearity, the secant stiffness
matrix is time-varying, so it needs to be solved by iteration.
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In some cases, the secant stiffness will be very large or very
small, resulting in significant numerical error in the cal-
culation; therefore, the incremental dynamic balance
equation is usually adopted after the structure is deemed
elastic-plastic. For the incremental dynamic balance equa-
tion, the precise integration method is also applicable after
slight modification. -e recursive solution requires that the
increment from the previous step is deferred, and the in-
crement of the next step is deferred.-e state of the structure
at a given time must be obtained by incremental superpo-
sition. In the literature [17], a precise integration method for
solving the incremental dynamic balance equation of
structural nonlinear problems was examined: in the present
work, the relevant results were cited along with the de-
scription of the program design.

3.3. Precise Pounding Algorithm. -e pounding force col-
umn vector is introduced when the dynamic differential
equation of the pounding is established. It should be noted
that the state of the structure in the earthquake-induced
response can be divided into separate, and contact, states.
-e current state of the structure can be obtained by judging
the displacement difference between the ends of the two
contact elements. In the contact state, because the stiffness
and damping coefficients of the pounding spring are time-
variant, the system matrix is also time-variant. Upon sep-
aration, the elements in β(t), η(t), and c(t) are all zero, the
system matrix of elements is the time-varying stiffness

matrix related to the linear elastic stage or incremental
dynamic balance equation of the tangent stiffness constant
and plastic phase, the elements in the system matrix are
constant, as are the changes in secant stiffness or tangent
stiffness in the plastic region, meaning that the system
matrix is still time-variant.

In the process of the step-by-step detailed recursive
solution of the pounding dynamic equation, the separation-
contact state transition should also be solved. By dividing the
step size Δt into 2N substeps, the precise integration method
can provide a high-precision solution. In the state of sep-
aration, the integral step size Δt can be larger, which is
conducive to reducing the computational burden. In the
contact state, due to the short duration of the process itself, a
smaller integral step size should be adopted. In the program
design, the integral step Δt1 of the separation state is set to
the sampling interval of seismic wave, and the integral step
of the pounding stage is set to 1% to 10% of Δt1.

In the recursion process used in the precise integration
method, the pounding phenomenon is judged by the value of
xi − xi+1 − gp. Assume that time tk is xi − xi+1 − gp < 0, and
time tk+1 is xi − xi+1 − gp ≥ 0, indicating the exact time of
pounding. -e displacement, velocity, and acceleration at
time tk and time tk+1 have been deduced by the precise
integration method of separate states. According to the
assumption that the acceleration changes linearly from tk to
tk+1, the structural displacement at time tk + τ can be given
by the following equation:

xitk
− x(i+1)tk

+ _xitk
− _x(i+1)tk

􏼐 􏼑τ + _xitk
− _x(i+1)tk

􏼐 􏼑
τ2

2
+ €xitk+1

− _xitk
− €x(i+1)tk+1

− _x(i+1)tk

Δt

τ3

6
− gp � 0. (19)

-e equation is a cubic equation containing one variable,
and the solution in the interval (0 Δt] can be derived by
using the dichotomy method, and time tk + τ is the initial
time of pounding. -e structural state at the exact start time
tk of pounding can be obtained by changing the step size to τ,
and then the integral step size in the contact state is changed
to Δt2, and the system matrix H is set at each step. -e
structural displacement, velocity, and acceleration under
pounding action can be solved by the iterative method until
xi − xi+1 − gp ≤ 0. At this point, the structure changes from a
state of contact to one of separation. Similarly, equation (19)
can be used to find the contact separation time. After en-
tering the separation state, the integral step size is changed
again toΔt1, and the recursive solution of the separation state
is started. -e above processes can be conducted alternately
until the input seismic wave analysis is completed, and the
time-history response of the structure is obtained.

