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Bearings always suffer from surface defects, such as scratches, black spots, and pits. 'ose surface defects have great effects on the
quality and service life of bearings. 'erefore, the defect detection of the bearing has always been the focus of the bearing quality
control. Deep learning has been successfully applied to the objection detection due to its excellent performance. However, it is
difficult to realize automatic detection of bearing surface defects based on data-driven-based deep learning due to few samples data
of bearing defects on the actual production line. Sample preprocessing algorithm based on normalized sample symmetry of
bearing is adopted to greatly increase the number of samples. Two different convolutional neural networks, supervised networks
and unsupervised networks, are tested separately for the bearing defect detection. 'e first experiment adopts the supervised
networks, and ResNet neural networks are selected as the supervised networks in this experiment. 'e experiment result shows
that the AUC of the model is 0.8567, which is low for the actual use. Also, the positive and negative samples should be labelled
manually. To improve the AUC of the model and the flexibility of the samples labelling, a new unsupervised neural network based
on autoencoder networks is proposed. Gradients of the unlabeled data are used as labels, and autoencoder networks are created
with U-net to predict the output. In the second experiment, positive samples of the supervised experiment are used as the training
set. 'e experiment of the unsupervised neural networks shows that the AUC of the model is 0.9721. In this experiment, the AUC
is higher than the first experiment, but the positive samples must be selected. To overcome this shortage, the dataset of the third
experiment is the same as the supervised experiment, where all the positive and negative samples are mixed together, which means
that there is no need to label the samples.'is experiment shows that the AUC of themodel is 0.9623. Although the AUC is slightly
lower than that of the second experiment, the AUC is high enough for actual use. 'e experiment results demonstrate the
feasibility and superiority of the proposed unsupervised networks.

1. Introduction

With the continuous development and progress of
manufacturing industry, the demand for bearings is in-
creasing as a basic component widely used. Performance and
life of the machine itself often have a great relationship with
the quality of the bearings [1], so the requirements for the
quality of the bearings in industrial production continue to
increase. In the process of manufacturing and assembly of
bearings, defects on the bearing surface are often caused by
various reasons. Common defects include pull marks, dark
spots, pits, scratches, rust, and yellow spots. 'ese surface

defects will cause the corrosion resistance, elasticity, wear
resistance, and lubricity of the bearing to decrease, resulting
in a greatly reduced service life of the machine, and even
serious safety accidents.'erefore, it is essential to detect the
defects of the bearing.

For the detection of bearing surface defects, there are
methods such as manual inspection, physical inspection, and
machine vision inspection [2]. At this stage, the most im-
portant method is manual detection. However, manual
inspection is very subjective, and it is often determined by
the experience of the inspection operators based on their
practice, which is time-consuming and labor-intensive. In
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addition, when the operation is performed under contin-
uous light, the inspecting staff are prone to misdetection or
missed inspection due to visual fatigue, and it will cause
serious harm to the health of the inspector. 'e common
methods of testing in physics are eddy current testing, ul-
trasonic testing, magnetic particle testing, and so on. 'ese
physics-oriented inspection methods are widely used to
detect the defects of bearing rollers, but this type of in-
spection method also has its own shortcomings; that is, it
also requires operators to determine the defects of the
bearing, but the inspection is not accurate. If the perfor-
mance is still too low, it will cause missed detection or false
detection.

With the continuous development and progress of
modern science and technology, when we need to detect
defects, machine vision begins to be more and more used.
Ye and Hsu designed a new lighting system to collect
images in a darkroom, avoiding the influence of external
factors and light sources, and developed a rule-based local
mask sensor algorithm to achieve high-precision detection
of metal defects [3]. Shen et al. designed a new type of
lighting and image acquisition system. By taking three
photos of the bearing, the left and right photos are used to
detect the deformation on the sealing ring, and other
defects are detected by the central illumination image to
correct the deformation on the sealing ring. Defects have
high accuracy and efficiency [4]. Tao proposed a multi-
threshold segmentation image based on OSTU to quickly
detect defects on the bearing surface. After denoising the
collected images, use OSTU to perform threshold seg-
mentation to obtain two thresholds before detecting and
locating defects [5].

