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*e feature extraction of high-precision microseismic signals is an important prerequisite for multicategory recognition of
microseismic signals, and it is also an important basis for intelligent sensing modules in smart mines. Aiming at the problem of
unobvious feature extraction of multiclass mine microseismic signals, this paper is based on the unsupervised learning method in
the deep learning method, combined with wavelet packet energy ratio and empirical modulus singular value decomposition, and
proposes a method based on wavelet packet energy and empirical modulus singular value decomposition and proposes a method
(M-W&E) based on wavelet packet energy and empirical modulus singular value decomposition. *is method firstly performs
empirical modulus singular value decomposition and wavelet packet energy ratio on the microseismic signal to construct the basic
feature vector and then uses the unsupervised learning algorithm to perform the unsupervised learning method feature fusion of
the basic feature vector to construct the fused feature vector. After visualization by t-SNE, various distinctions in the fusion feature
vector are more obvious. After testing the fusion feature classification using SVM, it is found that the recognition rate of the new
feature after feature fusion is better than that of a single wavelet packet empirical energy component and singular value of
empirical modulus, which basically meets the engineering needs and is a mine microseism. *e signal extraction and feature
enhancement fusion of multiclass samples provide a new idea.

1. Introduction

With the substantial development of the mathematics in-
dustry and the computer industry, there has been some
progress in processing time series data [1, 2]. As a new
method of monitoring the state of rocks in recent years, the
microseismic monitoring system has been used in mines,
tunnels, petroleum, and so on. *e field has been applied
[3–8], and at the same time, more fruitful results have been
achieved, realizing the prediction and forecasting of disasters
[7]. However, with the development and generalized ap-
plication of the big data industry, the microseismic system is
no longer just the processing of microseismic signals is
required, and it is required to be used as a sensing device in
mine production. As a sensing device, higher requirements
for microseismic signal processing are required, and the
collected signals need to be more finely divided to ensure
effective monitoring of microseismic signals in mines.

For the feature extraction of mine microseismic sig-
nals, experts at home and abroad have done a lot of re-
search, mainly including EMD decomposition and time-
frequency transform decomposition based on two types of
decomposition methods. Among them, the EMD de-
composition is the empirical modulus EMD decompo-
sition proposed by Huang [9] et al., which constructs
complex nonlinear models into multiple intrinsic moduli
for further research and provides certain ideas for the
follow-up. Shang et al. [10] studied the construction of
IMF components after EMD decomposition of the mi-
croseismic signal, matrix, and singular value decompo-
sition and then used the decomposition class with SVM to
realize the distinction between microseismic signal and
blasting signal. In terms of time-frequency analysis, Zhao
et al. [11] used frequency-slicing wavelet transform to
study the time-frequency characteristics, frequency band
energy distribution, and correlation coefficients of
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microseismic signals and provided a feature recognition
method. Tang et al. [12] proposed the use of wavelet
energy spectrum coefficients to analyze the energy dis-
tribution characteristics of coal and rock fractures and
noise signals, which laid an important foundation for the
analysis of the energy characteristics of coal and rock
fracture microseismic signal modes. Allmann et al. [13]
found that the main frequency of the microseismic signal
of different causes was differentiated after the S transform
of the microseismic signal of the mine. After solving the
wavelet packet energy of the microseismic signal and the
blasting signal, Zhu et al. [14] found that the energy
distribution of the blasting vibration signal and the mi-
croseismic signal is different due to the difference in
energy distribution and proposed a new idea for the
classification of the microseismic signal. However, in the
abovementioned documents, most of them distinguish
between microseismic signals and blasting signals, and fail
to effectively analyze the signals of other events.