3.4. Algorithm Verification. -e bilateral pounding model
is abstracted from a 2 × 85m T-shaped rigid frame bridge.
-e elevation of the bridge is shown in Figure 2. In the
abstract model, the mass of the main bridge is

concentrated at the centroid of the main girder on the pier
top, m2 � 8.12 × 106 kg, the height of the main pier is 52m,
the calculated antipush stiffness k2 � 3.51 × 107 N/m, the
damping ratio of the structure is 5%, and the basic natural
vibration period of the structure is 3.02 s. -e abutment is
built on a piled foundation and buried (its stiffness is thus
large). Considering the spring support of the soil layer on
the pile foundation of the abutment and the soil filling
behind the abutment, k1 � 5.40 × 108. -e mass of the
abutment and the slabs is estimated as m1 � 3.16 × 105 kg.
-e damping ratio of the abutment is 5%, and its period of
natural vibration is 0.15 s.-e width of the expansion joint
is 0.1 m. -e Hertz-damping contact element model is
used between the main beam and the abutment. -e
spring stiffness constant kc � 1.25 × 109 N/m3/2, and the
recovery coefficient of the concrete structure is 0.65.
Plastic hinges may develop at the bottom of the main pier
under strong seismic action. In the elastic-plastic analysis,
the elastic-plastic model of the main pier is considered to
conform to the assumption of the Clough model. -e
longitudinal yield displacement of the main pier is 0.16m,
and the postyield stiffness is 0.1 times the elastic stiffness,
that is k2 � 3.51 × 106 N/m.
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Since there is no Hertz-damping contact element model
available in commercial software, the improved precise
pounding algorithm proposed herein is difficult to be ver-
ified using commercial software. -e calculation results of
the example were compared with those calculated using the
traditional precise integration method [17] to indirectly
verify the proposed method.

-e bridge site is a Class II site with a site characteristic
period of 0.35 s and a peak basic seismic acceleration of
0.1 g. -e time-history analysis of rare earthquakes was
carried out according to the specifications for seismic
design of highway bridges. -e input seismic wave was the
EW component of the El-centro seismic wave. -e du-
ration analyzed was 53.44 s, and the peak acceleration of
the seismic wave was adjusted to 0.17 g. Two types of
precise integration methods (PIM) were used for analysis,
and the step size of separation state was set to 0.02 s, and
that in the contact state was set to 0.002 s. -e time
histories of displacement, velocity, and acceleration of the
main pier top calculated by the two methods are shown in
Figures 3∼5 . -e pounding of the structure mainly oc-
curred in the first 21 s. -e history of the pounding force at
the expansion joints on both sides is shown in Figure 6,
and the relationship between the pounding force and
penetration displacement is illustrated in Figure 7. In
addition, the restorative force-displacement hysteresis
curve of the main pier is plotted in Figure 8.

By comparing the results of the two time-history analysis
methods, the time-history curves of displacement, velocity,
and acceleration of the main pier top and the time-history
curves of pounding forces on both sides are almost identical,
which indicates that the precision of the improved PIM is
not reduced compared with that of the traditional PIM.
From Figure 7, the pounding force-penetration displace-
ment curve of the two contact points conforms to the hy-
pothesis of the Hertz-damping contact element model.
Under the action of a rare earthquake, the main pier enters
the plastic stage, and the hysteresis model of restorative

force-displacement conforms to the assumption of the
Clough model. It is shown that the two methods can be used
to analyse the elastic-plastic earthquake-induced response of
structures and simulate earthquake-induced processes ac-
curately. On the same computing platform, the program
based on the traditional precise integration method and the
program based on the improved precise integration method
run three times. -e average calculation time of the tradi-
tional precise integration method is 6.49 s, while the average
calculation time of the improved precise integration method
is 3.94 s, which is 39.3% lower than the traditional method,
which means that the improved method has higher calcu-
lation efficiency.-is is mainly because the improved precise
integration method avoids the inverse operation of the
system matrix, and the new order reduction method makes
the matrix multiplication less. It will save a lot of time by
using the improved precise integration method in the fol-
lowing response spectrum analysis.
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Figure 2: Elevation view of the T-shaped rigid frame bridge (all dimensions: cm).
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Figure 3: Time-history curve of pier top displacement under rare
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4. Earthquake-Induced Spectrum Analysis