Traditional surface detection algorithms obtain detected
images through image preprocessing and then use statistical
machine learning methods to extract image features to
achieve the goal of defect detection. 'ese algorithms have
achieved good results in some specific applications, but there
are still many shortcomings. For example, there are many
image preprocessing steps and strong pertinence, with poor
robustness; a variety of algorithms have an amazing amount
of calculation and cannot accurately detect the size and
shape of defects. Deep learning directly updates parameters
through learning data, avoids manual design of complex
algorithm processes, and has extremely high robustness and
accuracy. Zhao et al. [6] proposed a new defect detection
framework based on positive sample training, which com-
bines GAN and autoencoder to reconstruct defect image,
and LBP is used for image local contrast to detect defects.
Wen et al. [7] proposed a multitask convolutional neural
network to detect defects. Instead of using a large convo-
lution kernel, a smaller convolution kernel is used to con-
volve the input data, and the shared neural network is used
to classify and locate the defects after extracting the defect
features of the sample data. Cha et al. [8] used a sliding
window-based convolutional neural classification network
to realize the location of crack surface defects, and the
combination of two sliding window redundant paths to
achieve full image coverage. Wang et al. [9] used a deep
convolutional neural network to classify samples of defects

when detecting defects in cloth and then detect defects after
classification. Chen et al. [10] use DCNNs combined with
SSD, Yolo, and other network methods to build a cascaded
detection network from coarse to fine, including firmware
positioning, defect detection, and classification. DCNNs
have good robustness and adaptability, which means that
this method has a good application prospect in the defect
detection and classification of fasteners. Mei et al. [11, 12]
adopt the idea of image pyramid hierarchy and convolu-
tional denoising autoencoder network to realize defect de-
tection of cloth texture images. 'e results show that full use
of unsupervised learning and multimodal result fusion
strategy can improve the robustness and accuracy of defect
detection. Bergmann et al. [13] propose an improving un-
supervised defect segmentation by applying structural
similarity to autoencoders, and the proposed method ach-
ieves significant performance gains on a challenging real-
world dataset of nanofibrous materials. Yang et al. [14]
propose an end-to-end surface quality detection method
based on deep convolutional neural networks (CNNs) to
improve the accuracy and efficiency of VDR surface quality
detection. Essid et al. [15] develop a new machine vision
framework for efficient detection and classification of
manufacturing defects in metal boxes. 'e results show that
the proposed autoencoder deep neural network (DNN)
architecture can not only classify manufacturing defects, but
also localize them with high accuracy. Wu et al. [16] propose
a high-sensitivity magnetic flux leakage method based on
magnetic induction head for the detection of tiny cracks in
bearing rings. Xu et al. [17] propose a new multidefect
detection method based on a combination of an improved
visual attention model and image partitioning-weighted
eigenvalue for surface defects of explosive cartridge in the
automatic sorting process that are of small area, irregular
shape, and random distribution. Kong et al. [18] propose a
unified framework for detecting defects in planar industrial
products or planar surfaces of nonplanar products based on
a template-matching strategy. Tao et al. [19] propose an
algorithm for pixel-level segmentation and classification of
defects. 'e entire network can be divided into two stages:
defect detection stage and defect classification stage. Fang
et al. [20] propose an SLIC head of object instance seg-
mentation in proposal regions (Mask R-CNN) containing a
network block to learn the quality of the predict masks. Park
et al. [21] propose a convolutional neural network (CNN)
based method that inspects nonpatterned welding defects
(craters, pores, foreign substances, and fissures) on the
surface of the engine transmission using a single RGB
camera. Ming et al. [22] propose a combined classifier with
dynamic weights (CCDW) to classify the LPG samples
considering both feature extraction diversity and base
classifiers diversity after image segmentation and en-
hancement. Mart́ınez et al. [23] propose a machine vision
system, performing the detection of flaws on textured
surfaces, and multiple images under different lighting
conditions are processed and merged into one, which is used
to extract features with a supervised classifier. Peng et al. [24]
propose a precision measurement and inspection of O-rings
with good accuracy and efficiency.
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'is research is to use the deep neural network to realize
the defect detection of the bearing. 'e main content of this
work focuses on the following topics: (1) how to increase the
number of samples, (2) how to improve the AUC of the
model, and (3) how to enhance the feasibility of the method.
'e organization of this paper is as follows. Section 2 de-
scribes the defect representation and data acquisition sys-
tem, and Section 3 introduces the methodology. Experiment
and results are illustrated in Section 4, and Section 5 gives
some discussion. Finally, Section 6 summarizes this paper.

