
Research Article
Image Denoising Using Nonlocal Means with Shape-Adaptive
Patches and New Weights

Chenglin Zuo , Jun Ma , Hao Xiong, and Lin Ran

Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Correspondence should be addressed to Jun Ma; majunttt@sina.com

Received 5 June 2021; Accepted 20 July 2021; Published 27 July 2021

Academic Editor: Jun Zhu

Copyright © 2021 Chenglin Zuo et al.%is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Digital images captured from CMOS/CCD image sensors are prone to noise due to inherent electronic fluctuations and low
photon count. To efficiently reduce the noise in the image, a novel image denoising strategy is proposed, which exploits both
nonlocal self-similarity and local shape adaptation. With wavelet thresholding, the residual image in method noise, derived from
the initial estimate using nonlocal means (NLM), is exploited further. By incorporating the role of both the initial estimate and the
residual image, spatially adaptive patch shapes are defined, and new weights are calculated, which thus results in better denoising
performance for NLM. Experimental results demonstrate that our proposed method significantly outperforms original NLM and
achieves competitive denoising performance compared with state-of-the-art denoising methods.

1. Introduction

Digital imaging devices such as digital cameras and camera
phones are ubiquitous in our daily life, which use com-
plementary metal oxide semiconductors (CMOS) or charged
coupled devices (CCD) image sensors to acquire images.
However, since the CMOS and CCD image sensors are
subject to noise from two notable sources, i.e., electronic
instruments and the photo-sensing devices [1, 2], the quality
of captured images is usually not satisfactory, especially
when images are taken in low light condition, which leads to
degraded imaging results. Hence, denoising has become a
fundamental image restoration problem in image signal
processor (ISP).

During the past decades, image denoising has been
widely studied. However, until now, how to remove the
noise efficiently while preserving significant image details
has remained a challenge. Early smoothing methods, such as
Gaussian filter [3], anisotropic filter [4], total variation [5],
and bilateral filter [6], perform noise removal solely based on
the information provided in a local neighborhood, thereby
resulting in disturbing artifacts around edges. Later,
transform domain-based denoising methods have been
developed and extensively studied as well [7–19]. Wavelet

transform (WT) [7] decomposes the image into multiple
frequency components, where the noise is removed with
thresholding [8, 9] or statistical modeling [10–12]. By
transforming back the processed wavelet coefficients into
spatial domain, denoising is accomplished. Late develop-
ment of WT denoising includes ridgelet [13] and curvelet
[14] methods. In [15], adaptive principal components-based
denoising method was proposed. Compared with WT that
uses a fixed wavelet basis, it computes the locally fitted basis
to decompose the image. In [16, 17], the highly overcomplete
dictionary was trained by using K-SVD algorithm for sparse
and redundant image representation. In [18, 19], discrete
cosine transform (DCT) was applied to the local neigh-
borhood, which achieves very sparse representation of the
image and hence leads to effective denoising performance.

Recently, nonlocal methods, that exploit the image
nonlocal self-similarity, have achieved outstanding denois-
ing performance. In [20, 21], Buades et al. first proposed the
nonlocal principle-based denoising method, called nonlocal
means (NLM). In this method, noise-free pixel is estimated
as a weighted average of all pixels in the image, where the
weights are determined based on the similarity between the
patch centered at the pixel being estimated and the patches
centered at other pixels. Since NLM exploits the fact that
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similar patches appear abundantly in the image and can
contribute for denoising, it obtains high quality denoising
performance. Subsequently, numerous extensions of NLM
have been developed. In [22], the optimal neighborhood for
each pixel was chosen during the iteration procedure to
balance the accuracy of approximation and the stochastic
error. In [23], the noisy image was classified into several
region types, according to which the patch size was adap-
tively adjusted to match the local property. In [24], adaptive
patch size and bandwidth were selected pixel-wise, relying
on the featuremetric that can provide a quantitative measure
of local geometric structures. In [25], the smoothing pa-
rameter was chosen automatically based on noise estima-
tion, and then the two-stage NLM with adaptive smoothing
parameter was performed. In [26], quadtree-based NLMwas
proposed, which employs quadtree decomposition on each
image patch to obtain more subpatches of various sizes. In
addition to considering the patch sizes, some methods try to
handle variable patch shapes. In [27], the adaptive binary
shape for each patch was estimated by thresholding the
difference between the central pixel and other patch pixels.
In [28], shape-adaptive patches were constructed to match
more homogeneous pixels successfully, especially in tex-
tured areas. In [29], several types of patches with various
shapes were predefined and applied in NLM, respectively.
%en, local estimates associated with these shapes were
combined using Stein’s unbiased risk estimate (SURE). To
improve the accuracy of similarity measure, nonlocal sim-
ilarity of residual image structures in method noise was
further exploited in [30, 31]. Besides, rotation invariant
patch comparison, that can handle rotational similarity
existing in the image, was also studied in [32–36]. Analo-
gously in [37], affine invariant similarity measure was ap-
plied to find more similar patches. Although NLM and its
extensions have achieved significant denoising results, only
exploiting the spatially nonlocal redundancy still limits their
performance. %erefore, some methods combine the non-
local principle with other techniques [38, 39], resulting in
state-of-the-art denoising performance [40–43].

