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In recent years, there has been widespread interest in the design of microair vehicles (MAVs) for flapping flight with high-aspect
ratio wings due to their high efficiency and energy savings. However, the flexibility of a flapping wing causes the aeroelastic effect,
which remains a subject of investigation. Generally, existing research simulates active bending and twisting of flexible wings under
the assumption of neglecting flapping inertia. In this research, the kinematic optimization of a bionic wing with passive de-
formation in forward flight while undergoing flapping and pitching is considered. To this end, a computational aeroelasticity
framework, which includes the three-dimensional unsteady vortex lattice method (UVLM) and the Newmark-β method, is
constructed for flapping flight. Under the assumption of linear elastic deformation, this tool is capable of simulating attached flows
over a thin wing and capturing unsteady effects of wakes. A bionic numerical wing with an aspect ratio of 6.5, chord Reynolds
number of 1.9×105, and reduced frequency less than 0.1 is investigated in kinematic optimization. .e computational aero-
elasticity framework is combined with a global optimization algorithm to identify the optimal kinematics that maximize the
propulsive efficiency under the minimum average lift constraint. Two types of numerical wings, rigid wing and flexible wing, are
considered here to compare the influence of deformation on the aerodynamics of the flapping wing. .e results show that the
aeroelastic effect, which increases the flapping amplitude, yields a significant improvement in terms of propulsive efficiency. In
addition, the optimization algorithm maximizes the thrust efficiency while satisfying the required lift. Moreover, the optimal
kinematics of both the rigid wing and the flexible wing reach the maximum flapping angle, which indicates that a larger range of
motions is needed for optimal kinetics when loosening the boundary conditions.

1. Introduction

Recently, various ornithopters have been designed and
manufactured worldwide. Such aircrafts gain lift and thrust
by flapping their wings. .eir weights are limited to the
magnitude that flapping wings can drive, which leads to the
application of flexible lightweight materials in the wing
components. Based on experimental [1, 2] and numerical
results [3–5], flexibility plays an important role in the
aerodynamic performance of flapping wings. However, the
motion mechanism of the ornithopter determines that it has
a fixed kinematic mode after it is manufactured. However,
there is a lack of methods to optimize the kinematics of
flexible flapping wings in the design stage. To determine the
coupled motion of flapping and pitching of a microflapping
wing machine, Matthew et al. [6] selected optimal

kinematics from dozens of motion parameter combinations
through experiments. .is simple way to design kinematics
is an alternative method in the absence of proper optimi-
zation tools. Other studies directly used common functions
to represent flapping wing motion. Nick et al. [7] used
symmetrical in-plane motion on a micro bat-like orni-
thopter without applying a kinematic optimization method
to improve its aerodynamic characteristics. Razak and
Dimitriadis [8] investigated the coupling effect of flapping
and pitching motions on the aerodynamic characteristics of
flapping wings. .eir experiment explored the aerodynamic
effect caused by the phase difference between flapping and
pitching motions but without considering the influence of
other motion parameters. Sutthiphong and Chan [9] applied
a simple sawtooth function to the variation process of the
flapping angle with time when exploring the flow field and
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noise characteristics of large bird wings due to the lack of
data on the motion process. At present, the physical phe-
nomena caused by fluid-structure interactions are not
completely understood on a flexible wing. An abstract model
with simplified wing structure and kinematics is an effective
approach to overcome this challenge. .us, a fully passive
dynamical model without active deformation is applied in
this research. .e current work combines a computational
aeroelasticity framework with a global optimization algo-
rithm to construct a design method for flapping wing ki-
nematics. .e computational aeroelasticity framework
includes the three-dimensional unsteady vortex lattice
method UVLM and the Newmark-βmethod to calculate the
fluid-structure coupling effect caused by flexible
deformation.

.e flapping wing kinematics have a complex design
space with multiple local optima when taking specific
aerodynamic characteristics as the optimization goal. A
widely used feature to evaluate the aerodynamic charac-
teristics in the UVLM is the propulsion efficiency. It is
defined as the ratio of the propulsion power to the total
aerodynamic power [10, 11], which can be easily obtained by
the UVLM.When the flapping wings create a specific degree
of disturbance to the airflow by motions and deformations,
the maximum propulsion efficiency can be achieved, which
indicates the existence of a set of optimal kinematics to
maximize the propulsion efficiency [1]. .is article uses the
DIRECT (dividing rectangles) optimization algorithm to
move towards the maximum-efficiency goal. Motivated by a
modification to Lipschitzian optimization, the DIRECT
optimization algorithm was first introduced by Perttunen
[12]. It attempts to solve the global optimization problems of
multiple parameters with bound constraints and a real-
valued objective function. However, global searching leads
to a high computational cost to ensure convergence to the
optimal solution. As a sampling algorithm, DIRECT, which
requires no knowledge of the gradient of the objective
function, is suitable for searching for the optimal value of a
“black box function” or simulation result.

