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In this paper, the hinge in the articulated structure is studied, the gap hinge is described as a nonlinear bilateral constraint, and the
equivalent modeling and analysis of the hinge connection collision vibration are carried out based on the Lankarani–Nikravesh
nonlinear contact force model. With the help of the method of nonlinear system dynamics analysis research, the Poincaré
mapping of hinge joint collision vibration is constructed, the bifurcation diagram of the systemwith different parameters is solved,
and the variation law of the systemmotion and the influence of parameters are analyzed by combining the time response diagram,
phase diagram, Poincaré cross section diagram, and spectrum diagram of the typical motion of the system.,e simulation results
show that the system moves in a single degree of freedom and varies with parameters with multiplicative period bifurcation and
rubbing edge bifurcation leading to chaos; the system’s periodic motion has shock state mutation and mirror
jump transformation.

1. Introduction

,e hinge connection is a basic form of mechanical con-
nection commonly found in folding trusses, folding wings,
and large antennas. ,e hinged structure transmits loads
mainly through compression and friction between contact
interfaces. Gaps or restraints in the hinged structure are
ubiquitous due to the need for motion limitation, thermal
expansion, and cold contraction of certain parts of the
mechanical components [1–4].

Local gap collisions are prone to large shock dynamic
loads and high-frequency vibrations, which increase noise
levels and exacerbate wear and tear of mechanical compo-
nents, posing a huge risk to the reliability and stability of the
connected structure. For example, in the 1990s, the Hubble
telescope in the United States suffered from periodic “jam-
slip” failures caused by thermal vibrations of the support
beam and instantaneous vibrations of the gap hinges,
resulting in reduced attitude stability and compromised
observations. ,e study of vibration-impact dynamics is

relevant to the design of dynamic performance and noise
suppression of impact mechanisms and mechanical systems
with motion-limiting constraints, and a large number of
studies on the dynamics of connection structures have been
conducted since the 1970s. Structural dynamics experiments
have shown that the stiffness and damping of hinge-con-
nected structures have nonlinear properties such as dis-
continuity, hysteresis, and segmental linearity [5–12]. Gritli
et al. found in a feedback system based on the OGY control
method that in a two-parameter bifurcation diagram, the
boundary collision bifurcation occurs within a bounded
interval of nominal parameters [10].

Andreaus et al. established the equations of motion with
and without dimensionality when acceleration and two
unidirectional constraints were applied to the experimental
object and eventually found that only a unilateral constraint
was needed to change the dynamics of the system. Stefani
et al. introduced suitable dimensionless parameters in their
experiments. De Angelis et al. experimentally investigated
the effect of geometric and mechanical properties of
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vibration isolation and damping devices on the nonlinear,
nonsmooth response of vibration shock systems [13–22]. De
Angelis et al. investigated the dynamic response of an SDOF
oscillator under a fundamental acceleration excitation.

Guo et al. showed that the adhesion time would be
negatively correlated with the shock intensity for a periodic
two-degree-of-freedom shock. Wang et al. found that de-
creasing the intrinsic frequency would consume less shock
energy and make the vibration frequency smaller. Based on
the theory of discontinuous dynamics, Chen et al. described
in detail the chaotic motion and periodic trajectory under
different parameters and initial conditions through numerical
simulations. Li et al. discussed the global dynamics of a
nonsmooth dynamics model under the joint action of three
nonsmooth factors, namely elastic shock, rigid shock, and dry
friction [23–31]. Fan et al. conducted a discontinuous dy-
namic analysis of a class of three-degree-of-freedom me-
chanical oscillation systems with dry friction and unilateral
rigid shocks, revealing the complex switching mechanism of
object motion in discontinuous dynamical systems.

,e focus of this paper will be on the description of the
mechanical behavior of the hinge gap and contact interface.
In Section 2, the end hinge collision vibration equivalent
model is established by combining the hinge radial contact
collision case, the Poincaré mapping of the system con-
taining the gap is constructed, and the system bifurcation
diagram and Lyapunov exponent under each control pa-
rameter, respectively, are solved. In Section 3, dimensionless
quantities are introduced into the motion of the established
end-hinge collision system through differential equations
and nonlinear contact force expressions into the established
end-hinge collision system, which constructs a system of
differential equations and numerically simulates the dy-
namics of end-hinge gap collision. In Section 4, the effects of
the connection structure parameters on the nonlinear
characteristics of the system are compared and analyzed,
which will be investigated to provide practical guidance for
optimizing the design of the connection structure.