In this paper, we address these issues and propose an
efficient denoising method, as shown in Figure 1. First, the
original NLM is employed to obtain an initial estimate of the
noisy image. However, due to inaccurate weight computa-
tion with noise interference, the initial estimate does not
contain complete image details, which means the method
noise still contains residual image information. For well
preserving the residual image in method noise, the wavelet
thresholding is used to smooth noise as much as possible.
%en, the preserved residual image is combined with initial
estimate to obtain a basic denoising result, based on which
spatially adaptive patch shapes are defined using LPA-ICI
and new weights are calculated. Finally, NLM denoising is
implemented again but with the shape-adaptive patches and
new weights.

%e remainder of this paper is structured as follows: in
Section 2, original NLM is briefly reviewed. In Section 3, our
proposed denoising method is described in detail. In Section
4, we present and analyse the comparative experimental
results. Finally, Section 5 concludes this paper.

2. Nonlocal Means

Given a noise-free image u defined on a discrete grid I, the
noisy observation of u at pixel i ∈ I is defined as

v(i) � u(i) + n(i), (1)

where n(i) is the zero-mean white Gaussian noise pertur-
bation at pixel i. Let Ni denote the patch centered at pixel i,
and its noisy observation is defined as

v Ni(  � v(j)|j ∈ Ni . (2)

In classical NLM [20], for a pixel i, the estimated value of
its noise-free version, u(i), is calculated as the weighted
average of all noisy observations of the pixels in the image:

u(i) �
j∈Iwi,jv(j)

j∈Iwi,j

. (3)

%eweight wi,j depends on the similarity of patch Ni and
patch Nj, which is defined as

wi,j � e
− v Nj( − v Nj( 

����
����
2

2
/λ2 

, (4)

where ‖ · ‖2 denotes the Euclidean norm to measure the
similarity between the patches, and the parameter λ acts as a
degree of filtering, therefore controlling the decay of the
weight. Since the classical NLM only estimates a single pixel,
it is referred as the pixel-wise NLM.
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Figure 1: Flowchart of the proposed image denoising method.
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Later, the patch-wise NLM does also exist [21]. Here, the
whole patch is estimated as follows:

u Ni(  �
j∈Iwi,jv Ni( 

j∈Iwi,j

. (5)

As the patches are overlapped, each pixel in a patch
achieves multiple estimates. %erefore, for a pixel i, its
different estimates are aggregated to obtain the final result:

u(i) �
1
Ai





j∈Ai

u Nj, i , (6)

where Ai � j|i ∈ Nj  and u(Nj, i) denote the estimated
value of noise-free patch Nj at pixel i. %anks to the multiple
estimations for each pixel, the patch-wise NLM achieves
better denoising performance than the pixel-wise one. In this
paper, when NLM is mentioned, it refers to the patch-wise
NLM.

Based on the denoising result, method noise is defined as
follows:

n � v − u. (7)

It can be inferred that, if NLM performs well, the method
noise must look like a noise and should contain as little
structure as possible. In Figures 2(a) and 2(b), an example
image and its noisy version (σ � 20) are shown, respectively.
Figure 2(c) shows the NLM denoising result, while
Figure 2(d) shows the corresponding method noise. As can
be seen, obvious image structure appears in the method
noise, which means that some image details are removed
from the denoised image. %erefore, we make use of the
residual image in method noise to exploit nonlocal self-
similarity further.

3. Proposed Denoising Method

3.1. Method Noise &resholding. Since the method noise
contains obvious image structure, the residual image in it is
estimated firstly. Here, we use the BayesShrink wavelet
thresholding method [44] to suppress the noise as much as
possible.

