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In the article titled “ModalMass and Length ofMode Shapes in
Structural Dynamics” [1], there was a minor typographical
error in equation (45), which is corrected as follows:

L2 � (1/V)
V

(ψ)2ρ(ρ)dV.

In Table 1, there was a minor typographical error in the
expression of ψ2x, which is corrected as follows:

ψ2x � − (2y/a).

Additionally, there were multiple errors in the num-
bering of the equations, and these errors have been corrected
in the revised version shown below.

Abstract

�e literature about the mass associated with a certain mode,
usually denoted as the modal mass, is sparse. Moreover, the
units of the modal mass depend on the technique used to
normalize the mode shapes, and its magnitude depends on
the number of degrees of freedom (DOFs) used to discretize
the model. �is has led to a situation where the meaning of
the modal mass and the length of the associated mode shape
is not well understood. As a result, normally, both the modal
mass and the length measure have no meaning as individual
quantities, but only when they are combined in the fre-
quency response function. In this paper, the problems of
defining the modal mass and mode shape length are dis-
cussed, and solutions are found to define the quantities in

such a way that they have individual physical meaning and
can be estimated in an objective way.

1. Introduction

�e classical equation of motion for a system with N degrees
of freedom (DOFs) is [1–10]

M€y (t) + C _y(t) + Ky(t) � p(t), (1)

where p(t) is the force input vector, y(t) is the response
vector, and,M,C, and K are the mass, the damping, and the
stiffness matrices, respectively.

Assuming proportional damping, it is well known that
the solution is given as [1–10]

y(t) � Ψq(t) � ψ1q1(t) + ψ2q2(t) + ψ3q3(t) + · · · , (2)

where Ψ � ψ1 ψ2 ψ3 . . .  is the mode shape matrix
containing the real-valued mode shapes representing the
spatial solution and q(t) is the modal coordinate vector
containing the modal coordinates q(t) � q1(t)q2(t) . . . 

T

representing the time solution. Inserting the solution given
by equation (2) into the equation of motion, equation (1),
and multiplying from the right by the mode shape matrix
transpose, it can be shown that the resulting matrices are
diagonalizable, and we obtain a set of equations of
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independent 1DOF systems, one for each of the modal
coordinates, i.e.,

mr €q (t) + cr _q(t) + krq(t) � pr(t), (3)

where mr, cr, kr, and pr(t) � ψTr p(t) are the modal mass, the
modal damping, the modal stiffness, and the modal load,
respectively, corresponding to the r-th mode.

In the frequency domain, the equation of motion is
expressed as [1–10]

H(ω) · P(ω) � U(ω), (4)

whereH(ω) is the frequency response functionmatrix given by

H(ω) � − ω2M + iωC + K 
− 1

. (5)

�e FRF can also be expressed in terms of modal pa-
rameters, which for proportional damped models is given by
[1–4]

H(ω) � 

NM

r�1

ψrψ
T
r

mr ω2
r − ω2

+ i2ζrωωr 
, (6)

where NM is the number of modes, ωr is the natural fre-
quencies, ζr is the damping ratio, ψr is the mode shape, and
mr is the modal mass, respectively, of the r-th mode. From
equations (3) and (5), it is easily seen that the modal mass is
needed in all applications where the frequency response
function (FRF) (or the impulse response function (IRF)) has
to be constructed from the modal parameters, such as
structural modification, health-monitoring applications, and
damage detection [1–4, 10].

A mode shape is said to be mass normalized when the
modal mass is dimensionless, i.e., m � 1. On the contrary, a
mode shape is said to be unscaled if it is not mass nor-
malized. �e mass-normalized φ and the unscaled ψ mode
shapes are related by the following equation [1–10]:

φ �
1
��
m

√ ψ, (7)

where the modal mass m is a real scalar in undamped and
proportionally damped models. If the mode shape ψ is
dimensionless, the modal mass has units of mass (kg).

�e concept of modal mass is addressed in the classical
books of structural dynamics [5, 6] and modal analysis [1–4,
10] and also in research papers [11, 12]. In some books of
classical dynamics [5, 13], the concept of modal mass has also
been named as generalized mass or effective modal mass.

1.1. 4e Concept of Effective Mass. Ewins [1] defined a new
parameter denoted as effective mass which is different to the
concept of modal mass. �is effective mass is related to a
certain mode and a certain DOF. If mass-normalized mode
shapes are used, the effective mass at DOF j for mode r is
defined as

mjj 
r

�
1

ϕjr 
2. (8)

Due to the fact that mass-normalized mode shapes are
unique and not subject to any arbitrary scaling factors, this
new concept is also unique and represents a useful de-
scription of the behavior of the structure point by point and
mode by mode [1].

In base-excited systems, the term effective mass has also
been used to define a different parameter [5, 6, 14], which
must not be mistaken with the modal mass.

For a structure subjected to an acceleration support
excitation, with a mass matrix [M], mode shapes ψ , and
influence coefficient l, the modal participation factor for the
r-th mode can be obtained as [5, 6, 14]

Γr �
ψ 
T
r · [M] · l{ }

ψ 
T
r · [M] · ψ r

�
ψ 
T
r · [M] · l{ }

mr

, (9)

which provides a measure of the system mass participating
in that particular mode. In engineering, the earthquake
vector l{ } represents the displacements of the story masses
resulting from a static unit ground displacement in the
direction of the seismic excitation [6].