In recent years, deep learning methods for fusing time
series data and signals have gained widespread attention
[15, 16], mainly due to the rapid development of the big data
industry. *e fusion of multiple data features is the essence
of integrated feature fusion. Different algorithms are used to
merge [17, 18] to generate new feature data, which is easier
to process [19]. Fusing big data can be classified into three
types: data fusion, feature fusion, and decision fusion.
Feature fusion is a valuable technique for improving the
apparentness of features. *e purpose of this paper is to
analyze the feature fusion processing of the microseismic
signal using the singular value of wavelet packet capacity
energy ratio and the component singular value of EMD
energy using the unsupervised learning algorithm of deep
learning.

2. Microseismic Signal and Its Digital Features

2.1. Wavelet Packet Energy Features. Microseismic signals
[4] can be expressed by wavelet transformation, as a new
method of processing them, by stretching the mother
wavelets of finite length or by fast attenuation.*e formula is
as follows:
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where X(a, b) is the transformed wavelet, x(t) is the original
wave signal, a indicates the translation amount, b represents
the wavelet scale, and ψ(t − a/b) is the wavelet. To de-
compose microseismic signals into low- and high-frequency
subsignals, the high- and low-frequency components of the
wavelet transform are applied simultaneously, and the
original signals are mapped on the frequency band to
generate corresponding subsignals. According to Parseval’s
theorem, the signal energy Ei decomposed into the ith

subband can be expressed as follows:

Ei � 􏽘
t

n�1
wi(n)

2
. (2)

*en, the total signal energy E can be obtained as follows:

E � 􏽘 Ei. (3)

Finally, the energy percentage vector p of each frequency
band can be obtained as follows:

p �
Ei

E
|i � 1, 2, 3, . . . , 2n

􏼒 􏼓. (4)

2.2. SVD Features of Rock Rupture Signal EMD. *e EMD
technique was conceived by N. E. Huang and NASA for
nonlinear nonstationary signals. *e purpose of EMD is to
separate a nonlinear nonstationary signal into several in-
dependent components, expressed as follows:

x(t) � 􏽘
n

i�1
IMF + rn, (5)

where IMF is the empirical modulus after multiple de-
composition and rn is the residual after this decomposition.
For the decomposed quantities, the empirical modulus
matrix (6) is constructed as follows:

IMF � IMF1, IMF2, . . . IMFi( 􏼁
T
. (6)

IMF of the empirical modulus matrix is decomposed to
obtain the singular value vector v as shown in the following
formula:

v � σ1, σ2, . . . , σi( 􏼁, (7)

where σ is the singular value after decomposition.

3. Mine Microseismic Signal Feature Fusion
Method Based on Fully Connected
Neural Network

3.1. Unsupervised Learning-Based Feature Fusion Method.
In unsupervised learning, two steps are performed: encoding
and extracting data features and subsequently decoding and
inverting the extracted features. Fusing features extracted
through feature extraction are the next step. As shown in
Figure 1, there is a schematic diagram showing the unsu-
pervised learning method.

Figure 1 shows the unsupervised learning neural
network illustrated by k, L1, L2, L3, and L4 coding
structures, L5, L6, L7, and L8 decoding inversion
structures, knew is the extracted feature vector, and k’
represents the generated data after coding. As the neu-
rons gain weight, the dark color is representative of values
with high weight and the light color is indicative of values
with low weight. During the training process, k is
compared with k’ in order to determine the structure of
the network.
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3.2. M-W&E Feature Fusion Method. In this paper, we
present a digital fusion method that can be applied to the
feature fusion of mine seismic signals. In this method,
certain subfrequency bands are mapped by an energy vector
P after the wavelet transformation with an empirical
modulus matrix v.

(1) To generate the wavelet packet energy percentage
vector p and singular value vector v from the mine
microseismic signals, the energy ratio solution of the
wavelet packet transform and singular value de-
composition of the empirical modulus are applied.

(2) Combining the wavelet packet energy percentage
vector p and the singular value vector v in the first
dimension to reduce the symbol size in (8), the
formula for constructing the fusion vector k is shown
as follows:

k � (p, v). (8)

(3) *e process of integrating signals k after they have
been entered into the unsupervised learning feature
neural network produces a new fusion feature knew.
*e overall flow chart of the feature fusion algorithm
is shown in Figure 2.