BayesShrink is an adaptive, data-driven thresholding
strategy via soft-thresholding which derives the threshold
in a Bayesian framework, assuming a generalized
Gaussian distribution for the wavelet coefficients. %is
method is adaptive to each sub-band because it depends
on data-driven estimates of the parameters. %e threshold
for a given sub-band is derived by minimizing Bayesian
risk as follows:

T �
σ2n
σw

, (8)

where σ2n is the noise variance estimated from sub-band HH1
by a robust median estimator, given by

σn �
Median Yi,j



 

0.6745
, Yi,j ∈ HH1 ,

(9)

and σ2w is the variance of wavelet coefficients in that sub-
band, whose estimate is computed using

σ2w � max σ2y − σ2n, 0 , (10)

where σ2y � (1/MN)
M,N
i,j�1Y2

i,j.
Figure 2(e) shows the filtered method noise thresholding

with wavelet. As can be seen, the residual image is preserved
well while the noise is smoothed efficiently. %en, we
combine the initial estimate, denoted as uinitial, and the
filtered method noise, denoted as nf, together to obtain a
basic estimate:

ubasic � uinitial + nf. (11)

In Figure 2(f ), we show the combined result. It can be
seen that the basic estimate preserves more image details
than the initial estimate, such as the regions marked by green
boxes, which means that it will be more accurate to estimate
the spatially adaptive patch shapes and to calculate the
weights based on the basic estimate.

3.2. Spatially Adaptive Patch Shape Estimating. %e aniso-
tropic local polynomial approximation- (LPA-) inter-
section of confidence intervals (ICI) technique is used to
estimate the spatially adaptive shape for each patch in the
image.

Figure 3 shows the implementation of the LPA-ICI-
based patch shape estimating. For a pixel i, eight directions
are first predefined. For every specified direction
θk � ((k − 1)/4)π, k � 1, . . . , 8, a varying-scale family of
narrow “linewise” directional LPA convolution kernels
gh,θk

 
h∈H is used to obtain a corresponding set of directional

varying-scale estimates uh,θk
 

h∈H, uh,θk
� v⊗gh,θk

, h ∈ H,
where H ∈ R+ is the set of scales. %en, for each estimate, a
confidence interval is built as follows:

Dh,θk
� uh,θk

− Γσ, uh,θk
+ Γσ , (12)

where Γ > 0 is a tuning parameter and σ is the noise standard
deviation. Based on ICI rule, an adaptive scale h+(i, θk) ∈ H

is defined for every direction θk. Finally, the shape-adaptive
patch N+

i is constructed as the polygonal hull of
suppgh+(i,θk),θk

 
8
k�1.

In Figure 4, we show some examples of the estimated
shape-adaptive patches in the noise-free, noisy, initially
estimated, and basically estimated images, respectively. It
can be seen that, due to the influence of strong noise, the
estimated patch shapes in the noisy image are incorrect. %e
same goes for those in the initially estimated image but
because of the loss of image details during NLM denoising.
By contrast, patch shapes in the basically estimated image are
more accurate.

3.3. New Weight Calculating. Based on the basic estimate,
weights between the patches are calculated again. Since we
estimate the spatially adaptive shape for each patch, the new
weight is calculated as follows:

Shock and Vibration 3
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Figure 2: NLM denoising performance. (a) Original image; (b) noisy image (σ � 20); (c) initial estimate; (d) method noise; (e) method noise
thresholding with wavelet; (f ) basic estimate combining initial estimate and filtered method noise.
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supp gh+ (i, θ1), θ1

supp gh+ (i, θ2), θ2

supp gh+ (i, θ3), θ3

supp gh+ (i, θ4), θ4

supp gh+ (i, θ5), θ5

supp gh+ (i, θ6), θ6

supp gh+ (i, θ7), θ7

supp gh+ (i, θ8), θ8

i

Ni
+

Shape-adaptive patch Adaptive-scale kernel support

Figure 3: Implementation of the LPA-ICI-based patch shape estimating. “Linewise” one-dimensional directional LPA kernels are used for 8
directions. %e shape-adaptive patch N+

i is constructed as the polygonal hull of the adaptive-scale kernel supports.

(a) (b)

(c) (d)

Figure 4: Some examples of the estimated shape-adaptive patches in (a) noise-free image, (b) noisy image (σ � 50), (c) initially estimated
image by NLM, and (d) basically estimated image, respectively.
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w
+
i,j � e

− ubasic N+
i( )−ubasic Ni,+

j 
�����

�����
2

2
/c2 

,
(13)

where N+
i denotes the estimated shape-adaptive patch,

Ni,+
j denotes the patch using the same shape with N+

i , and c is
the filtering factor.