�e effective modal mass meffr for the r-th mode is
defined as

meffr �
Γ2r
mr

. (10)

Table 1: A rigid block on springs: continuous formulas.

xb

y

K K

a

Mode 1

1 1

Mode 2

1

–1

Mode shapes ψ1x � 0 ψ2y � (2x/a)

ψ1y � 1 ψ2x � − (2y/a)

Length of mode shapes
L2
1 � 1 L2

2 � (1/3)(1 + (b2/a2))
L2 � (1/V)V(ψ2

x + ψ2
y)dV

Modal mass
m1 � M m2 � (M/3)(1 + (b2/a2))

m � 
V
ρ(ψ2

x + ψ2
y)dV
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�e concept of effective mass was first proposed by
Bamford et al. [14] in the early 70s, and it is based on the
assumptions that the system is excited at the base and also that
the base is rigid. Amode with a large effectivemass is usually a
significant contributor to the response of the system m, i.e.,
only the modes which have significant effective masses are
needed to represent the response of the structure in a certain
frequency band [15, 16]. Moreover, the sum of the effective
masses for all modes in a given response direction must equal
the total mass of the structure [5, 6]. If some modes of the
system are truncated, the effective mass of the truncated
modes is added directly to the base as a residual mass [15].�e
equations of motion obtained for displacement and accel-
eration loading are different from each other because of the
construction of the effective external load [16, 17]. When
multiple constraints need to be defined by different motions,
displacement loading should be the preferred one.

1.2. Modal Mass and Modal Analysis. Most of the literature
related to modal mass is devoted to methodologies and
techniques to estimate the modal masses of structures and
mechanical systems from experiments. In [19], it is men-
tioned that modal mass is the least reliable parameter when
classical modal analysis (CMA, also known as experimental
modal analysis) is being used. Furthermore, it is also very
sensitive to response magnitude.

In classical modal analysis, the modal masses are ob-
tained from the experimental FRF using some of the several
identification techniques, which are fully described in the
classical books of modal analysis [1–3]. Although it is well
known that a relatively high uncertainty is expected in the
modal masses when using CMA, only few papers can be
found in the literature discussing this subject.

Zivanovic et al. [19] estimated the modal mass corre-
sponding to the first vertical mode of a footbridge with CMA
using two different excitations (random excitation and
unaveraged chirp excitation) obtaining 53.2 kg and 48.8 kg,
respectively, the difference being 8.3%.

Allen and Sracic [20] applied CMA to determine the
modal parameters in a free-free beam, excited with an
impulse hammer, measuring the response with a scanning
laser vibrometer. �e modal masses for all the modes were
estimated with an error less than 20%. Much of the dis-
crepancy was attributed to the variation in the hammer
blows and uncertainty in the damping estimates.

In the operational modal analysis (OMA), the forces are
unknown, and the modal masses cannot be estimated, i.e.,
only the unscaled mode shapes can be identified for each
mode [4, 21]. In order to overcome this problem, several
approaches have been proposed recently. One is based on
modifying the dynamic behavior of the structure by
changing the stiffness and/or the mass and then performing
operational modal analysis on both the original and the
modified structure [21–25]. Another one is using the mass
matrix of a finite element model [26] or considering for the
experimental mode shapes having the same modal masses as
those of a finite element model [27].

Several methods have also been proposed to estimate
modal masses combining OMA and the response of the

structure subject to a certain artificial excitation. Pavic and
Brownjohn [28] developed a method for estimating the
modal masses of footbridges known to respond to pedestrian
excitation. �eir method is based on quantifying the dy-
namic forces that generate the lively response, along with a
characterization of the initial part of the resonant buildup
due to these forces. In [29], the modal parameters of some
British rock lighthouses are estimated with CMA. �e most
important modes have frequencies ranging between 4Hz
and 7Hz, and the modal masses are of the order 200 t.

Brandt et al. [30] proposed the OMAH technique where
operational modal analysis is combined with mono-
harmonic excitation applied by an actuator. Cara [31] de-
veloped the equations needed to compute the modal masses
from a state-space model when CMA and OMA are
combined.

Hwang et al. [33] proposed a method for estimating the
modal masses of a structure using a mass-type damping
device. Controllability and observability matrices are con-
structed using the identified system matrices and modal
space system matrices. �e modal masses are obtained
considering that the product of controllability and observ-
ability matrices does not change with the type of system
matrices.

Füllekrug [34] developed the equations for estimating
effective masses and modal masses from base forces mea-
sured in base-driven tests. �e author obtained accurate
results, and the accuracy only decreases in cases where the
magnitude of the effective masses is low.

1.3. Tuned Mass Dampers (TMDs). A tuned mass damper
(TMD) is a dynamical device (it consists of a mass, a spring,
and a damper) that is attached to a structure in order to
reduce the dynamic response of a structure [35–39]. �e
mass and the stiffness of the TMD are tuned to the natural
frequency that needs to be damped, typically the first mode.

A TMD is characterized by three ratios: frequency ratio
(natural frequency of the TMD to the natural frequency of
the structure), mass ratio (mass of the TMD to the modal
mass of the structure), and damping ratio (damping of the
TMD to the modal damping ratio of the structure) [35–37].
�us, the modal mass of the structure plays an important
role in the design of tuned mass dampers. As the mass of the
damper depends on themodal mass of the structure, how the
modal mass is determined is an important factor in the
design of a TMD [40].

�e tuning of the properties of the TMD depends on the
loading acting on the structure. Ormondroyd and Den
Hartog [35] proposed a method to minimize the response to
sinusoidal loading. �e first successful analysis of the TMD
for seismic loading was introduced by Wirsching and Yao
[36].

�e effect of considering the soil-structure interaction in
the seismic response of reinforced concrete chimneys was
investigated by Elias [41], where it is concluded that the
increase in the mass ratio reduces the seismic response. An
integrated damping system using both TMDs and double-
skin facade (DSF) damping system was investigated in [42].

Shock and Vibration 3



�e author concluded that this system requires a signifi-
cantly reduced TMD mass ratio compared to traditional
TMDs. �e response of the wind turbine tower under wind
loads was investigated by Gaur et al. [37]. �ey concluded
that an optimum mass ratio exists for each mass ratio.

1.4. Mode Shape Normalization. Mode shapes can be nor-
malized in many different ways, the most common tech-
niques being mass normalization, normalization to the unit
length of the mode shape (length scaling), and normali-
zation to a component (usually to the largest component)
equal to unity (DOF scaling). For this reason, the modal
mass of a mode shape is not unique because it is directly
related to the normalization method which has been used
to define the mode shape [1], making the physical inter-
pretation difficult.

