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Due to the excellent mechanical properties of doubly curved structure and functionally graded porous (FGP)material, the study of
their vibration characteristics has attracted wide attention. *e main aim of this research is to establish a formulation for free and
forced vibration analysis of a new Sandwich FGP doubly curved structure. Four models of Sandwich materials are considered.*e
potential energy and kinetic energy functions are obtained on the foundation of the first-order shear deformation theory (FSDT).
*e idea of domain energy decomposition is applied to the theoretical modeling, where the structure is segmented along the
generatrix direction. *e continuity conditions for the interfaces between adjacent segments are balanced by the weighted
parameters. For each segment, the displacement functions are selected as the Jacobi orthogonal polynomials and trigonometric
series. *e boundary conditions of the structure are obtained by the boundary spring simulation technique. *e solution is
obtained by the variational operation of the structural functional.*e convergence performance and correctness of the theoretical
model are examined by several numerical examples. Finally, some novel results are given, where free and forced vibration
characteristics of Sandwich FGP doubly curved structures are examined in detail.

1. Introduction

*e doubly curved structure is widely used in the con-
struction industry because of its excellent structural and
mechanical properties [1–5]. Due to the appearance of pore,
functionally graded porous (FGP) materials have better
mechanical properties than traditional functionally graded
materials [6–10]. Sandwich structures, which own out-
standing mechanical properties, have been extensively ap-
plied in aerospace, transportation, and other fields [11–15].
However, the Sandwich structure combined with FGP
materials has not been investigated yet. *e objective of the
paper is to establish a model for free and forced vibration
analysis of a new Sandwich FGP doubly curved structure
based on the semianalytical method.

Zenkour [16, 17] conducted the bending and free
vibration analysis of functionally graded (FG) ceramic-

metal Sandwich plates by proposing a two-dimensional
solution. It was assumed that the faces of structure are
with isotropic two-constituent material distribution
along the thickness direction, and their elasticity mod-
ulus and Poisson’s ratio vary in terms of a power-law
distribution, while the core layer is homogeneous and
consisted of isotropic ceramic material. Natarajan and
Manickam [18] studied the bending and free flexural
vibration behavior of Sandwich functionally graded
material (FGM) plates by using QUAD-8 shear flexible
element. Mahi et al. [19] presented a new hyperbolic shear
deformation theory to conduct the bending and free
vibration analysis of isotropic, FG, Sandwich, and lam-
inated composite plates. Extending the Moving Kriging-
based mesh-free method, *ai et al. [20] surveyed the
static, dynamic, and buckling analysis of FG isotropic and
Sandwich plates with classical boundary conditions. Xiao
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et al. [21] applied the finite element method to study the
vibration behavior of Sandwich panel with mass density
gradient (DG) foam core on the basis of the high-order
Sandwich plate theory. Liu et al. [22] investigated the free
vibration characteristics of FG material Sandwich plates
based on the refined higher order Sandwich panel theory.
Zenkour [23] proposed a quasi-3D shear deformation
theory to study the bending responses of FG single-
layered and Sandwich plates with porosities by using
Navier’s technique. Using a layer-wise finite element
method, Pandey and Pradyumna [24] studied the free
vibration of FG Sandwich shells in the framework of
FSDT. Chen et al. [25] conducted vibration investigation
of FGM Sandwich doubly curved shallow shell by a novel
shear deformation theory and the Navier method. Trinh
and Kim [26] proposed a closed-form solution to study
the nonlinear characteristics of the FG Sandwich shells
with thermomechanical loadings.

A retrospect of previous researches shows that most of
the investigations were focusing on Sandwich FGM struc-
tures, while FGP materials were rarely studied. In addition,
the Sandwich rectangular plate or cylindrical shell has been
sufficiently examined, while the research on Sandwich
doubly curved structure is scarce.

*is paper aims to construct a vibration analysis model
for Sandwich FGP doubly curved shell subjected to arbitrary
boundary conditions based on the FSDT, where four
Sandwich material models are considered. *e domain
energy decomposition technique is employed, which can
make the selection of displacement functions become rather
flexible. *e weighted parameters are utilized to deal with
the continuity conditions between each neighbored seg-
ment. For every segment, the displacement functions are
represented by Jacobi polynomials along the generatrix
orientation and trigonometric series in the circumferential
orientation. Free vibration and forced response can be
obtained by standard variational operation.*e convergence
and validity of the model are shown by several numerical
cases.