4. Key Parameters Selection and
Structure Construction

4.1. EMD Experience Modulus Decomposition Layers.
According to Shang et al. [10], the singular value division of
microseismic signals of mines and blasting signals points to a
distinct difference between blasting vibration signals and
rock rupture signals. Figure 3 shows the result of EM de-
composition of the rock rupture signal.

Figure 3 shows that this is the case in which the typical
mine microseismic signal can be composed of 10 IMF
empirical moduli. When the empirical modulus is decom-
posed through IMF4 and 5, the correlation between the
empirical modulus and the microseismic signal changes

significantly. *e empirical modulus has only very limited
relation to the microseismic signal in the case of IMF6,
suggesting that we can gain fewer data from it. As shown in
Table 1, there were the following empirical decomposition
moduli.

Decomposition layers are listed in Table 1; 14 is the
maximum, and 8 is the minimum number. Microseismic
signals with ten or eleven layers typically exhibit a de-
composition modulus of ten or eleven, and 79.02% of mine
microseismic signals have ten or eleven layers. As a result,
utilizing only one layer of empirical modulus decomposition
of the microseismic signal will not distinguish the micro-
seismic signals, whereas utilizing more layers will result in a
large amount of irrelevant information interfering with the
singular value. *us, it is necessary to establish and analyze
the number of empirical modulus decomposition layers of
microseismic waves. An important evaluation tool is the
correlation coefficient [17], which can reflect the degree of
information in the IMF component containing the original
microseismic signal after the microseismic signal decom-
position process. A correlation coefficient is calculated using
the following formula:
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where c(x, IMFi) is the correlation coefficient, x (n) is the
mine microseismic signal, and IMFI is the number of EMD
decomposition layers. After decomposition, the number of
each IMF component, the correlation coefficient of the
original signal as well as the correlation coefficient calcu-
lation results were plotted, as shown in Figure 4.

IMF7 decomposition is shown in Figure 4 as an im-
portant boundary. Decomposition of the IMF7 signal shows
that before general correlation coefficient is relatively high,
but after general correlation coefficient is reduced to less
than 0.2; this shows the weak correlation with the original
signal. For 4∼8 layers of IMF components, singular value
vectors of each type were decomposed and the correlation

k knew

L1 L2 L3 L4 L5 L6 L7 L8

k’

Figure 1: Schematic diagram of the unsupervised learning algorithm.
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Figure 3: Decomposition of the empirical modulus of rock fracture signal.
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between the types of singular value vectors was analyzed.
*en, the mean correlation was calculated according to the
following calculation:

rk �
1

n(n − 1)
􏽘

n

i�1
􏽐
n−1

j�1
c Ei, Ej􏼐 􏼑, (10)

where rk is the mean correlation coefficient of the decom-
position layer k and Ei and Ej are the energy ratios of dif-
ferent types of wavelet packets in the layer k decomposition,
i≠ j. *e mean correlation coefficients are shown in Table 2.

4.2. Number of Wavelet Decomposition Layers. As the
number of decomposition layers increased following the
EMD_SVD, the correlation coefficients of the singular value
vectors decreased with an increasing number of IMF
components, but they did not changemuch with the increase
in IMF components. *us, the IMF component was de-
termined to be 6 in this feature fusion.

After wavelet packet transformation, Zhu et al. [14]
hypothesized that the energy band distribution of rock
fracture microseismic signals differs from that of blasting
signals. Figure 5 shows the original waveform signals and the
decomposition of the rock rupture signal using four layers of
wavelet packets.