Due to the fact that the modal mass corresponding to the
mass-normalized mode shapes φ is m � 1, the so-defined
dimensionless modal mass introduces problems interpreting
the modal equations given by equation (3) and the modal
coordinates that now have the unit [m/

��
kg


]. �is is mis-

leading and unfortunate.
In [1–3], the modal mass is defined as a scaling pa-

rameter for the mode shapes, i.e., it is used to convert the
original unscaled mode shape vector ψ  into the
scaled (mass-normalized) mode shape vector φ . �e
concept of scaling factor α, which is related to the modal
mass by

α �
1
��
m

√ , (11)

is also used in the field of structural dynamics [4].
Expressions for calculating the modal mass in contin-

uous beams can be found in the literature [5–9]. As an
example, in continuous straight planar beams with length L,
distributed mass density ρ(x), and cross section with area
A(x), the modal mass (also denoted as generalized mass in
some books of structural dynamics), corresponding to an
arbitrary normalized continuous mode shape vector ψ(x), is
given by [5–9]

mψ � 
L

0
ρ(x)A(x)|ψ(x)|

2dx. (12)

In discrete systems, the mode shapes are vectors, and the
modal mass corresponding to the mode shape ψ can be
calculated with the following equation [1–8]:

m � ψTMψ, (13)

where M is the mass matrix.
A mode shape is said to be normalized to the unit length

if its length is unity. In one-dimensional continuous systems,
the Euclidean length LE of a function ψ(x), also known as
Euclidean norm or L2 − norm, is defined as [34]

LE �

�����������


L

0
|ψ(x)|

2dx



, (14)

where the subindex ‘E’ indicates Euclidean.
In discrete systems, the length of the mode shape vector

ψ (length of a vector in the Euclidean space) is defined as
[34]

LE �

����

ψTψ


. (15)

A mode shape ψ can be scaled to the unit length by

ψL � ψ/LE, (16)

where ψL indicates the mode shape normalized to the unit
length (Euclidean length equal to unity).

It is easy to realize that this procedure will define the
modal mass estimated from equation (13) as something that
is heavily dependent on the number of DOFs in the model.
In fact, it is easy to show that, for this case, the modal mass is
approximately proportional to

m∝
1
N

. (17)

Another approach to scaling is to scale the largest
component (or some other component) to a certain value
(for instance, equal to unity) [1–7]. �is introduces the
DOF-scaled mode shape ψD :

ψD  �
ψ 

ψDn

, (18)

where ψDn is the considered DOF used for scaling.
If the mode shapes are normalized to the largest com-

ponent equal to unity, the DOF used for normalization
should be the same in the FE model and the test, i.e., the
DOF must be shared. If this is not the case, then the modal
mass is dependent on the selected DOF.

1.5. Physical Interpretation of Modal Mass. Although the
concept of modal mass is defined in the classical books of
structural dynamics and modal analysis, the physical in-
terpretation of this modal parameter is rarely addressed.

�e modal mass for the undamped and the propor-
tionally damped cases is usually defined as a scaling factor
for the mode shapes [1, 3, 11], i.e., it is used to convert the
original unscaledmode shape vector {ψ} into themore useful
mass-normalized mode shape vector {ϕ} [1–4].

When using modal superposition (see equation (5)), the
modal mass represents the mass of the single-DOF systems
after decoupling the equations by transformation to modal
coordinates [1–4].

In [43], it is demonstrated that the modal mass of a
simply supported beam, when the mode shapes are nor-
malized to the largest component equal to unity, is the half of
the total mass of the system, whereas in fixed-fixed beams,
the modal mass is equal to the total mass of the system.

However, it seems like none of the classical ways of
dealing with the scaling problem of themode shapes lead to a
modal mass that have the needed clarity in terms of physical
meaning. Furthermore, since the results are dependent on
the number of DOFs in the model, the individual quantities
do not seem to have much meaning at all.
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In this paper, a new and better definition of the modal
mass is presented. �is definition leads to significant im-
provements in the physical understanding of this modal
parameter. Firstly, the most important requirements for a
new definition of the modal mass are proposed. �en, a new
expression for the length of a continuous mode shape is
formulated by introducing the concept of the volumematrix,
which again leads to a new definition of the modal mass for
the continuous case. �e expressions derived for continuous
systems are later extended to discrete cases. Finally, the
concepts and equations formulated in this paper are illus-
trated by simple examples.

2. Basic Requirements

In order to achieve a better understanding of modal mass,
one would expect that a new definition would lead to a better
physical meaning of the modal mass. For instance, the
physical unit is indeed [kg], and the size of the modal mass is
a measure of the amount of mass moving in a given mode.

Similarly, for the length of the mode shapes, since the
mode shape is pure geometry, it is natural to expect that a
good measure of the length is a pure geometrical measure,
independent of themass distribution in the considered body.
It is also expected that since a “shape” normally means a
continuum of dimensionless numbers, the length is di-
mensionless and a measure of the average movement over
the mode shape.

For practical applications (and for the physical mean-
ing), it is important that the ways to estimate modal mass
and mode shape length are objective so that different people
will arrive at the same number for a given mode and a given
structure. At least they should be able to agree on some
simple rules for obtaining these quantities so that inde-
pendently, they would arrive at the same estimates.