2. Theoretical Formulations

2.1. Geometric Description. *e orthogonal coordinate
system (φ, θ, z) of the Sandwich FGP doubly curved shell
is shown in Figure 1, where oz and o′z′ are the spatial
coordinate axis and geometric central axis, respectively.
By spinning the generatrix with respect to the central axis
o′z′, structural surface can be achieved. Rφ and Rθ are
primary curvature radius, the centers of which are Oφ and
Oθ respectively. Rs represents the offset distance between
o′z′ and oz. R0 signifies the sum of horizontal radius and
Rs, where R0 �Rθsin φ. In this paper, three kinds of
doubly curved shells are studied, and the corresponding
generatrix characteristics are shown in Figure 2. *e
specific geometric equations are expressed as follows
[27, 28]:

(1) Elliptical shell (Figure 2(a)):
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where a indicates the length of the semimajor axes,
and b represents that of the semiminor axes.
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(2) Paraboloidal shell (Figure 2(b)):
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(3) Hyperbolic shell (Figure 2(c)):
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2.2. Material Model. For FGP materials, there are three
kinds of commonly used mechanical models: symmetric
distribution model, nonsymmetric distribution model, and
uniform distribution model [29]. In this paper, symmetric
distribution model and nonsymmetric distribution model
are considered. Four types of Sandwich FGP materials are

shown in Figure 3. *e material properties along the
thickness direction are expressed as follows:

E(z) � E1 1 − e0α( , (4.a)

G(z) � G1 1 − e0α( , (4.b)
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Figure 1: Geometric and reference system of a Sandwich FGP doubly curved structure.
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Figure 2: Generatrix diagram of three Sandwich FGP doubly curved structures.
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ρ(z) � ρ1 1 − emα( . (4.c)

*e expressions of pore characteristic coefficients e0 and
em are

e0 � 1 −
E2

E1
� 1 −

G2

G1
, 0≤ e0 ≤ 1,

em � 1 −
ρ2
ρ1

, 0≤ em ≤ 1,

em � 1 −
�����
1 − e0


.

(5)

It is obvious from equation (4) that, for different types of
Sandwich FGP materials, only material parameter α can be
adjusted. *e expressions of material parameters α are as
follows:

α �
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2.3. Energy Functional of Shell Segment. In this paper, the
FSDT is applied in the process of modeling [30, 31]. *e
displacement fields of Sandwich FGP doubly curved shells
are

U(φ, θ, z, t) � u(φ, θ, t) + zψφ(φ, θ, t), (10.a)

V(φ, θ, z, t) � v(φ, θ, t) + zψθ(φ, θ, t), (10.b)

W(φ, θ, z, t) � w(φ, θ, t), (10.c)

where u, v and w are displacements in the φ, θ and z di-
rections on the middle surface, and ψφ and ψθ are rotations
of the normal with respect to the θ and φ orientations. *e
linear strain–displacement relationships can be shown as
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0
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1
B
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v
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A � Rφ, B � Rθ sin φ. (11.i)

*e relations between force/moment resultants and
strains/curvatures change are

Type2-2Type1-2 Type2-1Type1-1

z4
z3

z2
z1

Figure 3: Schematic diagrams of four types of Sandwich FGP
materials.
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 , (12.b)

where the stiffness coefficients are obtained as follows:

Aij, Bij, Cij  � 
h/2

−h/2
Qij(z) 1, z, z

2
 dz,

Q11(z) �
E(z)

1 − μ2(z)
, Q12(z) �

μ(z)E(z)

1 − μ2(z)
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E(z)

2[1 + μ(z)]
.

(13)

In this research, the domain energy decomposition
technique is exploited. To this end, the structure is divided
into N segments along the axis direction. By introducing
penalty parameters, the continuity conditions for the

interfaces can be realized. According to the FSDT, the strain
energy Ui and kinetic energy Ti of ith segments can be
expressed as

Ui �
1
2
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Nφε
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As mentioned previously, the boundary spring simula-
tion technique is exploited to simulate the corresponding
boundary conditions. In addition, the continuity conditions
are simulated by weighted parameters. *e corresponding
boundary and coupling potential energy can be described as

Ub �
1
2

2π

0


h/2

−h/2
ku,0u

2
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2
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where i and i+1 represent the ith and (i+1)th shell segments.
When considering forced vibration, the work done by the
external loads may be represented as

Wi �
1
2


φ

θ

fui
ui + fvi

vi + fwi
wi + mφi

ψφi
+ mθi

ψθi
 RφR0dφ dθ,

(19)

where fui
, fvi

and fwi
signify the related distributed forces

along the φ, θ and z orientations, respectively; and the
corresponding distributed couples with respect to the ref-
erence surface are represented by mφi

and mθi
.