As illustrated in Figure 5, the aaaa subwavelet diffuses
noise signals with a frequency band of 0∼31.25Hz. In ad-
dition, after the decomposition of mine microseismic signals
showed a sharp decrease in peak and valley values, mainly
concentrated in the wavelets ended with ad and dd, it shows
that the detailed features of the microseismic signal can be
amplified at the time of the final layer analysis and can be
distinguished by calculating the energy percentage vector p of
each frequency band. It is necessary to divide the number of

layers of decomposition before calculating vector. Zhu et al.
[4] found that after decomposition twice by wavelet packets,
the microseismic signals had quite different distributions
because of the different dominant frequencies. *e wavelet
decomposition layer count is another important parameter
for the M-W&E feature fusion. *e number of microseismic
signal layers based on the distribution of E_w energy fre-
quency band after the 3rd, 4th, 5th, and 6th wavelet packet
layers was determined. *e energy distribution diagram of
signals of various channels is shown in Figure 6.

Figure 6 shows that most microseismic signals have their
main energy concentrated in the relatively low-frequency
range, while blasting vibration signals (green) have their
energy distributed over high and low frequencies. *e en-
ergy decomposition is almost exclusively in the first layer at
the 3rd layer, but after the 6th layer, it shows a number of
different characteristics. *ere is a clear distinction between
noise-disturbed low-frequency band and signal-disturbed
low-frequency band for hand coal (yellow), shovel coal
(blue), and hoe coal (red). A six-layer wavelet packet de-
composition accounts for 70% of coal rock after knock-on
(purple), 55% after rupture (brown), and 40% after mine car
passing by (pink) after the third, fourth, and fifth layers of
wavelet packet decompositions. By summing the mean
correlation coefficients among waveforms in Figure 6 and
their differences between one another, one can calculate the
correlation coefficient under each layer decomposition. For
different wavelet packet energy ratios, the calculated results
are shown in Table 3.

Table 1: Distribution of IMF decomposition layers of each microseismic signal.

Decomposition layer 8 9 10 11 12 13 14
Number of groups 5 70 227 244 37 10 3
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Figure 4: Correlation coefficient between IMF classification and original microseismic signal.

Table 2: Singular value vector correlation coefficients of various
signals.

Decomposition layer 4 5 6 7 8
rk 0.5152 0.4556 0.3257 0.3234 0.3143
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*e mean correlation coefficient for each layer of de-
composition decreases significantly with the gradual in-
crease in the number of layers, showing that the features are
clearly differentiated. Wavelet packet energy decomposition

is completed after the sixth layer, and the mean correlation
coefficient returns to a stable state. After taking into account
the energy correlation coefficient and the calculation
amount in this paper, we adopt 6 wavelet packet
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Figure 5: Wavelet packet decomposition of rock fracture signal.
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Figure 6: Frequency band energy ratio of each decomposition layer of microseismic signal: (a) 3-layer wavelet packet analysis; (b) 4-layer
wavelet packet analysis; (c) 5-layer wavelet packet analysis; (d) 6-layer wavelet packet analysis.
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decomposition layers based on the quantity to be calculated
increasing significantly after the wavelet packet decompo-
sition at a high layer.

4.3. Structure of Unsupervised Learning Neural Network.
For feature fusion, the structure of unsupervised learning
neural networks is important. It is possible that improperly
selecting the neural network may have an impact on the
feature, as well as cause the extraction results to be poor. To
accomplish unsupervised learning, this paper builds a neural
network. In VGG, a neural network structural model, the
spatial scale of one layer will be reduced by one fourth of that
of the highest layer due to pooling layers during feature
extraction layer by layer [16]. A fusion feature extraction
model including only two layers is presented in this paper as
well as the feature dimension after extraction. A standard
feature extraction model is examined using the VGG neural
network structure. *e four-layer neural network structure
model in Figure 7 provides clustering images with different
output feature lengths.

*e increased output dimension is evident in Figure 7
where the feature changes significantly. A clustering effect is
better when output features have a length of 8 than when
features have three or four dimensions. A classification type
consists of seven attributes. *e class types are represented
through three dimensions −4, 6, and 10, and the dimensions are
hard to express because the attribute dimensionswith outputs of
4 and 6 are smaller than the classification types. After 10 di-
mensions, the output dimensions have become more than the
classification types, leading to an interference dimension and
increased t-SNE size reduction times, thus blurring boundaries,
but the 10 dimension contains more information, and the
boundary definition is more comfortable than the 4 or 6 di-
mensions. A neural network structuralmodel outputs an output
feature of 8. Feature output length of 8 was used in the neural
network model. Following the analysis of the number of
learning layers, the linkage between the neural network
structure model with the 8 output feature was calculated using
different layers and the neural network structure model. *e
output result is shown in Table 4.