Flapping motion has a low frequency, which means that
the calculation time lasts for several seconds in several
flapping wing cycles to achieve a stable state. In this paper,
the global optimization method needs to sample large
numbers of calculation states, and the method of medium
fidelity, the UVLM, is used in aerodynamic calculations. .e
UVLM has been widely used in flight dynamics and aero-
elastic analysis for aerodynamic modelling [13, 14]. Mehdi
et al. [15, 16] applied the UVLM to estimate the aerodynamic
force in flapping wing research. Even in flow at low Reynolds
numbers [17] and separation flow [18–20], the UVLM
maintains a reasonable trend correlation with CFD (com-
putational fluid dynamics) results.

.e objective of the current paper is to investigate the
optimal kinematics of a specific flexible wing undergoing
flapping and pitching at the wing root. First, a flexible high-
aspect ratio wing model is constructed according to the data
of natural avians. .en, a computational aeroelasticity
framework is formulated to predict the aerodynamic effect
and propulsion efficiency of the preset flexible wing. After

that, the global optimization problem is presented for the
DIRECT algorithm. To prevent the effect of the flow sepa-
ration caused by the flapping motions, the flapping range is
selected according to the relevant experimental results. Fi-
nally, the kinematic and aerodynamic results of the flexible
model are discussed and compared with those of a rigid
model.

2. Wing Kinematics and Dynamics

In this section, the kinematics of a bionic slender wing
flapping and pitching at the wing root are presented. .e
material properties and wing size, including the camber of
the airfoil, are designed according to the results from re-
search on a kind of high-aspect ratio seabird, the black-
browed albatross. Although the exact kinematics of the
wings of albatrosses in nature remain unknown, the char-
acteristic angles of flapping and pitching in this article are
expressed by sine functions. .e Lagrange equation under
rigid-elastic coupled motion is established here to solve the
computational structural dynamics for the simulation of
passive wing deformation.

2.1. Wing Model. Natural avian flight with a high-aspect
ratio wing is commonly seen on albatrosses that migrate
thousands of miles over the seas. Although albatrosses apply
unpowered flight modes, such as gliding and soaring, to save
energy, flapping flight by this species has been observed
under calm conditions in wind fields [21]. When the speed of
sea wind stays too low to supply energy for unpowered flight,
flapping flight is required to maintain flight altitude. Based
on the available morphological data in the literature, a kind
of high-aspect ratio seabird, the black-browed albatross, is
considered. A numerical wing model is designed to inves-
tigate the flexibility based on the morphological data, as
shown in Table 1. .e reduced frequency and Reynolds
number are also calculated according to the data in Table 1.
Notably, the density of the wing is approximately equal to
the density of insect wings [23]. .e same treatment of the
estimation of the wing density was also adopted by Kodali
[24].

Further consideration of the numerical wing model
focuses on the wing planform and airfoil camber. .e real
wing planform abstracted from natural observation [21],
including the shoulder spacing, is plotted in Figure 1. .e
fact that albatrosses commonly have a sharp shape at the
wingtip is equivalent to having a high taper ratio. To simplify
the wing model into linear leading and linear trailing edges,
the sweep angle is set to 0°, and a taper ratio of 7.244 is
chosen for the numerical wing. Combined with the half span
length and wing area data in Table 1, the exact planform of
the numerical wing can be obtained, as shown in Figure 1.
Because a wing with a thin airfoil needs to be replaced by a
curved surface in the UVLM, the middle camber of the
airfoil is chosen to model the wing. In Figure 2, schematic
views of the dimensionless albatross airfoil (GOE 174) [27]
and the camber are shown. Due to the lack of weight data for
a single wing of the black-browed albatross, the mean
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thickness hs � 8.52mm is obtained according to a GOE 174
airfoil with the length of a mean chord shown in Table 1 to
construct a wing with numerically equal thickness. Although
the numerical wing is overweight compared with a real bird
wing due to the sparseness of feathers, the redundancy of the
material enhances the stiffness of the numerical wing, which
linearizes the deformation caused by motions. .is sim-
plified wing model assumes that the wing is composed of
isotropic materials, which limits the aerodynamic mecha-
nisms of feathers, such as interlocking. Moreover, the taper

ratio and camber have a positive effect on the stiffness of the
model. .e effects of gravity are considered in the results. In
addition, the weight of the flyer in Table 1 is used only as a lift
constraint in kinematic optimization.

2.2. Wing Kinematics. .is article considers a three-di-
mensional wing in constant wind speed U∞ that undergoes
flapping and pitching at the wing root. As the shoulder joint
of the bird is located at the root of the leading edge of the
wing, the kinematic centre of rotation is placed at the root of
the leading edge. In addition, the y-axis and x-axis of the
local coordinate system are defined as the spanwise and
chordwise directions of the wing, respectively. A schematic
of the present case is shown in Figure 3. To describe the wing
location, the flapping angle c and the pitching angle θ are
defined as functions of time t as follows:

y(t) � yacos2Πft, (1)

θ(t) � θ0 + θa cos 2Πft + θ0( . (2)

.e motions with constant frequency f contain the
adjustable kinematic parameters of flapping amplitude ca,
middle pitching angle θ0, pitching amplitude θa, and pitch-
leading phase φθ.