2. Defect Representation and Data Acquisition

2.1. Data Acquisition System. 'e data acquisition system is
composed of cameras, lighting systems, and computers, as
shown in Figure 1. 'e image capture device can capture
images of the inner end surface, outer diameter, inner di-
ameter, and lower end surface separately. Basler industrial
camera as A1300-60gm with resolution of 1282×1026 pixels
is selected, and the lens is PCHI012. Different field of view
sizes can be obtained by adjusting the focal length, so as to
match the inner diameter, outer diameter, upper end sur-
face, and lower end surface size. By adjusting the exposure
time to obtain the largest signal-to-noise ratio, the light
source is uniformly illuminated by the ring LED (the light
source model is HZN DRL-70-60-W). 'e final images
obtained are shown in Figure 2.

2.2. Defect Representation. Bearing defects mainly include
the following types: outer diameter defects (stretch marks,
dark spots, pits, scratches, rust, and yellow spots); lower end
surface defects (dents, convex deformation, scratches, and
embroidery); inner diameter defects (dimples, scratches, and
embroidery); inner end surface defects (dents, convex de-
formation, rust, and yellow spots). 'ere are many types of
defects, and the characteristics of defects are not obvious, as
shown in Figure 3.

3. Methodology

Carefully observe the samples obtained by the above-
mentioned devices, and you can find that, in addition to
useful information, there is some useless redundant infor-
mation in the samples. In order to ensure the accuracy of
detection, a series of pretreatments are required on the
samples. Although the defects of the inner end surface, inner
diameter, outer diameter, and lower end surface are dif-
ferent, their distributions are similar. 'ey are all distributed
along the circumference of the bearing, but the position is
different. 'erefore, this article selects the inner diameter
sample with more complicated appearance and more in-
terference factors. Processing: samples from other parts can
be processed in the same way.

3.1. Normalized Sample Method. Since the bearing is taken
on the liner, in addition to the bearing, images of other parts
are also taken. To solve this problem, we first find the
contours of the outer and inner edges and perform ellipse

fitting on the contours. 'en, based on the center position of
the fitted ellipse, move the bearing to the center of the image,
and use perspective transformation to transform the ellipse
into a circle based on the parameters of the ellipse. Finally,
remove all the parts outside the outer edge and inside the
inner edge after the transformation. 'e captured bearing
image and the processing algorithm schematic are shown in
Figure 4.

3.2. Sample Split Based on Normalized Sample Symmetry.
After the sample is normalized, the inner diameter part of
the bearing is converted into a standard ring, which satisfies
the characteristics of stacking based on the center of the
image. Since the defect part is generally very small and only
occupies a small part of the ring, the symmetry can be used
to split the sample into a large number of fan-shaped rings,
as shown in Figure 5. 'e 12 samples obtained will be la-
belled, and the classifier will be trained based on the divided
samples.

3.3. Supervised Neural Networks Using ResNet Neural
Networks. Deep convolutional neural networks have already
shined in image classification problems. Recent studies have
also shown that the depth of the network plays a crucial role
in accuracy. However, as the network deepens, there is a
problem worth noting. As the network continues to stack
and deepen, will the effect of the network always get better
and better? Obviously, you will encounter the problem of
gradient disappearance or gradient explosion, and this
problem can already be solved by normalizing the input
during initialization, but when the network finally con-
verges, there will be a “degradation” problem, resulting in a
decrease in accuracy (not overfitting), so although the
number of network layers can be continuously stacked to
allow it to train and converge, there is still no way to en-
counter degradation problems [25].

He et al. [25, 26] build a new network structure (ResNet)
to solve the above problem that when the number of network
layers is too high, the effect of the deeper network is not as
good as the shallower network, and a proper explanation is
made. ResNet uses the input of one layer and the output of
another layer as the output of a block. Assuming that x is the
input of a block, and one block is composed of two layers,
then he first passes through a convolutional layer and acti-
vates relu to obtain F (x), and then the result of F (x) after the
convolutional layer is added to the previous input x to obtain
a result, and the result is activated by relu as the output of the
block. For ordinary convolutional networks, we output F (x),
but in ResNet, we output H (x)� F (x) + x, but we still use F
(x)�H (x)− x. 'is changed the learning goal, changing the
original learning to make the objective function equal to a
known constant value to make the residual between the
output and the input 0, which is the identity mapping. 'e
result is that after the residual is introduced, the output is
mapped to the output. 'e changes are more sensitive.