3.4. NLM with Shape-Adaptive Patches and New Weights.
With shape-adaptive patches and new weights, we imple-
ment the NLM denoising again to remove the noise in the
noisy image. For a shape-adaptive patch N+

i , the estimated
value of its noise-free version, u(N+

i ), is calculated as
follows:

Table 1: %e PSNR results by different denoising methods. In each cell, the results of the four denoising methods are presented in the
following order: top left, NLM [21]; top right, NLM-SAP [29]; bottom left, BM3D-SAPCA [41]; bottom right, our proposed denoising
method.

σ 20 35 50 100

C. man 29.85 29.75 27.09 26.98 25.37 24.82 21.42 20.86
30.91 29.97 28.17 27.54 26.59 26.02 22.87 22.50

House 32.40 32.62 29.79 29.00 27.74 26.37 23.16 22.79
33.89 33.28 31.37 30.90 29.52 28.97 25.08 24.77

Peppers 30.17 30.64 27.08 27.50 25.16 25.26 21.02 21.02
31.57 30.82 28.75 28.22 26.98 26.51 23.24 22.90

Lena 31.58 31.97 28.95 29.00 27.39 27.12 23.93 23.99
33.20 32.62 30.72 30.28 29.06 28.67 25.36 25.37

Barbara 30.47 30.50 27.60 26.83 25.72 24.69 22.14 22.02
32.37 31.36 29.61 28.34 27.68 26.40 23.22 22.65

Boats 29.80 29.64 26.99 26.80 25.28 25.04 22.19 22.31
31.02 30.34 28.51 27.96 26.88 26.47 23.68 23.42

Man 29.75 29.58 27.03 26.92 25.41 25.39 22.54 22.95
30.83 30.32 28.38 28.04 26.93 26.59 23.96 23.98

Hill 29.77 29.45 27.14 26.92 25.49 25.55 22.84 23.28
30.85 30.32 28.61 28.21 27.19 26.86 24.26 24.29

Average 30.47 30.51 27.70 27.49 25.94 25.53 22.40 22.40
31.83 31.12 29.26 28.68 27.60 27.06 23.95 23.73

%e bold values represent the best results among the four methods, which has been explained in the second paragraph of Section 4.

Table 2: %e SSIM results by different denoising methods. In each cell, the results of the four denoising methods are presented in the
following order: top left, NLM [21]; top right, NLM-SAP [29]; bottom left, BM3D-SAPCA [41]; bottom right, our proposed denoising
method.

σ 20 35 50 100

C. man 0.840 0.845 0.763 0.773 0.714 0.706 0.541 0.493
0.886 0.854 0.827 0.801 0.787 0.758 0.643 0.587

House 0.831 0.849 0.775 0.787 0.733 0.715 0.553 0.531
0.876 0.870 0.838 0.836 0.807 0.788 0.676 0.639

Peppers 0.840 0.863 0.759 0.794 0.703 0.730 0.518 0.560
0.886 0.877 0.833 0.826 0.792 0.772 0.666 0.631

Lena 0.830 0.918 0.764 0.858 0.724 0.801 0.574 0.644
0.880 0.879 0.837 0.819 0.801 0.772 0.674 0.652

Barbara 0.861 0.925 0.779 0.843 0.711 0.768 0.510 0.608
0.912 0.894 0.863 0.815 0.811 0.737 0.600 0.531

Boats 0.786 0.876 0.689 0.789 0.625 0.720 0.471 0.561
0.828 0.810 0.761 0.737 0.708 0.679 0.578 0.531

Man 0.793 0.871 0.692 0.785 0.625 0.721 0.473 0.582
0.840 0.825 0.763 0.745 0.710 0.684 0.579 0.555

Hill 0.765 0.851 0.659 0.757 0.589 0.694 0.448 0.572
0.809 0.790 0.729 0.709 0.675 0.648 0.549 0.535

Average 0.818 0.874 0.735 0.798 0.678 0.731 0.511 0.568
0.864 0.849 0.806 0.786 0.761 0.729 0.620 0.582

%e bold values represent the best results among the four methods, which has been explained in the second paragraph of Section 4.
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(a) (b)

(c) (d)

(e) (f )

Figure 5: Denoising performance on the C. man image with moderate noise corruption. (a) Original image; (b) noisy image (σ � 20);
denoised image (c) by NLM [21]; (d) NLM-SAP [29]; (e) BM3D-SAPCA [41]; (f ) our proposed method.