In Figure 3, the inertial coordinate system O-X-Y-Z is
represented by E and the local coordinate system o-x-y-z is
represented by B. As shown in Figure 3, the transformation
from E to B begins with rotation c around the X-axis first
and then proceeds with rotation θ around the y-axis. Since
rotation about z is relatively rare on existing ornithopters,
kinematic optimization including this motion seems un-
common for aircraft design. .us, the rotation about z is
always set to 0°. .erefore, the vector describing the rela-
tionship of the relative angles between E and B is defined as
ϕ � c θ 0° 

T (here, the bold font indicates a vector or
matrix). .e vector composed of the angle velocities of the
wing described in the local coordinate is defined as
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Figure 1: Layout of the numerical and natural wings.
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Figure 2: Views of the dimensionless albatross airfoil.
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Figure 3: Coordinate systems of a flapping and pitching wing.

Table 1: Wing morphological parameters of the numerical alba-
tross-wing model.

Parameter .e albatross-wing model
Half span length [21], l (m) 1.08
Wing area [21], S (m2) 0.178
Mean chord length, c� S/l (m) 0.1648
Aspect ratio for one wing [21], AR 6.55
Weight of the flyer [22], W (N) 30.184
Density of the wing [23], ρs (kg/m3) 1200
Density of air [24], ρf (kg/m3) 1.23
Young’s modulus [25], E (GPa) 5.2
Flapping frequency [22], f (Hz) 2.97
Velocity [26], U∞ (m/s) 16.7
Reduced frequency, k� πfc/U∞ 0.092
Reynolds number, Re 1.9×105
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ωB � p q r 
T. According to the projecting relationships,

ωB is expressed by the derivative of ϕ with time as follows:

ωB � DB
_ϕ, (3)

where the mark with one dot above the symbol represents
the first derivative of time and DB is the transition matrix as
follows:

DB �

cos θ 0 −cos y sin θ

0 1 sin y

sin 0 cos y cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

.us, equation (3) has the following expansion form:

P � _ycosθ,

q � _θ,

r � _ysinθ.

(5)

2.3. Structural Dynamics. .e passive deformation caused
by inertia and aerodynamics is solved in the local coordinate
system using the Lagrange equation. To express the kinetic
energy T of an arbitrary microscale unit of the wing, the
nondeformation position vector and the displacement
vector of a microscale unit are defined as rB � r1 r2 r3 

T

and uB � u1 u2 u3 
T in the local coordinate system, re-

spectively. If the mass of the microscale unit is dm, then the
kinetic energy of the microscale unit is as follows:

T �
1
2

_u
T
B _udm −

1
2
ωT

B rB + uB(  rB + uB( ωBdm

+ ωT
B rB + uB(  _uBdm,

(6)

where the marks with a curve over the symbols represent the
second-order tensors that are defined as follows:

rB �

0 −r3 r2

r3 0 −r1

−r2 r1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

uB �

0 −u3 u2

u3 0 −u3

−u2 u2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Assuming that k is the stiffness matrix and Ue is the
elastic potential energy of the microunit, we have

z∪ e

zuB

� kuB. (9)

According to the Lagrange equation, the kinetic energy
T, the elastic potential energy Ue, and the force vector f on
the microscale unit are related via the following equations:

d
dt

zT

z _uB

  −
zT

zuB

+
zue

zuB

� f , (10)

which is then reduced to the simple Ax€+ Bx_+ Cx � D form
by substituting (6) and (9) into (10).

€uBdm + 2ωB _uBdm + ω_Bdm + ωB ωBdm + k uB

� f − ω_+ ωB ωB(  rBdm,
(11)

where the marks with two dots above the symbols represent
the second derivative with respect to time. If the wing model
is discretized into n elements in the finite element method,
the total elastodynamic equation of the finite element model
is given as follows:

M €UB + 2MΩ _UB +(MΩ_+ MΩΩ + k)UB � F − M( _Ω + ΩΩ)RB.

(12)

.e symbols in the total elastodynamic equation are
defined as follows:

UB � uB1
. . . uBn

 
T
, (13)

RB � rB1
. . . rBn

 
T

, (14)

M �

m1 · · · 0
⋮ ⋱ ⋮
0 . . . mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

mi � mi

1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i � 1, . . . , n,

(15)

K �

k1 . . . 0
⋮ ⋱ ⋮
0 · · · kn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Ω �

ωB · · · 0
⋮ ⋱ ⋮
0 · · · ωB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

F � f1 . . . fn 
T
.

(16)

Based on the modal method, the displacement UB is
the sum of the modes Φ weighted by the generalized
coordinate q:

UB � Φq. (17)

Substituting equation (17) into dynamic equilibrium
equation (12) yields the following result:

MΦq€+ 2MΩΦq +(M _Ω + MΩΩ + K)Φq � F − M( _Ω + ΩΩ)RB.