At this point, we will conclude that the most important
requirements for a new definition of the modal mass are as
follows:

(i) �e modal mass must be physically meaningful,
having the unit of [kg] and being a measure of the
amount of mass moving in a given mode

(ii) �e length of the mode shape must be a pure
geometrical quantity, describing the average
movement of the considered mode

(iii) Estimation of modal mass and mode shape length
must be objective so that estimates obtained by
different people are equal

3. Basic Concepts

We will introduce basic concepts considering the formu-
lation in the continuous case where a mode shape ψ � ψ(r)
is given as a function of the position r � x, y, z 

T. �e mode
shape at a given point r has three mode shape components
ψx,ψy, andψz, resulting in the magnitude

|ψ| � |ψ(r)| �

�������������������

ψ2
x(r) + ψ2

y(r) + ψ2
z(r)



. (19)

�emodal mass for the continuous case is now naturally
defined as

m � 
V
ρ|ψ|

2dV, (20)

where the integration is performed over the volume V of the
considered structure and ρ � ρ(r) is the mass density.
Similarly, the total mass is defined as

M � 
V
ρdV. (21)

3.1.Mode Shape Length andModalMass. For the continuous
case, we will define the squared length L2 of the mode shape
ψ as the average of the length squared |ψ|2 of the mode shape
over the considered volume V:

L
2

�
1
V


V

|ψ|
2dV. (22)

�is secures that the length definition has the same unit
as the mode shape.�us, if the mode shape is dimensionless,
so is the length. If the mass density ρ is constant, then from
equation (20), we have

m � ρV
1
V


V

|ψ|
2dV � ML

2
, (23)

which is the central equation of this paper stating the fol-
lowing for the case of constant mass density.

4e modal mass is equal to the product between the total
mass of the structure and the length squared.

If the considered body is constituted by two parts with
two volumes, V1 with the mass density ρ1 and V2 with the
mass density ρ2, then the corresponding result is

m �
V1

V1


V1

ρ1 ψV1




2
dV +

V2

V2


V2

ρ2 ψV2




2
dV � M1L

2
1 + M2L

2
2,

(24)

where ψV1
and ψV2

indicate the DOFs of the mode shape ψ in
volumes V1 and V2, respectively, and

L
2
1 �

1
V1


V1

ψV1




2
dV,

L
2
2 �

1
V2


V2

ψV2




2
dV,

(25)

are the partial lengths now defined over the partial volumes
V1 and V2, respectively.

Equation (20) easily generalizes to cases with many
volumes with constant mass density.

As indicated above, the total mass can either be calcu-
lated as the integral of the mass density over the total
volume, equation (21), or as the two similar integrals over
the two partial volumes V1 and V2:

M � 
V1

ρ1dV + 
V2

ρ2dV � M1 + M2. (26)
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3.2. Moving Mass. Now, assuming that the mode shapes
vanish inside V2, |ψ(r)|2 � 0 for r ∈ V2, and using equation
(24) with L2

2 � 0, we get

m � M1L
2
1, (27)

which is obviously the right answer.
Using equation (23) on the total volume, we get

m � ML
2

�
M

V
VL

2
�
ρ1V1 + ρ2V2

V1 + V2
VL

2
. (28)

Due to the fact that

L
2

�
1
V


V

|ψ|
2dV �

1
V

V1

V1

V1

ψV1




2
dV +

V2

V2

V2

ψV2




2
dV ,

(29)

the following relationship between the total length and the
partial lengths is derived:

L
2
V � L

2
1V1 + L

2
2V2. (30)

If L2
2 � 0, equation (30) results in

L
2
V � L

2
1V1. (31)

And equation (28) can also be expressed as

m �
ρ1V1 + ρ2V2

V1 + V2
V1L

2
1. (32)

Equation (32) is equal to equation (27) only if ρ1 � ρ2 or
V2 � 0. �is illustrates the validity of equations (23)–(25).

If ρ1 � ρ2 � ρ, then from equation (32), we have that
m � ML2 � M1L

2
1, i.e., we still get the same result for the

modal mass. So, adding the dead mass M2 does not change
the modal mass because L2

2 � 0.
However, since we are looking for a unique relationship

between the modal mass and the length, we want the total
moving mass to be a well-defined quantity. We can find the
moving mass M1 from equation (23) by defining the mode
shape ψU as a unitary translation inside V1, that is, for
|ψ(r)|2 � 1, r ∈ V1, which leads to

m � ρV
1
V


V
ψU



2dV � ρ

V1

dV � M1. (33)

So, if the total moving mass is smaller than the total mass
in the considered system, dead mass is present.

�e moving mass is a well-defined quantity, and
equation (23) defines a unique relation between the modal
moving mass and the mode shape length.

3.3. Apparent Mass. In the general case of a varying mass
density, we can define an average mass density as

〈ρ〉 �
M

V
�
1
V


V
ρdV, (34)

so that equation (22) still holds, but the length is now defined
as

L
2

�
1
V


V

|ψ|
2
rdV, (35)

where r � (ρ/〈ρ〉), and the total mass is given in terms of the
average density M � 〈ρ〉V. We shall not use this definition
of the length, the reason being that the quantity contains
information about the mass distribution, and thus, as de-
fined in equation (35), it is not a pure geometrical measure.

Instead, we will start from equation (24), formulated for
an arbitrary number of constant mass distributions.

m � 
n

MnL
2
n. (36)

From equations (24) and (25), it is clear that the total
mass is M � nMn and that the total length is

L
2

�
1
V


n

VnL
2
n. (37)

So, from equation (36), we have

m � MaL
2
, (38)

where the apparent total mass Ma is given by

Ma � V
nMnL

2
n

nVnL
2
n

. (39)

�e advantage of using the definition of the length given
by equation (37) is that the length remains a pure geo-
metrical quantity. Unfortunately, this introduces a newmass
quantity, namely, the apparent total mass Ma that, for
nonuniform mass distribution, is different from the total
mass and changes the value frommode shape tomode shape.

From equation (39), it is clear that if and only if the mass
density is uniform, then Ma � M. �us, the deviation of the
apparent total mass Ma from the total mass M is a measure
of how much the mass distribution deviates from the uni-
form distribution.