As a result, the Lagrangian energy functions (L) can be
displayed as

L � 
N

i

Ti − Ui + Wi(  − 
N−1

i�1
Uc,i − Ub. (20)

2.4. Solution Methodology. With regard to the trial function
method, the key issue is constructing a displacement ad-
missible function, which satisfies the boundary conditions. In
this paper, by introducing the domain energy decomposition
technique, the structure is segmented, and weighted pa-
rameters are brought in to simulate the continuity conditions
for the interfaces between each neighbored segment. *is can
make the choices of displacement admissible function become
quite flexible. Since all segments are free boundaries, only the
displacement functions are required to be continuous and
orthogonal. Herein, the Jacobian orthogonal polynomials
[32–34] are utilized for the expansion of the displacement.
*e displacement functions are exhibited as follows:

u � 
M

m�0


N

n�0
Umn,iP

(α,β)
m (φ)[cos(nθ) + sin(nθ)]e

iωt
, (21.a)

v � 
M

m�0


N

n�0
Vmn,iP

(α,β)
m (φ)[sin(nθ) + cos(nθ)]e

iωt
, (21.b)

w � 
M

m�0


N

n�0
Wmn,iP

(α,β)
m (φ)[cos(nθ) + sin(nθ)]e

iωt
, (21.c)

ψφ � 
M

m�0


N

n�0
ψφmn,i

P
(α,β)
m (φ)[cos(nθ) + sin(nθ)]e

iωt
,

(21.d)

ϕφ � 
M

m�0


N

n�0
ϕφmn,i

P
(α,β)
m (φ)[cos(nθ) + sin(nθ)]e

iωt
, (21.e)

where Umn,i, Vmn,i, Wmn,i, ψφmn,i
and ϕφmn,i

are the Jacobi ex-
panded coefficients; P

(α,β)
m (φ) is the Jacobi polynomial of mth

order, representing the displacement components along the
generatrix orientation. In practice, different types of orthogonal
polynomials can be obtained by resetting Jacobian parameters
α and β. It must also be pointed out here that the relative errors
between the calculated results under different Jacobian pa-
rameters are very small. In this paper, the parameters of Jacobi
are selected as α� β� 0 (Legendre polynomials).

Substituting equations (21) into equation (20) and
expressing it in the form of partial differential equation, the
discretized equation of motion is obtained:

zL

zq
� 0,

q � Umn,i, Vmn,i, Wmn,i,ψxmn,i
,ϕxmn,i

.

(22)

*en, the forced vibration characteristic equationmay be
achieved:

M€q + K + KC + KB q � F, (23)

where M denotes the generalized mass matrix; K indicates
the disjoint generalized stiffness matrix; KC and KB are the
stiffness matrices related with weighted and boundary pa-
rameters, respectively. By assuming harmonic
motionsq � qeiωt, the governing equations can be derived
from equation (23):

det −ω2M + K − Kλ − Kc − K
∧

B   � 0. (24)

*rough the solution of equation (24), the frequencies as
well as the mode shapes can be obtained.

3. Convergence Studies and
Numerical Verification

*e accuracy of the whole theory should be closely related to
the expansion coefficients of Jacobian orthogonal polyno-
mials, the number of segments, and the weighted parameters
between segments. *erefore, it is essential to study the
convergence and correctness of the numerical results. In
order to simplify the description of edge conditions, the F, C,
and Ei (i� 1,2,3) represent the free, clamped, and elastic edge
conditions, respectively.

Table 1 shows the convergence analysis of the number of
segments for Sandwich FGP doubly curved structure. *e
material parameters are defined as follows: E1 � 70GPa,
μ� 0.3, ρ� 2702 kg/m3, e0 � 0.2. Sandwich material type is
2–1. If the material parameters are not specified later, the
material parameters will remain unchanged. *e thickness
ratio coefficient of Sandwich structure is defined as 1 : 3:1.
*e geometric parameters are defined as follows: parabo-
loidal shell: R0 � 2m, R1 � 4m, Rs � 1m, k� 1, h� 0.1m;
hyperbolic shell: R1 � 2m, Rs � 1m, c� 1m, D� 4m,
h� 0.1m; elliptical shell: a1 � 1m, b1 � 2m, Rs � 1m,
h� 0.1m, φ0 � π/6, φ0 � 5π/6. As shown in Table 1, it is
obvious that when the number of segments exceeds 3, the
computed results tend to be stable. *erefore, in all sub-
sequent examples, the number of segments is chosen to be
N� 4. Table 2 shows the convergence analysis of truncation
terms for Sandwich FGP doubly curved structure with C-F
boundary conditions. *e geometric dimensions and ma-
terial parameters are in accordance with those in Table 1.