(18)

.e modal mass matrix is normalized by
Mp � ΦTMΦ � I3n×3n, and the modal stiffness matrix is
defined as Kp � ΦTKΦ. .e replacements of the terms in
equation (18) are performed as follows:
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MΩ � L, (19)

M( _Ω + ΩΩ)J. (20)

.us, equation (18) is arranged as follows:

€q + 2ΦTLΦq_+ ΦTJΦ + Kp q � ΦT F − JRB( . (21)

As an implicit method, the Newmark-β method is often
used for solving structural dynamics problems discretized by
time steps. In the step nt+ 1, the dynamic equation is shown
as follows with the generalized coordinate and its time
derivatives:

A€qn+1 + B _qnt+1
+ Cqnt+1

� D. (22)

By assuming the stepping relation between time steps,
the Newmark-β method transforms the dynamic eqaution
(22) into a simple form as follows:

Cqnt+1
� D, (23)

where
C � C + a0A + a1B, (24)

D � D + A a3 €qnt
+ a2 _qnt

+ a0q
nt

 

+ B a5 €qnt
+ a4 _qnt

+ a1q
nt

 .
(25)

When the length of the time step is determined, the
coefficients ai,i � 1,. . .,6 become a set of constants defined by
the Newmark-β method. If the current state and the gen-
eralized force D are known at each time step, then equation
(23) can be solved to yield the solution of the next state.
Further instructions of the Newmark-βmethod are found in
reference [28]. By substituting the following equations into
equations (24) and (25), the generalized coordinate q in
equation (25) is solved in the time-stepping method:

A � I3n×3n, (26)

B � 2ΦTLΦ, (27)

C � ΦTJΦ + Kp, (28)

D � ΦT F − JRB( . (29)

To introduce the modal method into the structural dy-
namics, the vibration modes and natural frequencies of the
numerical wing in which the grid has 7× 27 nodes are analysed
by the finite elementmethod in the softwareNastran. Although
each node has six degrees of freedom, three for translation and
three for rotation, the structural model extracts three trans-
lational degrees of freedom for the dynamic calculation of
elastic deformation..emesh of the wing is shown in each plot
of Figure 4, and the x and y axes are along with the wing chord
and span direction. On the whole wing, each region sur-
rounded by four corner nodes is modelled with CQUAD4
element, and the solver of SOL 103 is used to generate the
structural modes Φ. .e mass matrix M can be calculated by

Nastran when adding “PARAM, EXTOUT,DMIGPCH” to the
calculation card. Under the assumption of linear elastic de-
formation [29], the effect of flapping and pitching motions is
equivalent to the inertial force and Coriolis force on the
cantilever wing in the local coordinate system, in which the y-
axis and x-axis are defined as the spanwise and chordwise
directions, respectively [30, 31]. To this end, the clamped
boundary condition at the wing root is used to constrain the
deformation of the model in the local coordinate system. .e
analysed results of the first four modes are shown in Figure 4.
.e flapping frequency in Table 1 is lower than the frequency of
the first mode, suggesting that the elastic deformation of the
flapping wing is dominated by the first bending mode. Al-
though it cannot be known for certain whether the natural
frequencies and vibration mode shapes are similar to those of
the real wing, the experimental [1] and simulation [24] data
indicate that the propulsion efficiency is improved by using the
first-order bending mode.

3. Unsteady Vortex Lattice Method

Based on inviscid flow theory, the UVLM is widely used to
predict the flow field evolution and aerodynamic force of a thin
wing. Under the condition of a certain air velocity, the three-
dimensional UVLM discretizes the free wake that forms at the
trailing edge into interconnected vortex elements, whose in-
stantaneous velocities are governed by the Biot–Savart law [14].
In this work, 5 vortices in chordwise and 16 vortices in the
spanwise are assigned as bound vortices. .e wake is held to
generate velocity induction for 20 chord lengths. It is important
to note that the vortex line lies on a 1/4 chord length of each
panel, and the panel control point lies on the middle point of a
1/2 chord length of each vortex ring as shown in Figure 5. .e
green lines represent the vortex lines, and the red dots represent
the control points. .e zoom view clearly shows the vortices
and direction of vortex rings.