4.1. Selection of Seismic Waves. Since the first earthquake
wave (the El-centro event) was recorded in 1940, many
earthquake records have been acquired. In general time-
history analysis, a small number of applicable seismic waves
must be selected from a large number of seismic records for
analysis. According to the site type, aiming at designing
acceleration response spectrum, the wave selection method
adopts synthetic seismic waves compatible with it, or natural
seismic waves with better compatibility in a statistical sense.
A total of eighteen seismic waves were selected from the Peer
database (Table 1). On this basis, the peak value of the se-
lected wave is adjusted, and the peak value of seismic wave is
0.17 g except during PGA variable parameter analysis. -e
period of the reaction spectrum ranges from 0.1 s to 6 s, the
step size is 0.1 s, and the corresponding pier stiffness is 8.90 ×

106 and 3.21 × 1010 N/m.

4.2. Pounding SpectrumAnalysis of SelectedWaves. Based on
the improved PIM, a multipoint earthquake-induced
response spectrum analysis program was developed on the
MATLAB™ platform. In the seismic impact response
spectrum analysis, the longitudinal natural vibration
period of the main bridge is the basic variable. In the case
of the fixed mass of the main bridge, the stiffness of the
pier k2 is calculated according to the period of natural
vibration. -e values of other basic analysis parameters
have been given in the example. Although the program
can perform elastic-plastic analysis, it ignores the influ-
ence of elastic-plastic behaviour of the bridge pier in
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response spectrum analysis with considering pounding or
not. First, the program was used to calculate the dis-
placement spectrum and dynamic amplification coeffi-
cient spectrum of the simplified single-degree-of freedom
structure of main pier and main beam under eighteen
seismic waves without considering pounding, as shown in
Figure 9. -en, the displacement spectrum, dynamic
amplification coefficient spectrum, pounding force
spectrum, and the number of pounding event response
spectrum of the simplified SDOF of main pier and main
beam were calculated, as shown in Figure 10.

-e standard dynamic amplification spectrum is shown
in Figures 9(b) and 10(b). It is calculated using the following
formula, which was cited from the specifications for seismic
design of highway bridges:

A(t) �

Amax 0.6
T

T0
􏼠 􏼡, T≤T0,

Amax, T0 <T≤Tg,

Amax
Tg

T
􏼠 􏼡, Tg <T≤ 10,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where T0 � 0.1 s, Tg � 0.35 s refers to the site characteristic
period, and Amax � 2.5CiCsCd refers to the maximum value
of dynamic amplification factor, in which Ci � 1.0, Cs � 1.7,
Cd � 1.0, respectively.

-e structural displacement spectrum without consid-
ering pounding shows that, at the same PGA level, the
displacement response of the structure is strongly related to
the input seismic waveform, and the displacement spectra
corresponding to the seven selected seismic waves never
exceed 0.1m, while the displacements associated with the
Duzce and Kocaeli seismic waves increase rapidly with the
displacement extreme value exceeding 1m. -e acceleration
dynamic amplification factor changes significantly in a short

period of less than 3 s, and the peak value of the spectral
curve appears in a period of 0.2 s to 1 s, and tends to be
smooth during long-period motions of more than 3 s, and
the spectral value of the acceleration dynamic coefficient
does not exceed 1.5.