Based on the samples obtained with Sections 3.1 and 3.2,
supervised neural networks can be trained with ResNet
neural networks as the following process, as shown in
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Figure 6. Also, more details can be found in our previous
work [27].

3.4. Autoencoder Neural Networks Implemented with U-Net.
In the field of image generation, there is a very important
network structure called Autoencoder [28]. An autoencoder

neural network architecture is a feedforward network
composed of one or multiple connected hidden layers. It
uses a nonlinear mapping function between the original data
as input and output specific learned features. 'e feature of
autoencoder is that the first half is the downsampling part,
which is generally implemented by CNN; the second half is
the upsampling part, which is generally implemented by

Camera

Bear

Ring LED lighting
system

Station

Computer

Figure 1: Schematic of measurement device.

(a) (b) (c)

(d)

Figure 2: Bearing images of different parts. (a) Inner end surface. (b) Outer diameter. (c) Inner diameter. (d) Lower end surface.
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inverse convolution. 'e most amazing thing about the
entire autoencoder is that even if we only have the features of
the middle layer, we can recover a picture that is very close to
the original picture through the second half. 'erefore, the
entire autoencoder has at least two attractive applications:
(1) use the first half for feature extraction; (2) use the second
half for image generation.

U-Net itself is not used for autoencoder; it first appeared
in the segmentation of medical images [29]. On the one
hand, its structure is very similar to the traditional structure
of autoencoder. On the other hand, its unique feedforward
structure allows the network to capture a lot of spatial in-
formation. So recently, a lot of image synthesis and gen-
eration work are based on U-Net. In this paper, U-Net is
used to extract feature map from the original image firstly,
and then feature map is used to generate gradient image.

3.5. 7e Proposed Unsupervised Neural Network. Lighting
attenuation or batches will affect the classification effect of
the supervised network; therefore, an unsupervised neural

network is proposed to solve the disturbing factors, as shown
in Figure 7. Based on the samples obtained with Sections 3.1
and 3.2, the proposed unsupervised neural networks can be
trained with AE neural networks implemented with U-Net
as the following process.

Step 1: raw bearing samples are normalized using
Algorithm 1 in Section 3.1

Step 2: normalized samples are split based on nor-
malized sample symmetry using Algorithm 2 in Section
3.2

Step 3: the gradient of the samples is extracted as label
data, and Sobel operator is selected to calculate the
gradient of the samples

Step 4: AE neural networks implemented with U-Net
are used to predict the gradient of the samples
Step 5: the loss function is defined with the argmax of
the difference between the label data and the predict
data

(a)

(b)

(c)

(d)

Figure 3: Defect classification. (a) Defects of outer diameter. (b) Defects of lower end surface. (c) Defects of inner diameter. (d) Defects of
inner end surface.
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Step 6: new data can be updated to online train and
online modify the model

4. Experiment and Results

'e image processing algorithm in this article is trained and
tested on the server. 'e server’s processor is Intel(R)
Xeon(R) CPU E5-2678v3@2.5GHz, the graphics card is 2
GeForce GTX 1080 Ti from NVIDIA, and the deep learning
architecture uses TensorFlow.

4.1. Model TrainingMethod. Different datasets are made for
different workstation training, and different defect classifiers
are trained through the datasets of different workstations.
'is article selects the inner diameter sample as an example
of the algorithm display. 'ree experiments are conducted.

'e first experiment is the supervised neural networks
using ResNet neural networks. 'e bearing inner diameter
samples are divided into training set, validation set, and test
set with numbers 16760, 2490, and 2076 separately. 'e
numbers of positive samples and negative samples of the
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Figure 4: Normalization algorithm for bearing inner diameter samples.
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Figure 5: Sample splitting algorithm based on symmetry.
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training set are 13440 and 3320, respectively.'e numbers of
positive samples and negative samples of the validation set
are 2076 and 414, respectively.

'e second experiment is the proposed unsupervised
neural networks with AE neural networks. In this experi-
ment, all the negative samples in training set and validation
set are discarded. 'e bearing inner diameter samples are
divided into training set, validation set, and test set with
numbers 13440, 2076, and 2076 separately. 'e numbers of
training set and validation set in this experiment are less
than those of the first experiment. No negative samples are
contained in this experiment.