3.4. Discrete Formulations. �e discrete formulation follows
directly from the continuous formulation replacing the
integrals with proper similar summations. Similar to
equation (22), the length squared L2 of the mode shape ψ
over a discrete number N of nodal points in the 3D space is
then

L
2

�
1
V


n

|ψ|
2
nΔVn, (40)

where |ψ|2n is the length of the mode shape ψ � ψ(rn), where
the vector rn is pointing to the nodal point n representing the
volume ΔVn. Inserting the volumes ΔVn into the diagonal
matrixV and similarly collecting the DOF of the mode shape
in the mode shape vector, equation (37) can be written as

L
2

�
1
V
ψTVψ. (41)
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We should be aware that, here, we are using the same
symbol ‘ψ’ for themode shape as before, even though ψ was a
vector field in the 3D space before, but now, it is actually a
discrete vector containing the DOFs of the mode shape. �e
discrete counterpart to equation (23) is now

m � ρV
1
V
ψTVψ � ML2, (42)

which, as before, is only valid for a constant mass density ρ.
Comparing this equation to the classical equation for the
modal mass given by equation (13) naturally extends the
definition of the volume matrix to the general nondiagonal
form

V �
M
ρ

, (43)

where V and M are the volume and mass matrices of the
system, respectively. In this more general understanding of
the volume matrix, the matrix can be full and can contain
rotational degrees of freedom. �is also means that the
length definition given by equation (37) naturally extends to
cases with rotational degrees of freedom.

For two different volumes, V1 with the mass density ρ1
and V2with the mass density ρ2, equation (25) still holds, but
now with the length definitions:

L
2
1 �

1
V1
ψT1Vψ1,

L
2
2 �

1
V2
ψT2Vψ2.

(44)

For the general case of a varying mass density, we find
the discrete expression for the length from equation (20):

L
2

�
1
V


V

|ψ|
2 ρ
〈ρ〉

dV, (45)

which directly leads to

L
2

�
1
V
ψTMR− 1ψ. (46)

If the mass matrix M is diagonal, then R is a diagonal
matrix containing the elements ρn representative for the
volume ΔVn. Since M is symmetric, MR− 1 can be replaced
by R− 1M or by the symmetric form R− 1/2MR1/2. At this
moment, it is interesting to note that the symmetric form
R− 1/2MR1/2 naturally defines a new definition of a mass-
scaled mode shape ψm � R− 1/2ψ, but since it leads to mode
shapes with the unfortunate unit 1/

��
kg


, we will not follow

this lead any further.
Equation (46) naturally suggests the general volume

matrix

V � MR− 1
, (47)

which is not necessarily diagonal. For instance, using an FE
model, with the value ρn of the mass density in a certain

element with the local mass matrix Mn, the corresponding
local volume matrix Vn is defined according to equation
(43):

Vn �
Mn

ρn

, (48)

and the global volume matrix is then assembled by the same
procedure as when assembling the local mass matrices to
form the global mass matrix. Following this procedure,
equations (36)–(39) still hold in the general case.

Before we leave this section, let us conclude that the two
important scalar quantities, the total mass M and the cor-
responding total volume V, can be found from any discrete
converged model as

M � ψTUMψU,

V � ψTUVψU,
(49)

where ψU is a unitary translation vector as mentioned earlier.
We could also find the total mass and total volume by adding
all matrix elements corresponding to translational degrees of
freedom (but then, we have to take into account if 2D or 3D
formulations are being used by dividing the total sum by 2 or
3, respectively).

4. SEREP Reduction

In this section, we will show that the so-defined modal mass
and modal length are invariant to the SEREP (System
Equivalent Reduction Expansion Process) reduction tech-
nique [45]. For this case, it is practical to consider a mode
shape cluster Ψ instead of the single mode shape. We can
then define the diagonal modal mass matrix as

mn  � ΨTMΨ. (50)

Using the SEREP, we have the reduced mass matrix

Ma � TTMT, (51)

where T � ΨaΨ+
a (and where we assume full rank, i.e., Ψa is

Na × Na). �e modal mass matrix for the reduced mass
matrix is

man  � ΨTaMaΨa � ΨTa ΨaΨ
+
a( 
TM ΨaΨ

+
a( Ψa. (52)

However, since (ΨaΨ+
a ) � I, from equation (52), it is

derived that

man  � mn . (53)

Using the volume matrix V from equation (41), we can
define the modal length matrix:

L2 �
1
V
ΨTVΨ. (54)

�ismatrix is clearly nondiagonal but positive definite so
that the notation L2 makes sense. Now, defining the SEREP-
reduced volume matrix

Va � TTVT, (55)
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we can calculate the length in the reduced system:

L2a �
1
V
ΨTaVaΨa, (56)

and following the same procedure as for the modal mass,

L2a �
1
V
ΨTa T

TVTΨa �
1
V
ΨTVΨ � L2, (57)

or in words,
Modal mass and length matrices are invariant to SEREP.
We should note that since the modal mass and modal

length are the same in all reduced systems when using
SEREP [45], equation (23) still holds in all reduced systems if
we use the simple rule that the total mass should be esti-
mated from the original system.�e same is true for the total
volume.

�is means that the two key quantities, the total mass
and the total volume, have to be estimated for the considered
system once and for all. One can use an experimental ap-
proach and use a weight scale to measure the total weight
and a volume scale, for instance, a fluid expansion method,
to measure the volume. �is is of course the best possible
way to estimate these two key quantities.

If we cannot use the experimental way to estimate these
quantities, then we could use an analytical model or a
numerical model. An analytical model is often the simplest
and the best approach. For example, if we consider a beam
with length L and constant area A made out of the material
with the constant mass density ρ, then the total mass is
simply M � ρAL, and the total volume is simply V � AL.

If we want to use a finite element model to estimate the
quantities, then like for all other quantities, the model must
have converged in order to make sure that the estimated
quantities are reliable.

5. Mode Shape Scaling

We have now established the important linear relation
between the total mass of the considered system, the modal
mass of the considered mode shape, and the length of the
considered mode shape in case of uniform mass density:

m � ML
2
. (58)

And we will now consider suitable rules for how to
choose the value for L. When a meaningful value for L has
been established, the modal mass is then totally defined by
equation (58). As explained in Section 1, we have to at least
consider the classical scaling, the length scaling, and the
DOF scaling.