From Table 2, it is also found that when the Jacobian
orthogonal polynomial is expanded to six terms, the cal-
culated results can be regarded as exact ones. *erefore, in
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Table 1 and all the following examples, Jacobian orthogonal
polynomials are uniformly expanded into eight terms. *e
results of the convergence study of weighted parameters are
shown in Table 3. From Table 3, it can be found that when
the weighted parameter is small, the result is unstable. With
the increase of weighted parameters, the calculated results
converge rapidly. When the weighted parameter is more
than 1020, the results diverge. *erefore, it is indicated that
when the weighted parameters are set between 1014 and 1018,
stable converged results can be obtained. In all subsequent
examples, the weighted parameters are set as 1014.

Based on the study of convergence, the correctness of the
present method is further studied. Table 4 shows the nu-
merical comparison of Sandwich FGP doubly curved
structure with various boundary conditions. *e geometric
parameters are as follows: elliptical Shell: a1 � 1m, b1 � 2m,
Rs � 1m, h� 0.1m, φ0 � π/6, φ0 � 5π/6; hyperbolic shell:
R1 � 2m, Rs � 0m, c� 1m, D� 4m, h� 0.1m. *e dimen-
sionless frequencies are as follows: Ω � ωRs/h

�����
ρ1/E1


(el-

liptical Shell) and Ω � ωD2 �����
ρ1/E1


(hyperbolic shell).

Sandwich material type is 1–2, and the thickness coefficient
of Sandwich structure is defined as 0-1-0. Table 4 shows that
the results obtained in this paper are very close to those
obtained by Zhao et al. [35] using Ritz method. Table 5 gives
the comparative data of Sandwich FGP doubly curved el-
liptical shell, which are obtained from finite element method
(FEM) through ABAQUS. *e boundary condition is de-
fined as F-C. Geometric parameters are defined as follows:
a1 � 1m, b1 � 2m, Rs � 0m, h� 0.1m, φ0 � 0, φ0 � π/2. *e
Sandwich material type and thickness coefficient are con-
sistent with those in Table 1. Table 5 shows that the present
method is appropriate for calculating free vibration features
of Sandwich FGP doubly curved shells.

Next, the correctness of this method for forced response
prediction is further verified. Due to the lack of relevant
literature results, the finite element software ABAQUS is
used.*e geometric dimensions andmaterial parameters are
identical with those in Table 5. Figure 4 shows three loads:
point load, line load, and surface load. In the steady-state
response analysis, the load form is point load, and the
position of action and observation point are
A(φ, θ) � ([0, 0], [0, 0]) and O(φ, θ) � ([π/4, π/4], [0, 0]),
respectively. It should be noted that the first item in pa-
rentheses represents generatrix direction φ and the second
one represents circumferential direction θ. *e point load is
as follows: fw � fwδ(φ − φA)(θ − θA), where fw � −1N,
and δ is the Dirac delta function. Frequency ranges from
500Hz to 1200Hz, with a total of 501 sweeps. Figure 5 shows
four specific forms of impact load function: (a) rectangular
pulse signal; (b) triangular pulse signal; (c) half-sine pulse
signal; and (d) exponential pulse signal, respectively [36]. In
transient response analysis, the shock load function is
chosen as rectangular wave. *e loading time is 10ms, and
the interpolation point is 501. *e loading position is
consistent with that of the steady-state response, and the
coordinates of observation points are defined as (π/3, 0).
Figure 6 shows the comparison of steady-state response and
transient response, respectively. It is obvious from Figure 6
that the proposed method has excellent accuracy for the
prediction of forced response of Sandwich FGP doubly
curved structure.

4. Numerical Results and Discussion

*e third part has made a detailed comparative study on the
correctness of the theoretical modeling, which verifies that
the proposed model has excellent convergence speed and

Table 1: Convergence analysis of number of segments for Sandwich FGP doubly curved structure.

N
Paraboloidal shell Hyperbolic shell Elliptical shell

1 2 3 4 1 2 3 4 1 2 3 4
2 9.46 9.80 15.94 23.30 42.91 47.49 56.58 74.94 45.57 60.60 128.43 167.75
3 9.45 9.80 15.91 23.30 42.83 47.47 56.41 74.93 45.56 60.59 128.40 167.75
4 9.45 9.80 15.90 23.30 42.79 47.47 56.30 74.93 45.56 60.59 128.40 167.75
5 9.45 9.80 15.90 23.30 42.78 47.47 56.25 74.94 45.56 60.59 128.40 167.75
6 9.45 9.80 15.90 23.30 42.77 47.47 56.23 74.94 45.56 60.59 128.40 167.75
8 9.45 9.80 15.90 23.30 42.77 47.47 56.21 74.94 45.56 60.59 128.40 167.75
10 9.45 9.80 15.90 23.30 42.77 47.47 56.21 74.94 45.56 60.59 128.40 167.75