(a) (b)

Figure 6: Continued.
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u N
+
j  �

j∈Iw
+
i,jv N

i,+
j 

j∈Iw
+
i,j

. (14)

Similarly, for a pixel i, its different estimates are ag-
gregated to obtain the final result:

ufinal(i) �
1

A
+
i





j∈A+

i

u N
+
j , i , (15)

where A+
i � j|i ∈ N+

j  and u(N+
j , i) denote the estimated

value of noise-free patch N+
j at pixel i.

3.5. Computational Complexity. For the image of size��
N

√
×

��
N

√
, the computational complexity of the original

NLM for initial estimate is Ο(npN2), where np denotes the
patch size used by NLM. In our practical implementation, a
limited window of size ���

w1
√

×
���
w1

√ is used to restrict the
search of similar patches, which reduces the complexity to
Ο(npw1N). Besides, by using the moving average filter
together with weight symmetry, the complexity can be
further brought down to Ο(w1N). %en, the computa-
tional complexity of method noise thresholding with
BayesShrink wavelet is usually Ο(N). For the spatially
adaptive patch shape estimation with LPA-ICI technique,
since it is based on convolutions against one-dimensional
kernels for a very limited number of directions, its
computational overhead for the whole noise removal
processing is negligible. In the final estimating procedure,
for the search window of size ���

w2
√

×
���
w2

√ , the computa-
tional complexity is Ο(w2N).

4. Results and Discussion

In this section, we compare our proposed method with
original NLM [21] and other two state-of-the-art denoising
methods: shape-adaptive patches-based NLM (NLM-SAP)
[29] and shape-adaptive PCA-based BM3D (BM3D-
SAPCA) [41]. In the experiments, a set of 8 natural images
commonly used in the literature of image denoising are used
for the comparison, and their noisy versions are simulated
by adding independent white Gaussian noise with varying
noise levels. %e results of our proposed method are gen-
erated using the scales H � 1, 2, 3, 4, 5, 6{ } and a search
window of 21 × 21. %e parameter c is selected experi-
mentally as c � 0.4σ. %e results of other three methods are
obtained by using the codes available online with recom-
mended parameters. To evaluate the quality of denoised
images, the popular peak signal to noise ratio (PSNR) and
the structural similarity index (SSIM) are calculated.

%e results of the experiments are shown in Tables 1 and
2, where the best results among the four methods are
highlighted. It can be seen that our proposed method sig-
nificantly outperforms NLM and NLM-SAP and achieves
competitive denoising performance compared with BM3D-
SAPCA. Particularly, in some cases of high noise levels, our
method performs even slightly better than BM3D-SAPCA.
In terms of SSIM results, our proposed method is quite close
to BM3D-SAPCA, and its superiority exists in all cases with
respect to NLM.

Let us then focus on the visual quality of the denoised
images by the four methods. In Figures 5 and 6, we show the
denoising results on two typical images with moderate and

(c) (d)

(e) (f )

Figure 6: Denoising performance on the Lena image with strong noise corruption. (a) Original image; (b) noisy image (σ �100); denoised
image (c) by NLM [21]; (d) NLM-SAP [29]; (e) BM3D-SAPCA [41]; (f ) our proposed method.
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strong noise corruption, respectively. It can be seen that our
proposed method is very effective in reconstructing both the
smooth and the texture/edge regions. When the noise level is
not very high, as shown in Figure 5, our proposed method
performs better than NLM and NLM-SAP on edge pres-
ervation, and BM3D-SAPCA achieves the best visual output.
When the noise level is high, as shown in Figure 6, however,
details in the denoised images by NLM and NLM-SAP
become blurred, and BM3D-SAPCA tends to generate many
visual artifacts. By contrast, our proposed method performs
much better, which preserves the image details well and
generates much less artifacts.

5. Conclusions

In this work, we have presented an efficient image denoising
method. By exploiting the residual image in the method
noise, spatially adaptive patch shapes are defined, and new
weights are calculated to improve the denoising perfor-
mance of NLM further. Experimental results demonstrate
that our proposed method is effective in noise removal and
texture/edge preservation and can achieve competitive
denoising performance compared with state-of-the-art
denoising methods.
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