Considering the pounding between the beam ends on
both sides of the intermediate structure and the abutment,
pounding will occur when the difference in displacement
between the intermediate structure and the abutment ex-
ceeds the reserved expansion joint gap. -e longitudinal
displacement of the intermediate structure is limited by the
abutments with high stiffness on both sides, so the longi-
tudinal displacement is greatly reduced, which is reflected in
the displacement spectrum curve, and the long-period
spectrum curve tends to be smooth. It can be seen from the
spectrum curve of acceleration dynamic amplification co-
efficient that the acceleration dynamic amplification coef-
ficient does not change in the short period when the natural
vibration period is less than 1.5 s, but the spectrum curve of
dynamic amplification coefficient of six seismic waves in-
creases significantly when the natural vibration period ex-
ceeds 1.5 s. -e design acceleration response spectrum given
in the design code does not consider the influence of
pounding, so the response spectrum analysis method should
be avoided when assessing the earthquake-induced response
of structures prone to pounding with a long period.
Compared with the pounding force spectrum and the
number of pounding events as a response spectrum, the
structural pounding mainly occurs with a period of more
than 1.5 s, which shows that the effect of pounding force on
the acceleration is huge. From the analysis of the pounding
force spectrum and the number of pounding event response
spectrum curve, only eleven of eighteen seismic waves in-
duce pounding, and the pounding initiation period,
pounding force, and the number of pounding events as
response spectra associated with eleven seismic waves are
quite different. -is shows that the pounding response of
structures is closely related to the spectral characteristics of
the input seismic wave. By analyzing the pounding force
spectrum curve and the number of pounding events as a
response spectrum curve under the same input excitation, it
is found that the pounding force and the number of
pounding event response spectrum increase rapidly at first
and then do so more slowly with increasing period from the
onset of pounding, but this does not preclude abrupt
changes within individual periods, which shows that the
pounding force and the number of pounding events (as
response spectra) are sensitive to the natural period of vi-
bration of the structure.

5. Impact Analysis of Pounding
Spectrum Parameters

-e analysis of results from inputting each of eighteen
seismic waves in the previous section show that the re-
sponse of the structure is closely related to the selection of
seismic waveform under the same peak ground motion;
because of the randomness of earthquakes, it is difficult to
characterize the structural response spectrum with a single
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seismic wave; therefore, the average spectrum of multiple
seismic waves is used in parameter influence analysis, that
is, the average value of the selected seismic wave response
spectrum curves is used to characterize the spectra of this
group of seismic waves. Seven seismic waves without
pounding were eliminated. Due to the influence of the soil
filling behind the abutment, it is difficult to determine the
stiffness and mass of the abutment when it is simplified as
an SDOF structure: to discuss the influence of the two
parameters on the structural response, a variable parameter
analysis is conducted. Among the contact element pa-
rameters, besides the structural clearance, the values of the
pounding stiffness parameter and the recovery coefficient

are also controversial, and the variable parameter analysis
is also aimed at assessing how the two parameters affect the
response spectrum. In addition, PGA is an important factor
affecting the earthquake-induced response of structures,
and variable parameter analysis of PGA is also conducted.
It is also worth mentioning that the material nonlinearity of
piers and abutments is not included in this part of para-
metric analysis. It is mainly considered that the collision
between the main beam and the abutments on both sides
limits the excessive displacement of the pier top, which
limits the generation of the plastic hinge at the bottom of
the pier, and this consideration can reduce the complexity
of the analysis problem.

Table 1: Selected seismic waves.