In the coordinate system shown in Figure 3, the induced
velocity caused by the attached and free vortices is repre-
sented by the vector _X, _Y, _Z . In addition, each vortex in
the wake must move with the free-stream velocityU∞. .us,
the displacement of a free vortex in each time step Δt is
determined via the following scheme:

ΔX ΔY ΔZ( 
T

� ( _x _y _z) _X _Y _Z 
T

+ U∞ Δt. (30)

In a flapping wing problem, the simulation process is
generally solved for multiple flapping periods to ensure
constancy of the aerodynamic results. In this study, at least
five flapping periods and twenty chord lengths of the wake
are calculated for each example of a flapping problem. .e
data of the last complete flapping period are saved to rep-
resent the features of a specific case. Based on inviscid flow
theory, the Kutta condition is applied to handle the for-
mation of vortices at the trailing edge of the wing model..e
numerical simulation of the UVLM begins with the grid
generation phase, during which the wing model is divided
into N subpanels with respective attached vortices. .e
equations of the circulation strengths Γ1, Γ2, . . ., Γn are solved
in every time step.
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a11 a12 · · · a1N

a21 a22 · · · a2N

a31 a32 · · · a3N

⋮ ⋮ ⋮ ⋮

aN1 aN2 · · · aNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Γ1
Γ2
Γ3
⋮

ΓN
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�

RHS1
RHS2
RHS3
⋮

RHSN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

.e induction coefficient from the jth vortex to the ith vortex
is expressed as ai, j..e symbol RHSi represents the component
of the local stream velocity normal to the ith subpanel, which is
composed of the flow velocity and wake induced velocity.
.erefore, the local stream velocity Ui of the ith subpanel is as
follows:

Ui � _X + _Xw + U∞ − _y + _yw + _Z + _Zw 
T
, (32)

where _Xw, _Yw, and _Zw are the velocities induced by the wake
in the three axis directions. Due to the relative motion
between the flapping wing and the flow, the local velocity
also includes the convection velocity expressed as − _X, − _Y,
and − _Z, which makes the boundary condition different from
a conventional UVLM. According to the UVLM, the
pressures Δpi on each subpanel are solved by (40) as follows:

Δpi � ρf

Γi − ΓX
ΔτX

Ui.τX +
Γi − ΓY
ΔτY

Ui.τY +
d
dt
Γi , (33)

where τX and τY are the unit vectors of the ith subpanel along
the chordwise and spanwise directions. .e terms Ui, τX and
Ui, τY are used to calculate the projection components of the
local stream velocity. ΓX and ΓY are the circulation strengths of
the vortices attached to the subpanels that are connected to the
ith subpanel in the directions of τX and τY, respectively. In the
situation where there is no connected subpanel in the direc-
tions of τX and τY, such as solving the pressures at the leading-
edge vortices, the terms of Γi − ΓX and Γi − ΓY are simply
replaced by Γi. By summing up the product of pressures Δpi
and areas ΔSi of all subpanels, the total lift and drag of the wing
are consequently obtained:

L � 
N

i�1
ΔpiΔSini · nXOY, (34)

D � 
N

i�1
ΔpiΔSini · nZOY, (35)

where the unit vector normal to the ith subpanel is ni and the
unit vectors in the X-axis and Z-axis directions are nZOY and
nXOY. .e corresponding force coefficients are calculated by
the following equations:

CL �
2L

ρfU∞
2
S
, (36)

CD �
2 D

ρfU∞
2
S
. (37)

.e average forces of lift and drag are represented by L

and D, which are time averages of the force integrations in a

total flapping period. Furthermore, the average force coef-
ficients CL and CD are obtained by replacing the L and D in
(38) and (39) with L and D. .e average thrust coefficient is
defined as CT � −CD.

.e convergence of the vortex quantity is determined
before solving the fluid-structure interaction. As shown in
Table 2, an extreme kinematic parameter is chosen in this case.
.e flapping frequency and velocity follow the settings in
Table 1. Figure 6(a) shows the lift coefficient and thrust co-
efficient for a complete flapping cycle, while 60, 90, and 120
vortices are assigned to the boundary. Figure 6(b) shows the
effect of the length at which the wake is held. Wakes of 15, 20,
and 25 chord lengths are tested in Figure 6(b). Before it reaches
stabilization, 5 flapping cycles are calculated, and the data in the
last cycle are shown in Figure 5. From the result, the con-
vergence of vortex quantity is reached in different cases.

4. Fluid-Structure Interaction

.e aeroelastic loosely coupled solution is based on a time-
stepping solution process in which the equations modelling
the dynamic behaviour of both fluid and structure are solved
independently with shared boundary information. An in-
terface module based on the surface spline interpolation
method [32] is used to transmit the force and displacement
information between the flow and the structure. As the
behaviour of the fluid and structure is handled in their
respective coordinate systems, the aerogrids and the aero-
force need to be expressed correctly before solving another
dynamic equation. Figure 7 shows how the information is
transmitted in fluid-structure interactions in different co-
ordinate systems.

To solve equation (21), the preparation of modes and
kinematics should be done before fluid-structure interaction
as shown in Figure 7. Nastran provides the first ten modes in
which translations in the x, y, and z directions are used to
form Φ. In addition, Nastran provides the mass of all nodes
in the x, y, and z directions. According to the result of
Nastran, program is prepared to rebuild the mass matrix M
of all nodes. Kp is a diagonal matrix including the first ten
modal stiffnesses, and they can also be extracted from the
results of Nastran. In a simulation case with a given kine-
matic parameter, such as Table 2, the flapping and pitching
motions become explicit in the time domain..e Newmark-
βmethod takes the time step as a known quantity. .us, the
angular velocities and acceleration are computed to con-
struct the replacement items of L and J.