*e average linkage shows a trend of initially rising and
then reducing with the increase in feature extraction layers, as
shown in Table 4. With higher average linkage, it is easier to
distinguish between different types of signals. Accordingly, 4
neural network layer outputs are selected, with each output
layer using a sigmoid activation function. *e detailed
structure of each linear layer is shown in Table 5.

5. Example Verification

5.1. Analysis of Typical Field Data. An analysis of the mi-
croseismic signals collected from the mine working faces in
Shanxi Province is presented in this paper. Currently, the

coal mine works with an initial working surface of 10#,
inclination of 0°∼8°, thickness of 2.58∼2.62m, average
thickness of 2.6m, hardness coefficient of f� 0.9∼1.1, and
mudstone roofs around soft rock. Embedded in this system
is a microseismic sensor with a buried depth of 25∼50m and
sampling frequencies of 1KHz.

Figure 8 shows that the rock rupture microseismic signal
No. 4 and the blasting vibration signal No. 5 show some
similarities to the extent that their tail waves gradually di-
minish, but that the blasting vibration signal has higher
amplitude than the rock rupture signal. Rock fracture signals
have an amplitude similar to EMI signals, but the EMI signal
appears chaotic and spiky. On the waveform diagram, all
three types of manual operation signals 0, 2, and 7 could be
seen as “high-low-high” patterns as they were generated
manually by humans. An analysis of the above types of
signals using feature fusion was carried out for the purpose
of finding a method that will be easier to identify.

5.2. FeatureFusionCalculation. Figure 8 shows the results of
the M-W&E fusion for 8 types of mine microseismic signals.
To display the fusion of microseismic signal features, 2
groups of each type of microseismic signal were selected. As
shown in Table 6, the values of the features after fusion are
displayed. Based on Table 6, the two fused signals of knew1
and knew4 outperform the other features after fusion in
dimension learning. It is apparent that different signals
occupy smaller, special ranges in the same dimension of the
feature, which implies that the neurons have mastered the
different features at varying degrees in the learning process.
*ere is a large difference between the signal types in knew1,
especially in the ranges occupied by the signals.

5.3. Evaluation of Fusion Results. Analysis and comparison
of the M-W&E data fusion algorithm were conducted using
wavelet packet energy and EMD_SVD. To evaluate the
advantages and disadvantages of feature fusion, the two-
dimension spatial visualization of the three types of features
and the SVM classification results use t-SNE spatialvisual-
ization evaluation method to compare.

t-SNE is a manifold nonlinear dimensionality reduction
visualization method that allows the viewer to see the feature
extraction effects of neural network models by visually re-
ducing the dimensionality of their data. Consequently, the
present paper uses the t-SNE process visualization technique
to reduce the high-dimensional features obtained from after
the convolutional layer to a two-dimensional plane space
and to examine their performance capability. An analysis of
dimension reduction and visualization was performed on
the original signal, the wavelet packet fusion signal, the EMD
fusion signal, and the proposed feature fusion algorithm in
this paper. *e results are shown in Figure 9.

Table 3: Correlation coefficient of energy proportion of each decomposition layer wavelet packet.