'e third experiment is also the proposed unsupervised
neural networks with AE neural networks. 'e difference
between this experiment and the second experiment is the
training set and validation set. 'e samples sets are the same
with the first experiment, but without any labels. All the
positive samples and negative samples in training set and
validation set are integrated together, respectively. 'e
numbers of training set and validation set are also as 16760
and 2490 separately.

In order to evaluate the model trained with supervised
neural network and the proposed unsupervised neural
networks effectively, all the experiments share the same test
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ResNet18

Original image:
1280 × 1024

Size: 1280 × 1024

Size: 760 × 760

Size: 760 × 760

(5) Training

(1) Perspective
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(2)
 Crop

(3) M
ask (4)

Sample split

(a)

Test set Model Threshold
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(b)

Figure 6: Classifier training with supervised neural networks. (a) Train stage. (b) Test stage.
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Figure 7: Classifier training with the proposed unsupervised neural network. (a) Train stage. (b) Test stage.
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set.'e numbers of positive samples and negative samples of
the test set are 1980 and 96, respectively.

4.2. Model EvaluationMethod. Generally, the parameters of
the classification confusion matrix in the following table are
used for statistical calculation. Table 1 shows the classifi-
cation confusion matrix.

In this paper, the accuracy rate ACC, accuracy rate P,
and recall rate R of the training model on the black box set
are used to evaluate the pros and cons of the model. 'e
accuracy rate ACC is defined as follows: the proportion of
the correct result of the classification model to the total
observation sample, that is, the proportion of all the pre-
dicted results that is correctly predicted. 'e accuracy rate P
is defined as follows: among the samples that are identified as
positive samples, the model predicts the correct proportion.
From the perspective of prediction, one type of prediction
result is taken out to evaluate the prediction accuracy rate.
'e recall rate R is defined as the ratio of correctly identified
samples in all positive categories, reflecting the sensitivity of
the model.

'e accurate rate, accuracy rate, and recall rate are
defined as

ACC �
TP + TN

TP + FP + FN + TN
,

P �
TP

TP + FP
,

R �
TP

TP + FN
.

(1)

'e accuracy rate can better represent the accuracy of the
model. Accuracy and recall rate are better performance
evaluation indicators than correct rate, which is an evalu-
ation of a certain category. Accuracy and recall are a pair of
contradictory measures. Generally speaking, when the ac-
curacy is high, the recall is often low; when the recall is high,
the accuracy is often low.

Another more comprehensive evaluation index is
receiver operating characteristic (ROC) curve. 'e ROC
curve is used to describe the performance of the two
classification systems (the threshold of the classifier is

Input: inner diameter sample with 1280×1024 pixels.
Output: normalized samples of inner diameter sample with 760× 760 pixels.

(1) Morphological denoising: the original image is corroded and expanded, and the template is a 5∗ 5 rectangular morphological
structural element;

(2) Binarize the original image, take the maximum gray value and minimum gray value of the inner diameter area as the threshold, set
the image greater than the maximum threshold and less than the minimum threshold to 255, and the inner diameter area
becomes 0;

(3) Search the inner edge contour, and then fit the inner edge with an ellipse;
(4) Use the ellipse fitted in step 3 to remove the extra part of the image;
(5) Search the four points at the top, bottom, left, and right of the inner edge;
(6) Map the above ellipse to a circle. Take the four points of the top, bottom, left, and right of the circle with the center of the image as

the center and the radius of 290 as the target points to establish a projection transformation mapping matrix, and then use this
transformation matrix to transform the image in step 4;

(7) Search for the outer edge contour, fit the ellipse, and cut off the outside of the ellipse;
(8) Search the area of the inner diameter, and cut off the outer part of the inner diameter area.

ALGORITHM 1: A normalized samples method to obtain the effective part of inner diameter sample from the raw bearing samples.

Input: normalized samples of inner diameter sample with 760× 760 pixels.
Output: 12 shares samples along the center of the circle with labels from 1 to 12.

(1) Divide the inner diameter sample into 12 shares evenly along the center of the circle;
(2) Label the 12 shares with numbers 1–12
(3) Rotate the samples 2–12 by a certain angle to the position of sample number 1.