2. Materials and Methods

2.1. Equivalent Modeling of Hinge Connection Impact
Vibration. As shown in Figure 1, the hinge is composed of a
double ear bar, a single ear bar, a pin shaft, and a shaft sleeve,
and the elastic thin wall is used to simulate the bar con-
nection constraints.,e pin shaft is fixed with the double ear
bar, and the shaft sleeve is fixed with the single ear bar [32].
Considering the radial contact collision problem of the hinge
caused by the clearance between the pin shaft and the shaft
sleeve, the equivalent collision vibration model of the hinge
is established, as shown in Figure 2.

In the model, the elastic thin wall is simplified into linear
spring and linear damping, the double ear bar and single ear bar
are defined as concentratedmasses, and the clearance contact of
the hinge is treated as a nonlinear bilateral constraint.

To analyze the vibration characteristics of the gap impact
of the hinge connection, a simple harmonic excitation force
is applied to the oscillator in Figure 2. When the oscillator
moves to the nonlinear constraint boundary, a contact

collision will occur. After a certain period, it will move in the
opposite direction, and so on. ,e differential formula of
motion can be expressed as

M €X + C _X + KX + FNL(X, _X) � P sin(ΩT + Γ). (1)

In formula (1), FNL(X, _X) is the interaction force at the
gap hinge in the vibration process, which has nonlinear
characteristics.

2.2. Nonlinear Contact Force, Poincaré Mapping, and Lya-
punov Exponent. For the system with clearance, the gap
constraint makes the trajectory in the phase space of the
system different from the smooth nonlinear system: the
trajectory crosses the constrained boundary, the dynamic
formula of the system is switched, the smoothness of the
trajectory is destroyed, and the contact may cause singularity
Two different methods for constructing Poincaré mapping
of systems with gaps involves two different methods of
mapping cross sections in phase space: the fixed phase cross
section and the constrained boundary determined by the
Poincaré cross section [33]. Two kinds of Poincaré mapping
of the system are constructed based on two kinds of Poincaré
mapping cross sections.

2.2.1. Nonlinear Contact Force of Clearance Hinge System.
,e Lankarani–Nikravesh contact force model (L-N model),
which is widely used in current research, is selected for the
impact contact force of the clearance hinge:
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Figure 1: Hinge connection form.
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Figure 2: Equivalent dynamic model of the hinge connection.
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In formula (2), the symbol δ means deformation
amount, _δ means deformation velocity, n is the nonlinear
index, K is contact stiffness coefficient, _δ
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velocity, ce is recovery coefficient, and n is the nonlinear
index. Take the nonlinear exponent n� 1.5. K is the
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where c is the viscous damping coefficient, which is deter-
mined by the formula of energy dissipation and damping
work in the collision process, which is as follows:

ΔE �
1
2
me

_δ
(− )2

− ce
_δ

(− )2

   �  cδn _δdδ. (4)

In formula (4), me is the equivalent mass：
me � mBmJ/(mB + mJ). And the viscous damping factor can
be obtained from the following equation:

c �
3K 1 − c

2
e 

4 _δ
(− )

. (5)

,e L-N model clearly defines the energy loss and
transfer in the process of contact collision and takes into
account the influence of contact surface shape, material, and
collision velocity. It is widely used by foreign and domestic
researchers in the study of collision dynamics of systems
with clearance. ,erefore, the dynamic analysis of hinge
joint clearance collision is also based on this model.

2.2.2. Construction of Poincaré Maps for Systems with Gaps.
For the system with clearance, the trajectory in the phase
space of the system is different from that of the smooth
nonlinear system because of the clearance constraint: the
trajectory passes through the constrained boundary, the
dynamic formulas of the system switch, the smoothness of
the trajectory is destroyed, and the contact may cause sin-
gularity. ,e construction of Poincaré mapping for systems
with gaps involves two different methods of mapping cross
sections in phase space [34]：the fixed phase section and the
constraint boundary determined by the Poincaré sections.
Two kinds of Poincaré maps are constructed based on two
kinds of Poincaré cross sections: (1) displacement map based
on fixed phase cross section and (2) shock map based on
switching surface. ,e fixed phase displacement mapping
can directly determine the number of collision periods, and
the impact mapping can determine the impact number of
the gap hinge and the corresponding constraint boundary.

,emodel is simplified by bilateral nonlinear constraints
with clearance hinge connection, and the periodic motion of
the system is represented by the symbol “n-p-q,” where n is

the number of excitation periods contained in the motion of
the system, P and Q are the numbers of collisions with the
left and right boundaries of the nonlinear constraint.