Decomposition layer 3 4 5 6 7 8
rk 0.9127 0.7958 0.6620 0.4620 0.4578 0.4563
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It can be seen from Figure 9(a) that in the case of direct
dimension reduction of microseismic signals without any
treatment, the two-dimensional spatial distribution after
dimensionality reduction by t-SNE presents a mixed
distribution state, while the energy features after wavelet
packet decomposition and those after EMD decomposi-
tion show a certain clustering property, of which the green
one is easy to be recognized and presents clustering either
after EMD decomposition or wavelet packet decompo-
sition. Compared with EMD energy decomposition,
wavelet packet energy dimension reduction is slightly
better in terms of overall performance. *e three types of
microseismic signals appeared similarly mixed after a

wavelet packet energy decomposition, but a wavelet
packet energy decomposition produced a relatively clear
differentiation among them. In addition, the three mi-
croseismic signal features pink, gray, and yellow occupy
the same position after dimensionality reduction and
visualization, indicating that all three types of micro-
seismic signal features are similar to each other after
wavelet packet energy decomposition. In Figure 9(d), all
types of microseismic signal features after the fusion al-
gorithm showed obvious clustering effect after t-SNE
dimension reduction, but there was a yellow microtremor
signal near the dimension reduction range of the red
microseismic signal feature at the lower right corner,

(a) (b)

(c) (d)

Figure 7: Cluster graph of each feature length under the 4-layer feature extraction layer: (a) 4 layers 4 dimensions; (b) 4 layers 6 dimensions;
(c) 4 layers 8 dimensions; (d) 4 layers 10 dimensions.

Table 4: Average linkage of different feature extraction layers.

Feature extraction layers Average linkage
3 3.475
4 4.234
5 3.665
6 3.398

Table 5: Unsupervised learning feature neural network structure parameters.

Feature fusion extraction layer Input parameters Output parameters Feature inversion layer Input parameters Output parameters
L1 80 40 L5 8 10
L2 40 20 L6 10 20
L3 20 10 L7 20 40
L4 10 8 L8 40 80
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indicating that although the microseismic signal feature
fusion method proposed in this paper has optimized the
microseismic signal feature extraction to a certain extent,
there is still a certain error.

5.4. SVM Classification Evaluation. Eight types of micro-
seismic signals were considered for identification based on the
classification evaluation shown in Figure 8. Using the 80 groups
of microseismic signals found in the training set, we divided
each type of microseismic signal into ten groups. During the
testing process, the same component is used as it was in the
training set. SVM consists of decomposing the second-type
signals into hyperplanes, a classical method [15]. Microseismic
signals were classified into eight types using hierarchical support
vector machines (H-SVMs). In this method, all types are first

divided into two type families, each of which is further divided
into two subtypes, and so on. In SVM classification, the radial
basis function (RBF) was adopted, which is expressed as shown
in formula (11), the penalty parameter of the function is c� 2,
and the kernel parameter is 1.

K(x, x) � e
−r x−xi‖ ‖2. (11)

Hierarchical support vector machine was used to train
the training set, and the test set was classified.*e test results
are shown in Table 7.

To facilitate the analysis of the test results, a confusion
matrix of classification results of the test set was drawn, as
follows.

Following SVM classification, the wavelet packet
energy classification effect is shown in Figures 10–12,

Table 6: Fusion characteristics of various events.

Event knew1 knew2 knew3 knew4 knew5 knew6 knew7 knew8
0_1 0.5001 −1.821 0.02581 −1.325 0.2765 0.1244 −0.1289 0.1526
0_2 0.5617 −2.122 −0.1481 −1.368 0.7622 0.1893 −0.8002 −0.1864
1_1 −0.0343 0.7126 −0.1530 0.2844 0.1190 0.2380 −0.2050 −0.1785
1_2 0.08697 0.9340 0.2391 0.4886 0.3081 1.649 1.553 0.1097
2_1 −0.5977 −0.3184 0.2722 −0.8219 0.4543 0.1980 0.1859 −0.4004
2_2 −0.7905 −0.2000 0.4418 −1.647 0.9214 −0.3722 −0.3227 −0.2133
3_1 0.3421 −1.242 0.4294 −0.3219 −0.3893 1.000 −0.7345 −0.3691
3_2 0.3479 −1.018 0.03796 −0.3265 −0.8431 0.7047 −0.5303 −0.5500
4_1 −0.3321 −0.8270 −0.3389 −0.9336 0.1558 0.3074 −0.4282 −0.2500
4_2 −0.3397 −0.6159 0.4481 −1.538 0.2683 0.4947 −0.9815 −0.4181
5_1 −0.1381 −0.5451 0.7698 −1.989 0.2219 0.3403 −0.7560 0.3496
5_2 −0.1537 −0.1002 1.038 −1.165 0.2116 0.3879 −0.3852 0.6888
6_1 0.3253 0.009533 −0.3325 −0.9649 0.8771 0.5050 0.1364 0.2211
6_2 0.3612 −0.032 −0.434 −0.9573 0.8680 0.5043 −0.9699 −0.6800
7_1 0.9409 −0.9920 −0.5088 −0.3364 −0.9371 0.09867 −0.07757 0.1945
7_2 0.7031 −0.9597 −0.3833 −0.5293 −0.5036 0.02525 −0.3370 0.4775
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Figure 8: Waveform image of microseismic signals in common mines.
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Table 7: Various features are counted under SVM recognition.