ALGORITHM 2: Sample split based on normalized sample symmetry.

Table 1: Classification confusion matrix.

Ground truth
Predictive value

Positive Negative
True TP FN
False FP TN
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variable), a comprehensive index of continuous changes
in response sensitivity and specificity, and the points on
the ROC curve reflect the susceptibility of the same signal
stimulus. ROC curve and AUC are indicators to evaluate
the pros and cons of the two-class model as a whole, where
AUC is the area between the ROC curve and its horizontal
axis. 'e ROC curve is generally above y � x. 'e larger the
AUC value, the better the model. 'e ROC curve is drawn
by two indicators, the true-positive rate (TPR) and the
false-positive rate (FPR). 'e true-positive rate (TPR) is
defined as follows: the true label is the proportion of the
positive sample, in which the prediction is also the pos-
itive sample. 'e false-positive rate (FPR) is defined as the
proportion of positive samples, whose true labels are
negative.

TPR �
TP

TP + FP
,

FPR �
FP

TN + FP
.

(2)

4.3. Results. Train the three experimental models and test
them on the same test set, draw the ROC curve, and calculate
the AUC, as shown in Figures 8(a)∼8(c). It is easy to find that
the model of Figure 8(b) has the best performance, while
Figure 8(a) has the worst.

Statistics of the above indicators are shown in Table 2.
'e R indicator of all the three networks is 100%. From the
ACC, P and AUC indicators, the unsupervised networks
have better performance than supervised network. 'e AUC
of the three models is 0.8567, 0.9721, and 0.9623 separately.
'ough the indicators of the third model are slightly less

than those of the second model, the third model is still good
enough for actual use. What is more, the third model is
totally an unsupervised model, which is very convenient in
actual use and can update the model online.

5. Discussion

Some experiments about the supervised neural networks
with ResNet networks and unsupervised neural networks
with AE networks for bearing defect detection have been
carried out in Section 4. According to the results, some
points should be discussed further:

(1) Why does the unsupervised network have better
performance than the supervised network? We think
the supervised network can have good performance
if the defect characteristics are obvious. However, the
defects of the bearing are very small and very in-
conspicuous. 'e unsupervised networks are good at
identifying small defects. 'us, the unsupervised
network has better performance.

(2) Training process: in experiment 2, the unsupervised
networks are trained with positive samples, which
have the best performance; however, the samples
have to be selected manually. In experiment 3, the
unsupervised networks are trained with positive
samples and negative samples; that is to say, the
process of selecting samples is not necessary, which
will be of great convenience for industrial site
processing.

(3) Automatic networks update process: the environ-
ment of the industrial site may change over time; in
this condition, the networks should be updated
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Figure 8: ROC curves of different models.'e ROC of (a) the supervised neural networks (the first experiment), (b) the unsupervised neural
networks (the second experiment), and (c) the unsupervised neural networks (the third experiment).

Table 2: Statistics of the above indicators for the supervised neural networks and the unsupervised neural networks.

TP FN FP TN ACC P R AUC
'e first experiment 1980 0 96 0 0.9538 0.9538 1 0.8567
'e second experiment 1980 0 25 71 0.9879 0.9875 1 0.9721
'e third experiment 1980 0 47 49 0.9774 0.9768 1 0.9623
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automatically for good performance of the networks.
'e proposed networks can update the networks
with the update samples.

6. Conclusions

'is paper proposes new unsupervised neural networks
based on AE networks for bearing defect detection. Sample
preprocessing algorithm based on normalized sample
symmetry of bearing is adopted to greatly increase the
number of samples. Gradients of the unlabeled data are used
as labels, and AE networks are created with U-net to predict
the output. 'ree experiments, one with supervised network
and the other two with the unsupervised network, are
conducted. 'e AUC of the three models is 0.8567, 0.9721,
and 0.9623 separately. 'ough the indicators of the third
model are slightly less than those of the second model, the
third model is still good enough for actual use.What is more,
the third model is totally an unsupervised model, which is
very convenient in actual use and can update the model
online. 'e experiment results demonstrate the feasibility
and superiority of the proposed unsupervised networks. It
can be expected that, with the widespread application of
visual inspection systems in bearing automation production
lines, the proposed method can greatly improve production
efficiency and make a certain contribution to the im-
provement of bearing production quality.
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