5.1. Length Scaling. Considering the arbitrarily scaled mode
shape ψ with the length L, a classical length scaling of ψ
would be defining the scaled mode shapeψL as

ψL �
ψ
L

. (59)

Using equation (41), we find the resulting length of ψL as

L
2

�
1
V
ψTLVψL �

1
L
2
1
V
ψTVψ � 1. (60)

�us, the classical length scaling leads to a version of
equation (58) where

m � M, (61)

or in words,
Using length scaling, the modal mass in constant mass

density systems is always equal to the total mass of the
considered system.

One can say that this is a simple rule and at least easy to
remember and to use. And it is also practical because now,
different people can easily arrive to the same number (or at
least similar estimates) because the art is only to estimate the
total mass of the system.

�e drawback is of course that this modal mass does not
give us any information about how much mass is actually
moving in different modes. If mass density is constant, all the
modes have the same modal mass. Even a local mode, where
nearly all movements are localized to a very small region, still
has the same modal mass. �is is unfortunate, but if one can
live with this limitation, it might be a good way to deal with
the modal mass.

In nonconstant mass density systems, the modal mass is
different for each mode and equal to the apparent mass.

5.2. DOF Scaling. �e classical DOF scaling is based on
choosing one of the DOFs in the system and then scaling this
value to a certain number, for instance, to unity [1–4].

Before we go further into this scaling, let us consider an
abstract example. Like in Section 3, let us consider the case
where the continuous body is constituted by two parts with
two volumes, V1 and V2, and let us assume that we consider
the abstract mode shape ψU as a unitary translation inside V1
and zero inside V2.

ψU(r)



2

�
1, r ∈ V1,

0, r ∈ V2.
 (62)

Just for simplicity, let us assume that the mass density is
constant, so from equation (20),

m � 
V1

ψU



2ρdV � ρV1 � M1. (63)

�us, the modal mass is then equal to the total mass
inside the volume V1. It is also clear that if V1 extends to the
total volume V � V1 + V2, then the modal mass becomes
equal to the total mass of the system.

�is case illustrates the DOF scaling, where the maxi-
mum value of |ψU(r)|2 is scaled to unity. Inspired by this
case, we will define the DOF scaled version as

ψD �
ψ

max(|ψ(r)|)
. (64)

Using this scaling, the modal mass has the property

m≤M. (65)
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And thus, it is a direct measure of how much mass is
moving in the considered mode shape. In words, we can
express this as follows.

Using the largest component equal to unity, the modal
mass in constant mass density systems is always smaller than
or equal to the total mass of the considered system.

�e advantage of this scaling is just that the size of the
modal mass now makes total sense, but the drawback is that
we need to scale the largest component to unity, which is the
same as scaling:

max ψD


 � 1. (66)

In a model with only a few components, where one of the
DOFs is not directly equal to the DOF where the mode shape
is maximum, it is not so easy to find the scaling.�e solution
is to know the ratio between one of the DOFs of the model
and the value max|ψD| found in a refined model (ideally a
model where all quantities of importance have converged).

5.3. Scaling Using SEREP. We start with an initial model
where all important quantities have converged towards a
stable value; then, it is easy to conclude from the earlier
analysis that, for the length scaling, all reduced models
satisfy equation (61), i.e., in all reduced models, the modal
masses are the same and equal to the total mass of the
system.

Using DOF scaling, all common DOFs are still the same,
and the length, which can be estimated in any of the systems
reduced from the initial system, is the same; so, all modal
masses are also the same, and the property expressed in
equation (65) is true in all the reduced systems. One should
note that equation (66) only holds in systems reduced to a
size where max|ψ| is the same as in the initial system. If this is
not the case, then max|ψ| must be estimated in a more
refined system.

6. Examples

6.1. A Cantilever Beam with Constant Density. Several
simulations were carried out on a planar finite element
model of a cantilever beam with constant mass density and
constant cross section (Figure 1). �e geometric and ma-
terial properties of the cross section are also shown in
Figure 1.

�e analytical mode shapes corresponding to the first
three modes and normalized to the largest component equal
to unity are shown in Figure 2 (solid lines). On the contrary,
the analytical modal masses and the squared length of the
mode shapes are presented in Table 2. In this particular case,
the largest component is at the free border of the beam for all
the modes, and the modal masses are equal for all the modes
and so are the length of the mode shapes.

In order to study the convergence of the equations
proposed in this paper, the finite element model was dis-
cretized with different number of linear bending finite el-
ements (Figure 1) ranging from 2 to 100. Moreover, both
consistent and lumped mass matrices were considered in the
simulations.

�e modal masses estimated with equation (13) for the
first three modes using different number of elements are
presented in Figure 3. It can be observed that the estimated
modal masses converge very fast to the analytical solution
when a consistent mass matrix is used, the error being less
than 1% for all the modes when the model is discretized with
6 elements. When a lumped mass matrix is considered, the
convergence is achieved with more elements (error less than
1% with 9, 23, and 36 elements for the first, second, and third
modes, respectively). Due to the fact that the mass density is
constant, the ratio (m/L2) is constant for all the modes, and
the same conclusions can be inferred for the length of the
mode shapes (Figure 4).

Table 3 presents the results obtained with a reduced
model using SEREP when only three DOFs are considered.
As expected from the theory formulated in Section 6, the
modal masses and the length of the mode shapes of the
reduced model are exactly the same as those of the full
model, independent of the number and the distribution of
the active DOFs. �e reduced mass and volume matrices are
also shown in Table 2.

L = 2m

E = 2 × 1011 (N/m2)

ρ = 7850 (kg/m3)

I = 5 × 10–5m4

A = 1.02 × 10–3m2Linear bending 
element

1
2

99

100

Figure 1: Cantilever beam with constant mass density.
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Figure 2: First four mode shapes normalized to the largest
component equal to unity: constant mass density (solid lines);
nonconstant mass density (dashed lines).
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Table 2: Modal masses, effective masses, and length of mode shapes for the cantilever beams.