Table 2: Convergence analysis of truncation terms for Sandwich FGP doubly curved structure.

m
Paraboloidal shell Hyperbolic shell Elliptical shell

1 2 3 4 1 2 3 4 1 2 3 4
2 9.46 9.80 15.94 23.30 42.91 47.49 56.58 74.94 45.57 60.60 128.43 167.75
3 9.45 9.80 15.91 23.30 42.83 47.47 56.41 74.93 45.56 60.59 128.40 167.75
4 9.45 9.80 15.90 23.30 42.79 47.47 56.30 74.93 45.56 60.59 128.40 167.75
5 9.45 9.80 15.90 23.30 42.78 47.47 56.25 74.94 45.56 60.59 128.40 167.75
6 9.45 9.80 15.90 23.30 42.77 47.47 56.23 74.94 45.56 60.59 128.40 167.75
8 9.45 9.80 15.90 23.30 42.77 47.47 56.21 74.94 45.56 60.59 128.40 167.75
10 9.45 9.80 15.90 23.30 42.77 47.47 56.21 74.94 45.56 60.59 128.40 167.75
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Table 3: Convergence analysis of weighted parameters for Sandwich FGP doubly curved structure.

Λ
Paraboloidal shell Hyperbolic shell Elliptical shell

1 2 3 4 1 2 3 4 1 2 3 4
108 3.84 5.97 8.46 14.23 9.03 14.49 22.34 23.16 17.95 38.69 39.41 39.85
1010 9.01 9.27 15.86 21.59 55.41 60.98 69.31 82.13 45.20 55.59 126.38 154.68
1012 9.45 9.79 15.90 23.28 42.86 47.59 56.33 75.07 45.56 60.53 128.38 167.61
1014 9.45 9.80 15.90 23.30 42.79 47.47 56.30 74.93 45.56 60.59 128.40 167.75
1016 9.45 9.80 15.90 23.30 42.79 47.47 56.30 74.93 45.56 60.59 128.40 167.75
1018 9.45 9.80 15.90 23.30 42.79 47.47 56.30 74.93 45.56 60.59 128.39 167.75
1020 9.45 9.83 15.88 23.30 42.71 47.46 56.29 74.93 45.68 60.55 128.48 167.76
1022 9.83 21.09 27.28 35.32 57.04 64.68 66.65 77.95 46.32 71.05 170.45 174.49
1024 131.67 134.72 160.47 169.09 140.82 181.57 200.96 210.62 369.36 445.81 481.35 566.60

Table 4: Numerical comparison of frequencies for Sandwich FGP doubly curved structure with various boundary conditions.

Type Mode
Elliptical shell Hyperbolic shell

C-C C-F C-C C-F
Present Reference [35] Present Reference [35] Present Reference [35] Present Reference [35]

Type1-1

1 3.01 3.009 0.574 0.574 2.687 2.68 1.839 1.838
2 3.012 3.011 0.738 0.738 3.025 3.013 2.218 2.217
3 3.14 3.14 1.612 1.612 4.182 4.151 2.633 2.627
4 3.147 3.146 2.028 2.029 4.404 4.386 2.984 2.974

Type1-2

1 3.003 3.004 0.562 0.563 2.671 2.665 1.814 1.814
2 3.005 3.006 0.735 0.735 2.969 2.959 2.217 2.217
3 3.129 3.129 1.581 1.582 4.087 4.058 2.613 2.607
4 3.138 3.139 2.028 2.03 4.333 4.31 2.925 2.916

Table 5: Numerical comparison of frequencies for Sandwich FGP elliptical shell accompanied with F-C boundary condition.

Mode 1 2 3 4 5 6 7 8 9 10
Present 272.39 420.47 466.94 550.27 591.89 595.34 701.03 712.70 757.62 789.95
FEM 273.15 420.2 466.42 553.54 592.22 595.2 703.33 712.35 757.27 790.86
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Figure 4: Schematic diagram of three categories of loads. (a) Point force. (b) Line force. (c) Surface force.
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computational accuracy. In this part, numerical discussions
will be further carried out.

Tables 6 and 7 show the first four frequencies of four
Sandwich FGP materials, respectively. *e geometric di-
mensions are as follows: paraboloidal shell: Case 1:R0 � 2m,

R1 � 4m, Rs � 1m, k� 1, h� 0.1m; Case 2:R0 � 2m, R1 � 4m,
Rs � 1m, k� 2, h� 0.1m; Case 3:R0 � 2m, R1 � 4m, Rs � 1m,
k� 3, h� 0.1m; hyperbolic shell: Case 1:R1 � 2m, Rs � 1m,
c� 1m, D� 4m, h� 0.1m; Case 2:R1 � 2m, Rs � 1m, c� 2m,
D� 4m, h� 0.1m; Case 3:R1 � 2m, Rs � 1m, c� 3m,D� 4m,
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Figure 5: *e diagram of load signal. (a) Rectangular pulse signal. (b) Triangular pulse signal. (c) Half-sine pulse signal. (d) Exponential
pulse signal.