No. Earthquake Observation station PGA (g) Magnitude
1 Anza (Horse Cany), 1980/02/25 5047 Rancho de Anza 0.092 M (4.9)
2 Cape Mendocino, 1992/04/25 89486 Fortuna 0.116 M (7.1)
3 Chi-Chi, Taiwan, 1999/09/20 CHY022 0.065 M (7.6)
4 Chi-Chi, Taiwan, 1999/09/20 CHY029 0.277 M (7.6)
5 Coyote Lake, 1979/08/06 57383 Gilroy Array #6 0.434 M (5.7)
6 Coyote Lake, 1979/08/06 1492 SJB Overpass, Bent 3 g.l. 0.124 M (5.7)
7 Duzce, Turkey, 1999/11/12 Sakarya 0.023 M (7.1)
8 Imperial Valley, 1979/10/15 5051 Parachute Test Site 0.204 M (6.5)
9 Kern County, 1952/07/21 1095 Taft Lincoln School 0.178 M (7.4)
10 Kobe, 1995 0 KJMA 0.821 M (6.9)
11 Kocaeli, Turkey, 1999/08/17 Arcelik 0.149 M (7.4)
12 Landers, 1992/06/28 23 Coolwater 0.283 M (7.3)
13 Livermore, 1980/01/27 58219 APEEL 3E Hayward CSUH 0.028 M (5.4)
14 Loma Prieta, 1989/10/18 1652 Anderson Dam (Downstream) 0.244 M (6.9)
15 Loma Prieta, 1989/10/18 58373 APEEL 10–Skyline 0.103 M (6.9)
16 Lytle Creek, 1970/09/12 290 Wrightwood–6074 Park Dr. 0.162 M (5.4)
17 Northridge, 1994/01/17 24278 Castaic–Old Ridge Route 0.662 M (7.1)
18 Imperial Valley, 1940/05/18 El-Centro (EW) 0.348 M (7.1)
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Figure 9: Analytical results without considering pounding. (a) Displacement spectrum. (b) Dynamic amplification factor spectrum.
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5.1. Stiffness of the Abutment. -e initial stiffness
k1 � 5.40 × 108 N/m of the abutment is about 15.4 times that
of the main pier. -e stiffness of the abutment depends on
the geological conditions, the geometric dimensions of the
abutment, especially, the height of the abutment, and the
support stiffness of the soil filling behind the abutment.
Considering the changes of the above factors, it is possible
for the stiffness of the abutment to vary from 0.1 to 10 times
of the initial stiffness. -us, the abutment stiffness is set to
each of k1/10, k1/4, k1/2, 2k1, 4k1, and 10k1 with the other

structural parameters and pounding parameters remaining
unchanged.-e pounding spectrum analysis of seven groups
of abutment stiffness parameters is conducted. -e average
displacement spectrum, dynamic coefficient spectrum,
pounding force spectrum, and the number of pounding
events as a response spectrum were calculated for different
abutment stiffnesses as shown in Figures 11(a)–11(d).

Results show that the abutment stiffness has no effect on
the displacement spectrum and dynamic amplification co-
efficient spectrum of short-period structures with a period of
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Figure 10: Analytical results considering pounding. (a) Displacement spectrum. (b) Dynamic amplification factor spectrum. (c) Pounding
force spectrum. (d) Number of pounding event response spectrum.
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1.5 s as the boundary because such short-period structures
do not suffer structural pounding. For long-period struc-
tures, due to the pounding, the stiffness of the abutment
affects the structural displacement, dynamic amplification
factor, pounding force, and the number of pounding events
(as response spectra). With the decrease in the abutment
stiffness, the longitudinal displacement of the main girder
increases, while the dynamic amplification coefficient de-
creases, and the pounding force also shows a decreasing
trend, while the change in the number of pounding event
response spectrum is irregular. From the variation of
abutment stiffness from 2k1 to 10k1, the curves of dis-
placement spectrum, dynamic amplification coefficient
spectrum, and pounding force spectrum are similar,

suggesting that, when the stiffness of the abutment reaches a
certain value, the difference in structural earthquake-in-
duced response arising therefrom can be ignored.

5.2.AbutmentQuality. -e concrete quality in the abutment
and slabs is considered when the abutment mass is calcu-
lated, and the initial mass is m1 � 3.16 × 105 kg. -e quality
of the abutment depends on the size of the abutment and the
scope of the soil filling behind the abutment. -e abutment
mass varies from 0.1 to 10 times the initial value is possibly in
considering various limit cases. Pounding spectrum analysis
of seven groups of abutment mass parameters is performed
while other structural parameters and pounding parameters
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Figure 11: Average spectral analysis results with different stiffnesses of abutment. (a) Displacement spectrum. (b) Dynamic amplification
factor spectrum. (c) Pounding force spectrum. (d) Number of pounding event response spectrum.
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are kept unchanged: the abutment mass is set to (m1/10),
(m1/4), (m1/2), 2m1, 4m1, and 10m1. -e average dis-
placement spectrum, dynamic coefficient spectrum,
pounding force spectrum, and the number of pounding
events (as response spectra) arising from provision of dif-
ferent abutment mass are shown in Figures 12(a)–12(d).