Model
Constant density (Figure 1) Nonconstant density (Figure 5)

Total mass (kg) 16 16

Apparent mass (kg) Equal to total mass Ma1 � Ma2 � Ma3 � 16
Ma1 � 14.10
Ma2 � 15.93
Ma3 � 16.06

Squared length of mode shapes L2
1 � L2

2 � L2
3 � 0.25

L2
1 � 0.2517

L2
2 � 0.2049

L2
3 � 0.2063

Modal mass (kg) m1 � m2 � m3 � 4
m1 � 3.549
m2 � 3.265
m3 � 3.313
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Figure 3: Convergence of the modal masses for the first three
modes of the cantilever beam with constant mass density.

0.35
Mode 1

Mode 2

Mode 3

0.3

L2

0.25

0.2

0.35

0.3

L2

0.25

0.2

0.35

0.3

L2

0.25

0.2

0 10 20 30 40 50
Number of elements

60 70 80 90 100

Lumped
Consistent

0 10 20 30 40 50
Number of elements

60 70 80 90 100

Lumped
Consistent

0 10 20 30 40 50
Number of elements

60 70 80 90 100

Lumped
Consistent

Figure 4: Convergence of the length of themode shapes for the first
three modes of the cantilever beam with constant mass density.

10 Shock and Vibration



6.2. A Cantilever Beam with Nonconstant Density.
Simulations were performed on the same cantilever beam but
with nonconstant mass density. �e geometric and material
properties of the cross section are shown in Figure 5.

�e analytical mode shapes corresponding to the first
three modes and normalized to the largest component equal
to unity are shown in Figure 2 (dashed lines). It can be
observed that the first mode shape is very similar to that
corresponding to the constant mass density case, but sig-
nificant differences can be seen in the second and third
modes.

�e analytical modal masses and the squared length of
the mode shapes are presented in Table 2. As the mass
density is not constant, equation (23) does not hold, and an
apparent mass can be calculated for each mode (see Table 2).

�e finite element model was discretized with different
number of linear bending elements ranging from 4 to 100.
Both consistent and lumped mass matrices were considered
in the simulations.

�e modal masses estimated with equation (13) using
different number of elements are presented in Figure 6. It
can be observed again that the estimated modal masses
converge very fast to the analytical solution when a con-
sistent mass matrix is used, the error being less than 1% for
all the modes with 7 elements. When a lumped mass matrix
is considered, the convergence is achieved with more ele-
ments (error less than 1% with 12, 24, and 36 elements for
the first, second, and third modes, respectively).

With respect to the length of the mode shapes (Figure 7),
the same speed of convergence as that observed for the

constant mass density case was obtained for the nonconstant
density case (error less than 1% with 6 elements and con-
sistent mass matrix).

6.3. A Rigid Block on Springs. In order to illustrate how the
equations proposed in this paper work on discrete systems
modelled with lumped masses and lumped inertias, the

Table 3: Results obtained with a reduced model using SEREP [45].

Active DOFs [33, 65, 99] [49, 75, 99]

Mass matrix (kg)
18681 − 12941 4336

− 12941 8972 − 3009
4336 − 3009 1017

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

7083 − 8616 3735
− 8616 10493 − 4554
3735 − 4554 1985

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

Volume matrix (m3)

2.3798 − 1.6485 0.5523
− 1.6485 1.1430 − 0.3834
0.5523 − 0.3834 0.1296

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

0.9023 − 1.0976 0.4578
− 1.0976 1.3367 − 0.5801
0.4578 − 0.5801 0.2528

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

Length of mode shapes L2
1 � L2

2 � L2
3 � 0.25

Modal mass (kg) m1 � m2 � m3 � 4

ρ4 = 6500 (kg/m3)

ρ3 = 8500 (kg/m3)

ρ2 = 9500 (kg/m3)

ρ1 = 8000 (kg/m3)

L = 2m

E = 2 × 1011 (N/m2)

A = 9.846 × 10–4m2

Total mass: 16kg

I = 5 × 10–5m4

Figure 5: Cantilever beam with nonconstant mass density.
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Figure 6: Convergence of the modal masses for the first three
modes of the cantilever beam with nonconstant mass density.
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modal masses and mode shape lengths of a rigid block on
two springs (see Tables 1, 4, and 5) vibrating in the x-y plane
(bouncing mode and pitch mode) have been calculated. We
are illustrating the equations corresponding to both the
continuous and the discrete case.

�e block has constant density ρ, dimensions a × b × c,
total mass M � ρabc, total volume V � M/ρ, and inertia J �

(M/12)(a2 + b2) with respect to the center of gravity of the
block.

If we consider the block as a continuous system, the
analytical expressions of the mode shapes in both di-
rections, x and y, are needed (see Table 1). �e mode
shapes have been normalized to the largest vertical
component equal to unity. �e modal masses and the
length of the mode shapes calculated with equations (12)
and (14) are presented in Table 1.

If the system is modelled with two translational DOFs
(see Table 4), the mass matrix, the volume matrices, and the
mode shapes are presented in Table 4.�emodal masses and

the mode shape lengths calculated with equations (15) and
(43), respectively, are shown in Table 4.

�e results obtained with the same systemmodelled with
one translation and one rotational DOF are shown in
Table 5.

It can be seen from Tables 1, 4, and 5 that the obtained
values of the mode shape lengths and the modal masses are
the same using different models. Moreover, as the density is
constant, the modal mass is equal to the product between the
total mass of the structure and the length squared. �is
example demonstrates that the concepts and equations
formulated in this paper can also be easily extended to
discrete systems modelled with lumped masses and/or
lumped inertias.

7. Discussion

Considering a certain body, first, one has to decide which
parts of the body have constant mass density. Let us
first assume that we can identify a number of different
bodies with volumes Vn where this is the case. �en, for
each of these partial bodies, the corresponding modal
mass and modal length are calculated according to (13)
and (43):

mn � ψTnMnψn,

L
2
n �

1
Vn

ψTnVnψn,

(67)

where ψn is the part of the mode shape ψ corresponding to
the considered partial body Vn, mn and L2

n are the con-
tributions to the modal mass and the mode shape length in
the body, and Vn is the volume of the body.Mn is the mass
matrix and Vn is the volume matrix of the considered
partial body, respectively, where Vn is found from
equation (48). �is means that we can separately calculate
the modal mass mn and the length L2

n of each partial body
Vn (for example, in a finite element model, we can cal-
culate the modal mass and the length of each of the finite
elements of the model) and then calculate the total modal
mass and the total length as the sum of the contributions
of each body.