Present
FEM

-12

-11

-10

-9

-8

-7

D
isp

la
ce

m
en

t (
m

)

600 800 1000 1200
Frequency (Hz)

(a)

Present
FEM

84 6 100 2
Time (ms)

-0.10

-0.05

0.00

0.05

D
isp

la
ce

m
en

t (
10

-9
 m

)

(b)

Figure 6: Verification of the correctness of responses: (a) steady-state response; (b) transient response.
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h� 0.1m; Elliptical shell: Case 1: a1 � 1m, b1 � 1m, Rs � 1m,
h� 0.1m, φ0 � π/6, φ0 � 5π/6; Case 2: a1 � 1m, b1 � 2m,
Rs � 1m, h� 0.1m, φ0 � π/6, φ0 � 5π/6; Case 3: a1 � 1m,
b1 � 3m, Rs � 1m, h� 0.1m, φ0 � π/6, φ0 � 5π/6. For para-
bolic shells, the frequency parameters of shells increase with
the increase of characteristic coefficient k. For hyperbolic
shells, when the structure coefficient c increases, the fre-
quency parameters of the shells decrease. For elliptical shells,
when the structural coefficient b increases, the frequency
parameters decrease accordingly. *e above results indicate
that the change of parameters directly affects the stiffness
matrix of the Sandwich FGP doubly curved structure. Be-
sides, the frequency parameters of Type 1--1 Sandwich FGP
materials are the largest, while those of Type 1-2 Sandwich
materials are the smallest. For the study of free vibration,
modal modes can provide more information. *erefore,
modal modes under some elastic boundary conditions are
given in Figures 7, 8, 9.

Next, the parameters of the forced response are exam-
ined. *e geometric parameters are consistent with those of
Case 1 in Tables 6, 7, 8, and 9. In the steady-state response,
the load type is linear. *e boundary is defined as C-C, and
the Sandwich FGP material is selected as Types 1-2. For
different doubly curved structures, the location of load
action is defined as follows: paraboloidal shell:

A(φ, θ) � ([π/3, 2π/3], [0, π]); hyperbolic shell:
A(φ, θ) � ([π/2, π/2], [0, π]); and elliptical shell:
A(φ, θ) � ([π/2, π/2], [0, π]). *e locations of observation
point are defined as follows: paraboloidal shell:
O(φ, θ) � ([π/3, π/3], [0, 0]); hyperbolic shell:
O(φ, θ) � ([π/4, π/4], [0, 0]); and elliptical shell:
O(φ, θ) � ([π/4, π/4], [0, 0]). In order to simplify the tran-
sient study, the shock load function is chosen as rectangular
wave. *e position of the impact load is consistent with that
of the steady-state response. Similarly, observation points
are defined as follows: paraboloidal shell:
O(φ, θ) � ([3π/10, 3π/10], [0, 0]); hyperbolic shell:
O(φ, θ) � ([π/2, π/2], [0, 0]); and elliptical shell:
O(φ, θ) � ([π/4, π/4], [0, 0]).

Figures 10 and 11, respectively, study the steady and
transient responses of the structure under different elastic
boundary conditions. It can be found that the boundary
condition parameters have a significant effect on the
forced response of the Sandwich FGP doubly curved
structure. Figure 12 and 13, respectively, present the
steady and transient responses of the Sandwich FGP
doubly curved structure under different porous coeffi-
cient. For steady-state response analysis, with the same
frequency range, the number of resonance peaks decreases
with the increase of pore coefficient. For transient

Table 6: First four frequencies for Type 1-1 Sandwich FGP doubly curved structure with diverse boundary conditions.