.en, the Newmark-β method guides the process of
solving equation (21). Because the initial position and
velocity of all nodes are known, the UVLM and the in-
terpolation method calculate the aerodynamic force fol-
lowing the step from interpolate aerogrid displacements
to express the aeroforce in the local coordinate in Figure 7.
According to equations (24)–(29), C and D are obtained
when the aerodynamic force is solved. Finally, equation
(23) can be solved to yield the solution of the next state,
and it can update the structural deformation for the next
interaction.
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Table 2: Kinematic parameter in the UVLM convergence.

Wing motion Parameter Angle (deg)
Flapping amplitude ca 40°
Middle pitching angle θ0 10°
Pitching amplitude θa 20°
Pitch-leading phase φθ 90°

60 Vortices
90 Vortices
120 Vortices

0.2 0.4 0.6 0.8 1.00.0
Time, t/T

0.5

1.5

CL

2.5

3.5

60 Vortices
90 Vortices
120 Vortices

–0.75

0.00
CT

0.75

1.50

0.2 0.4 0.6 0.8 1.00.0
Time, t/T

(a)

15 Chord Length
20 Chord Length
25 Chord Length

0.5

1.5

CL

2.5

3.5

0.2 0.4 0.6 0.8 1.00.0
Time, t/T

15 Chord Length
20 Chord Length
25 Chord Length

–0.75

0.00
CT

0.75

1.50

0.2 0.4 0.6 0.8 1.00.0
Time, t/T

(b)

Figure 6: .e lift coefficient and thrust coefficient in a complete cycle: (a) 60, 90, and 120 bound vortices; (b) 15, 20, and 25 chord-length
wakes.
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Figure 7: A schematic of the aeroelastic framework for fluid-structure interaction.
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5. Global Optimization

Formally, a global optimization problem of the DIRECT
algorithm is stated as follows with the assumption that f is
the objective function and fc is the constraint function:

minf(x),

subject to xlow ≤ x≤ xup andfc(x)≤ 0,
(38)

where x is the multiparameter vector of the sample point in
state space and the bounds of the domain are represented by
xlow and xup. For an optimization problem with given
constraints, the penalty-function method is used to handle
the infeasible points beyond constraints. Specifically, a high
value is artificially assigned to these points. .e way the
algorithm moves towards the optimum is described in detail
in reference [33].

To investigate the kinematic optimization of flapping
wing, the propulsion efficiency is chosen as the real-valued
objective function corresponding to a set of specific kine-
matic parameters. .e propulsion efficiency η of a flapping
wing based on the vortex lattice method is defined as the
ratio of the average propulsion power Pout to the average
total aerodynamic power Pin:

η �
pout

pin
. (39)

.e average powers are time averages of the power
integrations in a total flapping period. .e instantaneous
powers based on the vortex lattice method are defined as
follows:

pout � −DUα, (40)

pin − 
N

i�1
ΔpiΔsini · vi

motion, (41)

where vi
motion is the instantaneous velocity of the ith

subpanel divided by the UVLM. By using light weight
material, low inertia becomes one of the prominent fea-
tures of MAVs, including ornithopters. To provide a ki-
nematic strategy for MAV design, inertial power is
neglected in the optimization.

.e flapping mechanisms of the natural flyer generate
enough lift to support the body. .us, a desirable design
specification is that the average lift of the flapping wings is
not less than the weight of the flyer. In this article, the
average lift L of a single wing satisfies the following
constraint:

L≥
W

2
. (42)

Assigning η � −1 to the infeasible case beyond con-
straints is chosen as the strategy of the penalty-function
method. .e multiparameter vector of the optimization
problem consists of the kinematic parameters ca, θ0, θa, and
φθ in equations (1) and (2), in which the bounds of the
domain are discussed in the next section. .erefore, the
optimization problem is formulated as follows:

minη(x),

subject to xlow ≤ x ≤ xup andL≥
W

2
.

(43)

6. Results

.e variations in the amplitudes and phase angles of the
flapping and pitching are considered in the optimization
process. Firstly, the upper and lower bounds of these pa-
rameters are designed to ensure that the optimal kinematics
fall within the range as much as possible. In existing studies
[8, 34, 35], the optimal propulsion efficiency is often asso-
ciated with the Strouhal number St, which is defined as
St � 2h0f/U∞, where h0 is the amplitude at the wingtip.
Schouveiler [34] showed that the maximum propulsion
efficiency is achieved at Strouhal numbers from 0.21 to 0.25,
while a range from 0.25 to 0.40 was suggested by Anderson
et al. [35]. In nature, flying animals [36] operate within a
range of Strouhal numbers between 0.2 and 0.4. However,
significant discrepancies [35] between experimental mea-
surements and inviscid model predictions occur due to
leading-edge separation when the Strouhal number exceeds
0.35. Because the UVLM is an inviscid method, the Strouhal
numbers of all simulations are limited to less than 0.35 by
restricting the flapping amplitude ca ≤ 40° in the current
research. .e flapping angles of three other kinds of birds
such as seagull, crane, and goose are collected for com-
parison. Referring to Tianshu’s [37] work, the wings of these
birds are modelled as a two-jointed arm with two sections
near the wing root and wing tip, in which the rotation angles
change within ±40°, as shown in Figure 8.