�e total mass and the total volume of each partial body
are then

Mn � ψTUMnψU,

Vn � ψTUVnψU,
(68)

where ψU is a unitary translation. For each partial body, the
so-calculated quantities should satisfy (23):

mn � MnL
2
n, (69)

for all modes. If this is not the case, the apparent total masses
as introduced in equation (39) are not equal to the total
mass, then it means that the assumption of constant mass
density inside the considered partial body is wrong, and the
body should be subdivided into smaller parts. However, if
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Figure 7: Convergence of the length of themode shapes for the first
three modes of the cantilever beam with nonconstant mass density.
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equation (69) holds for all partial bodies and all modes, then
we can conclude the final results for the total body:

m � 
n

mn,

M � 
n

Mn,

V � 
n

Vn,

L
2

� 
n

L
2
n.

(70)

If we are not working with well-defined parts, each
having their own constant mass density, but rather a density

that is varying smoothly over the body, then it might be
more convenient to use all elements as partial bodies. In this
case, we can follow the same procedure as mentioned above,
but the volume matrix Vn is now simply found from
equation (48).

�e final question still remains—how should we choose
the scaling? �e answer is that it does not matter because
whatever scaling we use, a linear relation exists between the
length squared and the modal mass given by equation (42),
and we can accurately calculate the relation for any of the
considered modes.

At this point, it is worth noticing that we can, in a way,
forget about the dead mass problem because any influence is
removed using equation (42), but of course, if the length

Table 4: A rigid block on springs: discretization with two translational DOFs.

x

K

b

y
1 2

a

K

Mode 1

1 1

Mode 2

1

–1

Mode shapes ψ1 �
1
1  ψ2 �

− 1
1 

Mass matrix M (M/4) + (J/a2
) (M/4) − (J/a2

)

(M/4) − (J/a2
) (M/4) + (J/a2

)
 

Volume matrix V (V/4) + (V/12)(1 + (b
2/a2

)) (V/4) + (V/12)(1 + (b
2/a2

))

(V/4) + (V/12)(1 + (b
2/a2

)) (V/4) + (V/12)(1 + (b
2/a2

))
 

Length of mode shapes
L2
1 � 1 L2

2 � (1/3)(1 + (b2/a2))
L2 � (1/V)ψTVψ
Modal mass

m1 � M m2 � (M/3)(1 + (b2/a2))
m � ψTMψ

Table 5: A rigid block on springs: discretization with one translation and one rotation.

K

b
2

1

a

K

Mode 1

1 1

Mode shapes

1

–1

Mode shapes ψ1 �
1
0  ψ2 �

0
2/a 

Mass matrix M M 0
0 J

 

Volume matrix V V 0
0 (V/12)(1 + (b

2/a2
))

 

Length of mode shapes
L2
1 � 1 L2

2 � (1/3)(1 + (b2/a2))
L2 � (1/V)ψTVψ
Modal mass

m1 � M m2 � (M/3)(1 + (b2/a2))
m � ψTMψ
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contributions from all modes are zero for a certain partial
body, then it might be useful to remove that body from the
description/modelling of the problem.

Finally, coming back to the initial requirements
mentioned in Section 2, we can conclude that most of
them have been fulfilled with the present proposal. Both
modal mass and mode shape length now have reasonable
units and a well-defined meaning. Also, it is easy for
anybody to achieve the same result, no matter what scaling
has been used, because the final answer is not the modal
mass; the final answer is all quantities needed to formulate
and evaluate equation (48). However, one can say that
since the DOF scaling max|ψD| � 1 is more meaningful
than the length scaling, because the modal masses using
DOF scaling clearly illustrate the amount of mass moving
under the considered mode shape, it might, in many cases,
be more meaningful to use this scaling, than any other
possible scaling.

8. Conclusions

�e concept of length of a continuous mode shape has been
defined in this paper. �e new definition depends on the
mode shape and how the volume is distributed in the
structure. �en, the concept of length has been extended to
discrete systems, introducing the concept of a volume
matrix. �is length definition has the same unit as the mode
shape, but it does not coincide with the length of a vector in
the Euclidean space that is normally used in linear algebra.
We omit the definition from linear algebra because in that
case, the length depends on the number of components of
the vector.

A new and better definition of the modal mass, which is
physically meaningful and does not depend on the number
of DOFs of a discrete model, has been formulated. It is
demonstrated that if the mass density of the system is
constant, then the modal mass is always equal to the product
between the total mass of the structure and the length
squared.

If the mass density is not constant, the concept of ap-
parent mass is proposed. �is apparent mass is different for
each mode and depends on the mode shape and how the
mass is distributed in the structure. In these cases, the modal
mass is always equal to the product between the apparent
mass and the length squared.

If a model is reduced with the SEREP reduction tech-
nique, it has been demonstrated that the modal mass and the
length of the mode shapes are invariant to SEREP, i.e., the
modal mass and the modal length are the same in all reduced
systems and equal to the modal mass and length of the full
model.

In constant mass density systems, when mode shapes are
normalized to the length, the modal mass is always equal to
the total mass of the considered system.�e drawback is that
this modal mass does not give us any information about how
much mass is actually moving in different modes. For ex-
ample, local and global modes have the same modal mass, in
spite of the fact that global modes are moving much more

mass. In nonconstant mass density systems, the modal mass
is different for each mode and equal to an apparent mass.

When mode shapes are normalized to the largest
component equal to unity, the modal mass is a measure of
how much mass is moving in the considered mode. �e
drawback is that we need to scale the maximum component
equal to unity, and in a model with only a few DOFs, where
the DOF with the largest component is not measured, it is
not easy to find the right scaling because we have to find the
largest component in the converged model.
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