Type Mode
Parabolic shell Hyperbolic shell Elliptical shell

CC SS CF CC SS CF CC SS CF

Case 1

1 66.05 63.40 15.27 107.90 105.24 43.61 361.55 276.58 71.18
2 67.39 64.72 18.55 112.79 109.18 47.32 389.58 315.40 130.70
3 72.28 69.69 23.88 135.21 132.53 58.47 461.71 407.96 146.15
4 77.90 75.54 27.64 139.24 133.68 74.45 551.69 515.53 220.14

Case 2

1 118.03 109.84 23.74 100.64 98.62 41.48 247.30 219.58 47.23
2 120.89 112.10 25.83 110.98 107.24 42.22 247.48 247.10 60.64
3 121.30 114.13 31.06 120.62 118.73 58.03 258.01 247.46 132.53
4 131.65 125.87 41.13 139.31 133.31 64.42 258.59 257.41 166.64

Case 3

1 162.09 143.75 29.26 97.21 95.55 39.66 135.46 135.32 35.27
2 163.01 144.21 31.77 108.38 105.47 39.99 137.59 137.31 43.47
3 165.72 148.30 36.00 109.28 107.08 57.33 153.59 153.53 111.17
4 168.36 149.76 45.25 115.59 112.43 57.87 157.70 157.48 120.46

Table 7: First four frequencies for Type 1-2 Sandwich FGP doubly curved structure with diverse boundary conditions.

Type Mode
Parabolic shell Hyperbolic shell Elliptical shell

CC SS CF CC SS CF CC SS CF

Case 1

1 64.52 61.79 14.92 105.94 102.88 42.55 352.10 267.85 69.38
2 66.22 63.48 17.88 109.70 105.77 46.70 379.98 307.29 126.54
3 70.19 67.54 23.57 133.47 128.71 56.51 451.42 400.48 143.67
4 76.83 74.43 26.56 134.57 130.34 73.61 539.98 507.61 216.17

Case 2

1 115.63 107.99 22.98 98.74 96.44 40.40 243.99 213.51 45.66
2 118.02 109.71 25.32 107.84 103.78 41.64 244.17 243.90 59.70
3 119.20 112.62 29.90 119.08 116.81 56.05 254.14 243.95 128.40
4 129.66 124.50 40.56 134.59 128.31 63.70 254.95 254.14 164.83

Case 3

1 158.57 142.09 28.32 95.34 93.42 38.88 133.21 133.08 34.73
2 159.15 143.02 31.05 106.03 101.91 39.10 135.84 135.60 41.98
3 162.41 145.99 34.67 107.00 105.37 55.87 149.92 149.87 109.98
4 164.02 148.88 44.51 113.32 109.84 56.69 155.88 155.69 117.50
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Figure 7: Several typical mode shapes for Sandwich FGP paraboloidal shell. (a) Paraboloidal shell (k� 1) with E1-E1 boundary conditions.
(b) Paraboloidal shell (k� 2) with E2-E2 boundary conditions. (c) Paraboloidal shell (k� 3) with E3-E3 boundary conditions.
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Figure 8: Continued.
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Mode=(1,1) Mode=(1,2) Mode=(1,3)

(c)

Figure 8: Several typical mode shapes for Sandwich FGP hyperbolic shell. (a) Hyperbolic shell (c � 1) with E1-E1 boundary
conditions. (b) Hyperbolic shell (c � 2) with E2-E2 boundary conditions. (c) Hyperbolic shell (c � 3) with E3-E3 boundary
conditions.

Mode=(1,1) Mode=(1,2) Mode=(1,3)

(a)

Mode=(1,1) Mode=(1,2) Mode=(1,3)

(b)

Mode=(1,1) Mode=(1,2) Mode=(1,3)

(c)

Figure 9: Several typical mode shapes for Sandwich FGP elliptical shell. (a) Elliptical shell (b � 1) with E1-E1 boundary conditions.
(b) Elliptical shell (b � 2) with E1-E1 boundary conditions. (c) Elliptical shell (b � 3) with E1-E1 boundary conditions.

Table 8: First four frequencies for Type 2-1 Sandwich FGP doubly curved structure with diverse boundary conditions.

Type Mode
Parabolic shell Hyperbolic shell Elliptical shell

CC SS CF CC SS CF CC SS CF

Case 1

1 64.94 62.44 15.01 107.20 104.70 42.79 354.72 273.62 69.75
2 67.03 64.52 17.74 110.00 106.64 47.47 383.30 313.01 126.40
3 70.23 67.79 23.95 134.10 128.93 56.30 456.33 406.35 145.66
4 78.04 75.83 26.29 135.71 133.17 74.93 546.42 513.89 218.24
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Table 8: Continued.

Type Mode
Parabolic shell Hyperbolic shell Elliptical shell

CC SS CF CC SS CF CC SS CF

Case 2

1 116.71 109.14 22.92 99.86 97.95 40.55 248.11 219.33 45.56
2 118.70 110.50 25.56 108.03 104.53 42.31 248.57 248.07 60.59
3 120.66 114.08 29.62 121.11 119.30 55.79 257.72 248.33 128.40
4 131.52 126.25 40.85 134.06 128.50 64.85 259.37 257.72 167.75

Case 3

1 159.78 142.49 28.23 96.39 94.80 38.96 135.12 134.99 35.26
2 160.05 143.63 31.25 106.05 102.53 39.72 138.25 138.01 41.87
3 163.93 146.16 34.37 108.83 107.57 55.60 151.02 150.98 111.92
4 164.60 149.66 45.07 114.48 111.54 57.71 158.70 158.51 118.26

Table 9: First four frequencies for Type 2-2 Sandwich FGP doubly curved structure with diverse boundary conditions.