Poincaré’s mapping is based on a system with gaps. ,e
left and right boundary constraint surfaces and any fixed
phase surfaces are selected as Poincaré sections σp, σq, and
σn, respectively. Poincaré mappings are established for bi-
laterally restricted oscillation systems. For periodic and
subharmonic impact vibrations, the fixed points p and q on
Poincaré sections σp and σq represent the impact times of the
oscillator, the left boundary, and the right boundary in the
movement period of the system. ,e fixed point n on
Poincaré section σn is equal to the ratio of the period of
motion of the system to the period of excitation force. For
quasiperiodic and chaotic motions, Poincaré sections σp, σq,
and σn are dense set of points, which can effectively char-
acterize the attractor of the system.

2.2.3. Wolf Calculation Method of Lyapunov Exponent.
In the study of the bifurcation and chaos of nonlinear
systems with clearance impact vibration, the positive and
negative sum of the largest Lyapunov exponent is often used
as a reliable criterion for the existence and strength of chaos.
,e Wolf method [35, 36] is used to calculate the maximum
Lyapunov exponent of the impact vibration system with gap
hinge connection, and the Lyapunov exponent is estimated
through the evolution process of phase trajectory, phase
plane, and phase volume. ,e following details the specific
steps of Wolf method to calculate the maximum Lyapunov
exponent:

(1) Phase Space Reconstruction. For a chaotic time series
X(t) � x1, x2, . . . , xN , the phase space is reconstructed
from the embedding dimension m and the delay time τ:

X(t) � x1, x2, . . . , xN ,

Y(t) � X1(t), X2(t), . . . , Xi(t), . . . , Xm(t) .
(6)

In formula (6), Xi(t) � x1+τ(i− 1), x2+τ(i− 1),

. . . , xN− τ(m− i)}, i � 1, 2, . . . , m.

(2) Phase Trajectory Evolution. Search for the nearest two-
phase points at the initial moment in the phase space and
record the distance; track the time evolution of the distance
to the desired point, at a certain time t1, the distance exceeds
the specified value, calculate the exponential growth of the
distance; search for the nearest two-phase points at t1, and
make the distance and the included angle as small as pos-
sible, as shown in Figure 3; continue the abovementioned
process until the end of the time series.

(3) ?e Calculation of Lyapunov Exponent. Assuming that
the number of iterations in step (2) is M, the maximum
Lyapunov exponent is as follows:

λ �
1

tM − t0


M

i�0
ln

Li
′

Li

. (7)
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3. Numerical Simulation of End Hinge
Clearance Impact Dynamics

,e differential formula of motion of the end hinge clearance
impact system is expressed by formula (1), and the expression
of nonlinear contact force is expressed by formula (2).
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(8)

,e differential formulas of the motion of the system are
obtained, which are as follows:

€x + 2ζ _x + x + f(x, _x) � sin(ωt + τ),

f �

k0(x − δ)
n 1 + μ

_x

_x
(0)

  , x≥ δ,

0, − δ <x< δ,

k0(− x − δ)
n

− 1 + μ
_x

_x
(0)

  , x≤ − δ.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

By reducing the order of formula (9), the first-order
differential formulas are obtained:

_x � y,

_y � sin(ωt + τ) − 2ζy − x − f(x, y).
 (10)

Direct numerical integration is carried out with the aid
of an ODE differential formula solver in MATLAB. When
dealing with the differential formula of the impact vibration
system, the state of the system motion to the constraint

boundary must be calculated accurately by the idea of the
seam method, which is used as the initial value of the next
step formula solving to realize the transformation of the
relationship between the free motion and the contact col-
lision state [37] In this paper, based on the event-driven
method and the variable step fourth-order Runge–Kutta
integration algorithm, the solution is programmed in
MATLAB.

3.1. Periodic Motion and Bifurcation of Hinge Clearance
Impact. For the differential formula of motion of the system
shown in formula (10), determine the reference parameter:
k0 � 300, ζ � 0.2, and δ � 0.01 and take the excitation fre-
quency f as the control parameter to solve the system re-
sponse. ,e global bifurcation diagram and the maximum
Lyapunov exponent diagram of the system are shown in
Figure 4. In the bifurcation diagram, the abscissa is the ex-
citation frequency and the ordinate is the Poincaré map of the
velocity at the nonlinear constraint boundary of the system.

3.2. Period-Doubling Bifurcation and the Way to Chaos.
From the bifurcation diagram in Figure 4, when the exci-
tation frequency f� 0.41～ 0.43Hz, the system response
experienced a typical process from single period motion to
period-doubling bifurcation to chaotic motion.