Classification features Times (ms) Identify the correct number ACC (%)
Wavelet packet energy 48.74 48 60
EMD_SVD 75.59 69 86.2
M-W&E 217.22 74 92.5

(a) (b)

(c) (d)

Figure 9: Dimensionality reduction map after various feature extractions: (a) no processing; (b) wavelet packet energy feature distribution;
(c) EMD_SVD feature distribution; (d) M-W&E feature distribution.
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Figure 10: Wavelet packet energy feature classification: confusion
matrix.
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Figure 11: EMD_SVD classification confusion matrix.
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which shows only 48 correct predictions, the lowest
prediction classification accuracy of all three methods.
*e fact that the main frequency bands of the energy of
Nos. 3, 5, and 6 events were quite similar suggests that the
main feature required for multiple classification is the
wavelet energy ratio, which is difficult to predict.
EMD_SVD significantly improved the classification ac-
curacy, and 69 accurate predictions were made, indi-
cating that the accuracy of classification was high.
Moreover, the results of the correct classification are
clearly distinguishable from those from other positions
on the main diagonal of the confusion matrix. By using
EMD_SVD and wavelet packet energy data as criteria for
classification, it was possible to ideally combine the
strengths of these two techniques, and most importantly,
the identifying accuracy of the No. 7 event was signifi-
cantly enhanced. By comparing SVM classification results
with t-SNE classification results, it was found that al-
though the effect of wavelet packet energy after t-SNE
dimension reduction and visualization of data is better
than that of EMD_SVD, the effect after recognition is
worse than that of EMD_SVD feature, indicating that
EMD_SVD feature distribution is not suitable for t-SNE
dimension reduction expression. However, some iden-
tification errors still persist after the M-W&E method is
reduced by t-SNE, indicating that the data features are
complex. In this paper’s feature fusion method, there is
still room for improvement in small sample learning.

6. Conclusions

(1) Amultifeature fusion of mine microseismic signals is
achieved by combining features from EMD singular
values and wavelet packet energy, which is based on
the unsupervised learning mode in deep learning.

Microseismic signals are processed in smart mines
using this method.

(2) After the M-W&E model proposed in this paper
performs the fusion of the singular value decom-
position features of the first 6 layers of EMD and the
wavelet packet feature on the mine microseismic
signal, the recognition accuracy rate reaches 92.5%,
which is higher than the recognition result of the
single feature method and basically meets the re-
quirements. *e actual needs of the project site also
provide some experience for the feature fusion of
microseismic signals.

(3) Although in the M-W&E model, the recognition
success rate in the multicategory recognition task is
92.5%, which improves the recognition accuracy to a
certain extent, the average time consumption reaches
217.22ms, which is higher than the cost of the single
feature recognition mode. At the same time, we do
not yet know how unsupervised learning algorithms
interpret features. *us, the next research direction
will be to find ways to reduce the time it takes to do
research and to make it easier to interpret [20].
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