Comparing the displacement spectrum, dynamic coef-
ficient spectrum, pounding force spectrum, and the number
of pounding events (as a response spectrum) for different
abutment mass, it is found that although the abutment mass
changes significantly, the response spectrum curve changes
little and no trend emerges therein. -e influence of abut-
ment mass variation on the earthquake-induced response of
structures can be ignored, so only the mass of abutment

concrete need be included in the earthquake-induced
pounding analysis.

5.3. Stiffness of the Contact Element. -e calculation of
stiffness parameters of the Hertz-damping contact element
model for simulating pounding between the main girder and
abutment is inconclusive. Goldsmith [31] equated the impactor
to a sphere, which is suggested to be derived from the formula
related to the impactormaterial and the radius of the equivalent
sphere. Xu et al. [32] derived a stiffness calculation formula for
the Hertz-damping model based on the straight-rod coaxial
pounding model, but it is only applicable to the simulation of
pounding between beams. -e present research does not
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Figure 12: Average spectrum analysis results with different abutment mass. (a) Displacement spectrum. (b) Dynamic amplification factor
spectrum. (c) Pounding force spectrum. (d) Number of pounding event response spectrum.
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consider the calculation of the contact element stiffness: the
stiffness parameter is approximately calculated to be 0.2 times
the longitudinal stiffness of the half-span main girder. -e
initial stiffness constant is kc � 1.25 × 109 N/m3/2, and it is
assumed to vary from 0.1 times to 10 times the initial stiffness
constant. Keeping other structural parameters and pounding
parameters unchanged, and changing the values of the
pounding stiffness constant kc/10, kc/4, kc/2, 2kc, 4kc, and
10kc, the average displacement spectrum, dynamic coefficient
spectrum, pounding force spectrum, and the number of
pounding events (as a response spectrum) calculated using
pounding stiffness constants of different contact elements are
shown in Figures 13(a)–13(d).

Analysis of Figures 13(a)–13(d) shows that, once contact
pounding occurs, the stiffness of the contact element exerts a
significant influence on the earthquake-induced response of
the structure.-e greater the stiffness of the contact element,
the smaller the structural displacement response, and the
greater the acceleration dynamic amplification coefficient,
the greater the pounding force. In long-period events (more
than 3 s), the increased pounding stiffness will also tend to
increase the number of pounding events, but the regularity
in this trend is poor. At present, the stiffness of contact
pounding between adjacent beams is reduced by setting
rubber pads at adjacent beam ends, thus reducing the
pounding force.
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Figure 13: Average spectrum analysis results for different pounding stiffness constants. (a) Displacement spectrum. (b) Dynamic
amplification factor spectrum. (c) Pounding force spectrum. (d) Number of pounding event response spectrum.
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5.4. Pounding Recovery Coefficient. Jankowski [33] points
out that the coefficient of restitution is not a fixed value, and
the coefficient of restitution of concrete is recommended to
be 0.43∼0.78. -e larger the pounding recovery coefficient,
the more it resembles elastic pounding, and the smaller it is,
the more it resembles plastic pounding. In this part, the
initial pounding recovery coefficient of the Hertz-damping
model is such that e � 0.65. While keeping other parameters
unchanged, the pounding spectrum was calculated under
four sets of parameters with pounding recovery coefficients
of 0.45, 0.55, 0.75, and 0.85, and compared with the cal-
culated initial parameters, as shown in Figures 14(a)–14(d).

Comparing the spectra under different pounding re-
covery coefficients, it is found that the pounding recovery
coefficient mainly affects long-period structures with a pe-
riod of natural vibration exceeding 2 s. -e increase in the

recovery coefficient means that the energy dissipated in
pounding decreases, and the structural displacement and
dynamic coefficient of pounding force increase (in partic-
ular, the pounding force of long-period structures becomes
more significant), but the number of pounding events (as a
response spectrum) shows no clear trend. Increasing the
pounding energy dissipation helps to attenuate the earth-
quake-induced response of the structure.