It can be seen from Figure 5 that when f� 0.429Hz, the
displacement and velocity curves in the time history diagram
show regular periodic changes, there is a single point in the
Poincaré section, the power spectral density diagram is a
discrete spectrum, and there is only frequency doubling
frequency. Combined with the phase diagram, the system
makes a stable bilateral impact asymmetric periodic 1-1-1
motion. As the excitation frequency decreases, the doubling
bifurcation occurs when the value of F crosses 0.4265 and
0.4150, respectively. It is observed from Figures 6 and 7 that
when f� 0.422Hz, there are two fixed points in the Poincaré
section, and combined with the phase diagram, the system
state evolves into asymmetric periodic 2-2-2 motion; when
f� 0.414Hz, there are four points in the Poincaré section,
and the system state evolves into asymmetric periodic 4-4-4
motion, and its power spectral density diagram is similar to
that of the same single periodic motion, and the frequency of
the whole period-doubling bifurcation process is propor-
tional. ,e frequency division is mainly concentrated in the
main frequency and triple frequency. ,e excitation fre-
quency continues to decrease, and the system state presents
complex motion after the period-doubling bifurcation. It
can be seen from the time response diagram and phase
diagram in Figures 8 and 9 that when f� 0.410Hz and
F� 0.405Hz, the system becomes aperiodic motion, the
Poincaré cross section presents dense discrete points, the
frequency components of the power spectral density dia-
gram becomemore andmore, fractional frequency gradually
appears, and a continuous spectrum appears in the low-
frequency band, combined with the Lyapunov exponent.,e
results show that the system is in quasiperiodic motion and
chaotic motion, respectively, and the system state leads to
chaotic motion through period-doubling bifurcation.

L (t0)

L′ (t1) L′ (t2)
L′ (t3)

L (t2)L (t1)

t0

t1 t2

t3θ1 θ2

Figure 3: Schematic diagram of the Wolf method for calculating
the maximum Lyapunov exponent.
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3.3. Edge Bifurcations and the Road to Chaos. In the fre-
quency range of F� 0.35–0.37Hz and F� 0.389–0.401Hz,
the system appears edge bifurcations and goes into chaos
with jump transformation. Taking f� 0.35–0.37Hz fre-
quency band as an example, with the increase of excitation
frequency, the edging first causes the mirror jumping
transformation of the impact state of the periodic motion of
the system, and then the periodic motion leads to chaos from
the edging bifurcation [38] As shown in Figures 10 and 11,

when f� 0.365 and f� 0.366, the Poincaré cross section of the
system is a single fixed point, which indicates that the
motion period of the system is a single period. Compared
with the different phase diagrams, the system presents 1-1-2
asymmetric motion and 1-2-1 asymmetric motion, respec-
tively, trimming makes the state of the system undergo
mirror jumping transformation. When the frequency con-
tinues to increase, from the Poincaré section and phase
diagram of F� 0.3674 and F� 0.368 in Figures 12 and 13, the
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density diagram.

V
ib

ra
tio

n 
D

isp
la

ce
m

en
t,V

el
oc

ity

0.2

0.1

0

-0.1

-0.2

500 505 510
Time

515 520

(a)

Displacement

V
el

oc
ity

0.2

0.1

0

-0.1

-0.2

-0.05 0.050

(b)

Figure 7: Continued.

6 Shock and Vibration



period of the system is doubled, showing 2-4-2 asymmetric
motion and 2-2-4 asymmetric motion, respectively. ,e
system undergoes the transition of edge branching and
mirror jumping. In Figure 14, when f� 0.3688, the motion of
the system evolves into 4-4-8 asymmetric periodic motion.
In Figure 15, when f� 0.370, the Poincaré cross section is a
dense point, and the frequency response is a continuous
spectrum. ,e motion of the system leads to chaos along
with the trimming bifurcation and jump transformation.

4. Influence of Connecting Structure
Parameters on Nonlinear Characteristics of
the System

Based on the normalized dynamic differential formula, the
structural parameters and system parameters are selected
k0 � 300, δ � 0.01, ζ � 0.2, ce � 0.9, and f � 0.402, 0.414,

0.426Hzas the benchmark parameters, the corresponding
dynamic characteristics are taken as the reference results,
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density diagram.
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Figure 13: f � 0.368Hz, Asymmetric period 2-2-4. (a) Time history graph. (b) Phase diagram. (c) Poincaré section. (d) Power spectral
density diagram.
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Figure 14: f � 0.3688Hz, asymmetric period 4-4-8. (a) Time history graph. (b) Phase diagram. (c) Poincaré section. (d) Power spectral
density diagram.
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and the effects of clearance b, impact relative stiffness k0, and
damping ratio ζ on the dynamic response of the system are
analyzed, respectively.