Type Mode
Parabolic shell Hyperbolic shell Elliptical shell

CC SS CF CC SS CF CC SS CF

Case 1

1 65.07 62.53 15.04 107.44 104.85 42.87 355.24 273.61 69.86
2 67.19 64.64 17.76 110.18 106.73 47.59 383.91 313.29 126.55
3 70.34 67.86 24.01 134.25 128.98 56.36 457.13 407.18 145.98
4 78.23 76.00 26.31 136.07 133.42 75.14 547.42 515.20 218.49

Case 2

1 116.95 109.41 22.95 100.08 98.10 40.62 248.72 219.35 45.61
2 118.92 110.73 25.62 108.20 104.61 42.41 249.20 248.68 60.73
3 120.94 114.40 29.65 121.42 119.53 55.85 258.30 248.95 128.55
4 131.84 126.63 40.88 134.21 128.54 65.03 259.95 258.30 168.22

Case 3

1 160.10 143.00 28.26 96.59 94.95 39.02 135.43 135.30 35.34
2 160.35 144.19 31.32 106.20 102.58 39.82 138.61 138.37 41.91
3 164.28 146.63 34.40 109.11 107.78 55.66 151.29 151.24 112.23
4 164.89 150.28 45.18 114.72 111.70 57.86 159.12 158.94 118.45
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Figure 10: Study on the influence of elastic boundary conditions on the steady-state response of Sandwich FGP doubly curved structure: (a)
Sandwich FGP paraboloidal shell; (b) Sandwich FGP hyperbolic shell; (c) Sandwich FGP elliptical shell.
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Figure 11: Study on the influence of elastic boundary conditions on the transient response of Sandwich FGP doubly curved structure: (a)
Sandwich FGP paraboloidal shell; (b) Sandwich FGP hyperbolic shell; (c) Sandwich FGP elliptical shell.
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Figure 12: Continued.
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response analysis, the increase of porous coefficient results
in the increase of response amplitude to a certain extent.
*e main reason for this is that the increase of porous
coefficient can reduce the quality of the structure. Fig-
ures 14 and 15 show the effect of the thickness of FGP

materials on the forced response of Sandwich FGP doubly
curved structure. From these two graphs, it is observed
that the thickness coefficient of FGP layer is not very
sensitive to the forced response of the Sandwich FGP
doubly curved structure. For the steady-state response, the
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Figure 12: Study on the effect of porous coefficient on the steady-state response of Sandwich FGP doubly curved structure: (a) Sandwich
FGP paraboloidal shell; (b) Sandwich FGP hyperbolic shell; (c) Sandwich FGP elliptical shell.
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Figure 13: Study on the effect of porous coefficient on the transient response of Sandwich FGP doubly curved structure: (a) Sandwich FGP
paraboloidal shell; (b) Sandwich FGP hyperbolic shell; (c) Sandwich FGP elliptical shell.
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Figure 14: Study on the effect of thickness on the steady-state response of Sandwich FGP doubly curved structure: (a) Sandwich pa-
raboloidal honeycomb shell; (b) Sandwich hyperbolic honeycomb shell; (c) Sandwich elliptical honeycomb shell.
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Figure 15: Study on the effect of thickness on the transient response of Sandwich FGP doubly curved structure: (a) Sandwich paraboloidal
honeycomb shell; (b) Sandwich hyperbolic honeycomb shell; (c) Sandwich elliptical honeycomb shell.
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resonance peak occurs at larger frequencies as the
thickness increases.

5. Conclusions

In this research, free and force vibration analyses of a
novel Sandwich FGP doubly curved shell subjected to
arbitrary boundary conditions are conducted in the
framework of the FSDT. *e theoretical modeling is
based on the domain energy decomposition and
boundary spring simulation techniques. For every seg-
ment, the displacement functions are represented by
Jacobi polynomials along the generatrix orientation and
trigonometric series in the circumferential orientation.
Free vibration and forced response of Sandwich struc-
tures can be obtained by standard variational operation of
unknown coefficients of displacement functions. *e
convergence and validity of the established analysis
model are given through several numerical cases. Some
new results are given, which may be served as reference
data. In addition, parameterized study of forced response
is also carried out for pore parameters, boundary pa-
rameters, and thickness parameters.
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