Moreover, the conditions of the optimal kinematics are
from 15° to 25° for the maximum angle of attack and 75° for
the phase angle between flapping and pitching in reference
[34]. Experimental results [8] show that the pitch-leading
phase near 90° is conducive to obtaining the best propulsion
efficiency and preventing the occurrence of dynamic stalls.
.en, the bounds of 0° ≤ θ0 ≤ 10° and 0° ≤ θa ≤ 20° are used to
ensure that the pitching angle contains the recommended
range, and the constraint of the pitch-leading phase is

Root section of Seagull
Root section of Crane
Root section of Goose

Tip section of Seagull
Tip section of Crane
Tip section of Goose
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Figure 8: Rotations at the wing root and wing tip of seagull, crane,
and goose.
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75° ≤φθ ≤ 105°. Finally, the upper and lower bounds of these
parameters are presented in Table 3.

To compare the influence of the deformation on the
aerodynamics, a rigid wing and a flexible wing are con-
sidered here. In the cases of the flexible model, two simu-
lations are performed, with and without gravity. Twenty
iterations in the DIRECT optimization are calculated for
each case, and the variation of the maximum propulsion
efficiencies with the number of iterations is shown in Fig-
ure 9. A total of 411 sets of different kinematic parameters
are calculated for the rigid model, and the sets for the flexible
model with and without gravity are 401 and 417, respectively.
In Figure 9, the maximum propulsion efficiencies reach a
plateau after 15 iterations of optimization, which shows that
the DIRECT algorithm can quickly converge to the optimal
solution in flapping design space.

Table 4 provides a summary of the optimal results for all
models as identified by the DIRECT algorithm. .e results
include the kinematic parameters and average coefficient of
lift CL, average coefficient of thrust CT, and propulsion
efficiency η. Compared with the rigid model, the flexibility of
the wing yields a more than 4% increase in the propulsive
efficiency and nearly doubled thrust under the same kine-
matic constraints. In addition, the results of the flexible
models with and without gravity are close to each other in
both the kinematic parameters and aerodynamic charac-
teristics. .e consistency between the two flexible cases is
also reflected in the process towards the optimum in Fig-
ure 9. Clearly, gravity has hardly any notable impact on the
deformation of the current model, which is mainly caused by
forced motions. Considering the kinematic parameters, the
optimal pitch-leading phases of both the rigid and flexible
models are approximately 90°, which again proves that the
pitch-leading strategy reported in reference [8] is conducive
to obtaining the best propulsion efficiency. Evidence for the
pitch-leading phase can also be found in owl flight [38, 39].
.e phase shift between flapping and pitching is π/2, which
is observed on free-flying barn owls in flapping flight. Al-
though the optimal pitching parameters including θ0, θa, and
φθ are identified within the design domain, the optimal
flapping amplitudes of all cases reach the upper bound of 40°.
.e Strouhal number is related to the flapping amplitude,
which also has a great effect on the wing deformation. In
Figure 10, the deflection at the wingtip in a flapping period T
is represented by the ratio of displacement d to half span l.
According to the results, the maximum deflection at the
wingtip in the current cases is 0.23, which reaches the lower
bound for nonlinear structural analysis [40]. .us, the
considerations of the leading-edge separation and nonlinear
structural dynamics are required when a larger domain of

the flapping amplitude is investigated. In addition, the re-
sults of the average lift are close to the lift constraint
W/2 � 15.092N, half the weight of the flyer. .is indicates
that the optimal motions do not generate excess lift and
extract as much thrust as possible from the flow field.

.e z deflections at the leading-edge points of the 1/3
span, 2/3 span, and wingtip are plotted in Figure 11 to show
the effect of inertia and aerodynamic forces on wing de-
formation. .e flexible model without gravity is chosen in
this case. .e deflection is smaller at positions closer to the
clamped boundary at the wing root.

Figure 11 shows that inertia dominates the wing de-
formation, while aerodynamic forces have a slight effect on
the deformation and a certain advance for the phase. .e
deformation curves at different spans intersect twice in the
downstroke and upstroke stages. .e advance phases
measured in Figure 11 are approximately 15° during the
downstroke and 4° during the upstroke.

.e angle-time and force-time plots are shown in Fig-
ures 12 and 13, respectively. Most of the positive lift and
thrust are produced during the downstroke, and the force
peak occurs near the 0.3 period when the pitching angle
reverses in the downstroke. In the upstroke, the optimal
strategy in all cases keeps the lift and thrust at lower values.
Moreover, the lift remains positive during almost the entire
period while the thrust returns negative in the upstroke.
Clearly, the thrust peaks of the flexible models are higher
than those of the rigid model, which enables a significant
increase in the propulsive efficiency.