4.1. Influence of Hinge Clearance. Figure 16 shows the bi-
furcation diagram of the system varies with the hinge
clearance at the excitation frequency f � 0.402, 0.414,

0.426Hz. Compared with the response of the system at
different frequencies, the initial collision velocity of the
system is positively correlated with the hinge clearance, and
with the clearance value, the collision velocity decreases, and
the impact vibration of the hinge is suppressed; the hinge
clearance also makes the system produce mirror jumping
and bifurcation, from period doubling to chaos, but at both
ends of the clearance range, the system presents stable single
period motion, and the system is unstable [39]. With the
increase of the excitation frequency, the motion in the bi-
furcation diagram tends to be simple, and the chaotic
window decreases gradually. When the excitation frequency
increases, the only periodic motion is left in the bifurcation
diagram. For the vibration response of articulated structures,
it is necessary to design the structural parameters reasonably
to avoid the low-frequency complex motion and realize the
structural vibration suppression control.

4.2. Influence of Contact Stiffness of Hinge. Figure 17 shows
the bifurcation diagram of the system varying with the
contact stiffness of the hinge at the excitation frequency. By

comparing the response of the system at different fre-
quencies, it is found that the system with the change of
contact stiffness has complex dynamic behaviors such as
period-doubling bifurcation, edge trimming bifurcation,
and mirror jumping transformation, and the evolution law
of the dynamic response of the system with the change of
stiffness is similar: at the left end of the bifurcation diagram,
with the increase of stiffness, the system moves from single
period motion to mirror jumping transformation and bi-
furcation; at the right end of the bifurcation diagram, with
the decrease of the stiffness, the system directly changes from
single period motion to chaos. ,e effect of frequency on the
bifurcation diagram is not significant.

4.3. Influence of Damping Ratio on Beam Structure.
Figure 18 shows the bifurcation diagram of the system
varying with the damping ratio of the beam structure at the
excitation frequency. By comparing the bifurcation dia-
grams under different frequencies with the decrease of
damping ratio, the system experienced a jump mutation
from single period motion to chaos through period-dou-
bling bifurcation. ,e excitation frequency makes the bi-
furcation diagram shift as a whole; the period-doubling
window at the small damping end is compressed when the
frequency increases. ,e results show that the large damping
of the structure accelerates the energy dissipation of the
impact vibration and makes the motion response of the
structure tend to be stable.
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Figure 15: f � 0.370Hz, chaotic motion. (a) Time history graph. (b) Phase diagram. (c) Poincaré section. (d) Power spectral density diagram.
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5. Conclusion

Based on the equivalent dynamic model of the clearance
hinge, the differential formula of the system motion is
established, and the numerical simulation is carried out by
MATLAB programming. ,e bifurcation and chaos

phenomena with the excitation frequency under the har-
monic excitation of the clearance hinge are simulated and
analyzed, and the effects of the hinge clearance, the contact
stiffness, and the damping ratio of the beam structure on the
system motion are also studied. ,e following conclusions
are drawn:
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Figure 16: ,e effect of hinge clearance. (a) f � 0.402Hz, (b) f � 0.415Hz, and (c) f � 0.426Hz.
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Figure 17: Influence of hinge contact stiffness. (a) f � 0.402Hz, (b) f � 0.415Hz, and (c) f � 0.426Hz.
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Figure 18: Influence of beam structure damping ratio. (a) f � 0.402Hz, (b) f � 0.415Hz, and (c) f � 0.426Hz.

12 Shock and Vibration



(1) ,e dynamic response of the hinge system is com-
plex with the change of excitation frequency. In the
bifurcation diagram, the periodic motion has a
sudden change of impact state and a mirror image
jump transformation. ,e path from periodic mo-
tion to chaos is mainly divided into two types: pe-
riod-doubling bifurcation and edging bifurcation.

(2) ,e way of system bifurcation to chaos is usually as
follows: the edge scrubbing first destroys the sym-
metry of the motion of the system and then bifur-
cates into chaos along with the heap transformation,
but there can also be wiping edges directly into
chaos.

(3) For the established single-degree-of-freedom colli-
sion vibration system, within a certain range of
parameters, the initial collision velocity of the system
is positively correlated with the hinge clearance; the
larger the clearance is, the more intense the impact
vibration is; the contact stiffness of the hinge mainly
affects the number of collisions in the periodic
motion; generally, under the same excitation fre-
quency, the greater the stiffness, the more the
number of collisions; the damping ratio of the beam
structure is related to the energy dissipation and
transfer of the system, and the large damping ratio
usually limits the complex motion of the system.
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