5.5. Peak Ground Acceleration. -e peak acceleration in-
duced by a given input seismic wave is taken as an index with
which the intensity of that seismic input is characterized.
Due to the randomness of the earthquake source location
and intensity and the variability of seismic wave transmis-
sion, there is significant uncertainty in the peak ground
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Figure 14: Average spectrum analysis results of different pounding recovery coefficients. (a) Displacement spectrum. (b) Dynamic
amplification factor spectrum. (c) Pounding force spectrum. (d) Number of pounding event response spectrum.
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motion acceleration at a given site. Although it is impossible
to control the intensity of seismic waves, revealing the in-
fluence of PGA on the earthquake-induced response of
structures is helpful to understand the earthquake-induced
phenomenon as they affect such structures; therefore, a PGA
based parametric study was conducted in which structural
parameters and pounding parameters are kept unchanged.
-e peak value of input seismic wave acceleration changed
from 0.09 g to 0.29 g in increments of 0.04 g, and six groups
of spectral analysis were run. -e average displacement
spectrum, dynamic coefficient spectrum, pounding force
spectrum, and the number of pounding events (as a response
spectrum) calculated using pounding stiffness constants of
different contact elements are shown in Figures 15(a)–15(d).

Comparing the calculated results pertaining to six groups
of PGA (Figures 15(a)–15(d)), it is found that the PGA affects

the structural response. With increasing PGA, the dynamic
amplification coefficients of displacement and acceleration of
the structure increase, the initial pounding period of the
structure decreases, and the pounding force and the number of
pounding events (as a response spectrum) after pounding also
increase to a significant extent. -e differences in earthquake-
induced response caused by changes to the PGA are the most
significant among the five factors assessed in this parametric
study, making PGA an important factor in determining
earthquake-induced structural responses.

6. Conclusion

Taking a T-shaped rigid frame bridge as the prototype, the
earthquake-induced pounding model on both sides was
abstracted, the precise integration method for solving the
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Figure 15: Average spectral analysis results using different PGA parameters. (a) Displacement spectrum. (b) Dynamic amplification factor
spectrum. (c) Pounding force spectrum. (d) Number of pounding event response spectrum.
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earthquake-induced pounding equation of the system was
improved, and the precise pounding algorithm and program
were developed. -e analysis of an example shows that the
calculation results based on the improved precise pounding
algorithm are consistent with those based on the traditional
precise integration method, and the calculation efficiency of
the improved algorithm is improved. -en, based on the
improved precise pounding algorithm, earthquake-induced
pounding response spectrum analysis and a parametric
study were conducted. -e conclusions are as follows:

(1) -e structural response (when considering pound-
ing) is closely related to the nature of the input
seismic wave, and the earthquake-induced response
of different seismic waves is quite different under the
same peak acceleration.With the increase in the peak
acceleration of a given seismic wave, the displace-
ment, acceleration dynamic amplification coefficient,
pounding force, and the number of pounding events
(as a response spectrum) of the structure increase
significantly.

(2) -e dynamic amplification coefficient spectrum of
acceleration after considering pounding is much
greater than that when ignoring the effects of
pounding in long-period events; however, the effects
of pounding are not considered in the current design
acceleration response spectrum, so the response
spectrum analysis method should be avoided for the
earthquake-induced response of structures prone to
long-period pounding phenomena.

(3) -e stiffness of the abutment affects the earthquake-
induced pounding response, but the quality thereof has
little influence on the structural response. It is suggested
that the stiffness of the abutment and the filling behind
the abutment should be considered in any analysis,
whereas the quality of the backfill can be ignored.

(4) -e stiffness of the contact element affects the
earthquake-induced response of the structure; re-
ducing the stiffness of the contact element can greatly
reduce the pounding force and dynamic amplifica-
tion factor, increasing the energy dissipated upon
each impact in the pounding process, while also
reducing the pounding response (albeit to a limited
extent). From the perspective of seismic pounding
control in such structures, it remains necessary to
design devices that can reduce the pounding stiffness
and increase the energy dissipated therein.

Although this study of pounding response spectrum take
traditional response spectrum as references, the limitation of
this study is obvious. -is study only draws some qualitative
conclusions through limited parametric analysis, and it is
difficult to apply this to the general seismic response
spectrum analysis.
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