.e pressure and force distributions for the optimal
flight paths predicted by the DIRECT algorithm are
exhibited for the rigid and flexible wings in Figure 14. .e
passive deformation dominated by the first bending mode is

Table 3: Kinematic parameter constraints.

Wing motion Parameter Lower bound (deg) Upper bound (deg)
Flapping amplitude ca 0° 40°
Middle pitching angle θ0 0° 10°
Pitching amplitude θa 0° 20°
Pitch-leading phase φθ 75° 105°

Rigid Model
Flexible Model With Gravity
Flexible Model Without Gravity

5 10 15 201
Number of Iteration

–0.1

0.0
η

0.1

0.2

Figure 9: Maximum propulsion efficiency vs. the number of the
optimization iterations.
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clearly observed near the wingtip in the flexible case. .e
pressure variation between the rigid and flexible wings is also
shown near the wingtip during the downstroke. An increase
in wingtip amplitude improves the speed to slice the air flow
near themiddle plane of the downstroke. Based on equations
(38)–(40), higher circulation strengths are obtained when
the local stream velocity increases, which results in higher
pressure on the wing..is indicates that the flexible wing has
the potential to increase aerodynamics by exploiting

spanwise deformation although chordwise flexibility is not
reflected in the current model. Furthermore, an interesting
relation is found between the force distributions in Figure 14
and the planform of the natural bird wing in Figure 1.
During the downstroke of the numerical model, the positive
and negative forces centre at the leading edge of the outer
wing section and wing root, respectively. .e planform of
the natural wing shows preservation and the absence of
material in these wing sections. .is indicates that the

Table 4: Optimal kinematics results from the DIRECT algorithm.

Rigid model Flexible model (with gravity) Flexible model (without gravity)
Kinematic parameter (deg, °)
ca 39.97° 39.48° 39.75°
θ0 3.340° 3.395° 3.395°
θa 11.07° 13.29° 13.32°
φθ 86.91° 83.83° 83.74°

Aerodynamic characteristics
CL 0.5093 0.4942 0.4942
CT 0.0293 0.0571 0.0589
Η 0.1352 0.1773 0.1792
Average force (N)
L 15.555N 15.095N 15.095N
D －0.893N －1.745N －1.799N

Flexible Model With Gravity
Flexible Model Without Gravity

0.2 0.4 0.6 0.8 1.00.0
Time, t/T
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Figure 10: Wingtip deflection vs. time in a period.
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Figure 11: .e deflections at the leading-edge points of the 1/3 span, 2/3 span, and wingtip.
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Flexible Model Without Gravity
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Figure 13: Lift coefficient and drag coefficient vs. time in a period.
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Figure 12: Degrees of flapping angle c and pitching angle θ varying with time in a period: (a) lift coefficient; (b) drag coefficient.
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Figure 14: Continued.
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aerodynamic characteristics of the wing can be further
improved by designing the planform.

7. Conclusions

In this study, kinematic global optimization of a flexible wing
model is performed on a loosely coupled aeroelastic frame-
work to investigate the aerodynamic effect of passive de-
formation caused by flapping and pitching motion. .e
propulsion efficiency is selected as the optimization goal to
solve the flight strategy of flapping flyers with a high-aspect
ratio configuration. According to the results of the simulation
and optimization, the following conclusions are obtained:

(1) .e flapping wing with proper spanwise flexibility
has more aerodynamic potential than the rigid
model in a wide design domain of kinematics. Al-
though the advantage of proper spanwise flexibility
has been proven in existing experiments, the current
work excludes the influence of the selection of ki-
nematic strategy on this conclusion.

(2) .e elastic deformation of the flexible model doubles
the thrust with the same flapping angle as the rigid
model. .e variation in the force distributions is
mainly present at the leading edge of the outer wing
section during the downstroke. A small area of
negative pressure appears at the wing root while
pitching at a negative angle. .erefore, a layout with
a trim near the leading edge at the wing root is
suggested.

(3) Considerations of the leading-edge flow separation
and nonlinear structural dynamics are required if a
larger range of flapping angles and a more flexible
model are used, which goes beyond the application
scope of the present aeroelastic analytical
framework.

(4) .e DIRECT algorithm exhibits fast optimizing
characteristics on the multiparameter kinematic
problem with constraints. Suitable for searching the
optimal value of the simulation result, the DIRECT
algorithm maximizes the thrust efficiently while
satisfying the required lift.

(5) .e effect of gravity is negligible on the model
constructed following the present data, and the
deformation can be explained by a linear model. .e
large taper ratio and proper camber provide suffi-
cient stiffness for large-scale forced movement. .e
excitation frequency of flapping and pitching is half
of the first-order bending frequency, which is far
from the resonant frequency.
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