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A typical quasi-zero-stiffness (QZS) vibration isolator consisting of a vertical spring and two oblique springs has been widely
researched on its static and dynamic characteristics. A general criterion for determining structural parameters of QZS isolator is to
achieve low nondimensional stiffness around the equilibrium position. However, lower nondimensional stiffness of linear isolator
means lower isolation frequency, which may be invalid on QZS isolator. Because there is an implicit relationship between
geometric parameter and stiffness ratio of QZS isolator, this study presents an improved optimization criterion for determining
the optimal structural parameters of the typical QZS isolator.*e optimization criterion is that the QZS isolator has the maximum
displacement range around the equilibrium position without exceeding given natural frequency, rather than given nondi-
mensional stiffness. *e results show that isolator with these optimal parameters can achieve lower stiffness around the
equilibrium position and better vibration isolation performance. Furthermore, an extended QZS isolator consisting of vertical
spring with fixed stiffness and prestressed oblique springs is discussed to further improve stiffness characteristic. Better stiffness
performance can be obtained when the prestressed oblique springs have softening stiffness and the exponent of the nonlinear
stiffness is 2. Considering the existence of friction in practical application, the influence of friction on both static and dynamic
characteristics is investigated. *e analysis reveals that friction has little influence on its stiffness characteristic around the static
equilibrium position and friction damping produced by friction affects the response amplitude and resonant frequency
in dynamics.

1. Introduction

Vibration isolator has been widely applied in manufacturing
equipment such as semiconductor devices and optical in-
struments for its technical advantage. It is well known that
vibration isolation occurs above frequency of

�
2

√
ωn, where

ωn is natural frequency of isolator, and vibration isolation
performance can be improved by reducing the natural
frequency. However, a lower natural frequency results in a
larger static deflection for a given load, namely a weakened
load capacity. *erefore, there is a dichotomy between
natural frequency and load capacity, which is an important
issue of vibration isolator.*is contradiction can be resolved
well by a quasi-zero-stiffness (QZS) mechanism with high
static stiffness and low dynamic stiffness [1].

In the last decade, the theoretical analysis, design, and
experimental research on QZS isolator have been widely
reported. *e QZS mechanism mainly includes two parts:
positive stiffness part and negative stiffness part. *e most
typical three-spring isolator, as shown in Figure 1, consists of
a vertical spring and two inclined springs in parallel. *e
vertical spring provides large bearing capacity, and two in-
clined springs act as negative stiffness spring as a whole in the
vertical direction to reduce the dynamic stiffness of the
mechanism. One fundamental and important work is to
determine the parameters of the mechanism, such as geo-
metric parameter and stiffness of its elastic elements. Carrella
et al. [2] have first proposed a quantitative static analysis
method on the QZS system with three springs and provided
the best match relationship between the angle and the stiffness

Hindawi
Shock and Vibration
Volume 2021, Article ID 9920674, 13 pages
https://doi.org/10.1155/2021/9920674

mailto:lixiaoping@hust.edu.cn
https://orcid.org/0000-0001-9213-0416
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9920674


ratio of vertical and oblique springs to achieve low stiffness
around the static equilibrium position. Kovacic et al. [3]
conducted follow-up research by taking two nonlinear pre-
stressed oblique springs into consideration and obtained
lower stiffness of the QZS system than that with linear
stiffness oblique springs. Subsequently, a further dynamic
analysis of this QZS mechanism with three springs was
conducted [4]. Wang et al. [5] introduced stiffness range
parameter and static equilibrium position stiffness to indicate
different stiffnesses of the nonlinear isolator and investigated
the influence of these parameters on dynamic responses and
vibration isolation performance. Liu et al. [6] analysed the
performance of the nonlinear isolator excited by different
displacement shock excitations from the base and found that
the performance was related to the parameters of the non-
linear isolator and the type of the shock excitation. It is
beneficial to introduce a QZS vibration isolator for shock
excitation, and the performance is limited by certain con-
ditions. Wang et al. [7] employed the probabilistic lineari-
zation method to determine the dynamic response of the QZS
vibration isolator under random excitation and evaluated the
isolation performance with the equivalent linear vibration
isolator. In addition to research of three-spring isolator under
different types of external disturbance, relevant literature
involves the exploration of various three-spring extension
systems to further improve its performance. A bioinspired
nonlinear system with four linear springs arranged in a
K-shaped configuration was proposed for the purpose of
potential energy maximization [8]. Zhao et al. [9–11] pro-
posed new limb-like QZS systems with two pairs and three
pairs of oblique springs to enlarge the QZS range and isolation
frequency band. Similarly, Yan et al. [12] proposed a large
stroke QZS vibration isolator using a three-link mechanism,
which is less sensitive to vibration amplitude than the tra-
ditional QZS isolator. *anh and Vu [13] devised an ad-
justable vibration isolator to increase the load-bearing
capacity and maintain the isolation effectiveness when the
isolated weight is changed. In addition to a single-stage
isolator, a two-stage isolator with oblique springs has also
been studied. Lu et al. [14–16] studied a two-stage vibration
isolation system with nonlinear stiffness and investigated the

effects of nonlinear stiffness and damping of two stages on
vibration transmissibility. Wang et al. [17] compared the
dynamic performance of single- and two-stage QZS isolators,
and the results showed that the two-stage vibration isolator
can be tuned to achieve improved isolation performance in
the higher frequency region than the baseline vibration iso-
lators. *e ideal QZS isolator has the lowest stiffness at the
equilibrium position where the oblique spring is horizontal.
When mass load is changed, static equilibrium position and
dynamic stiffness of isolator are changed accordingly.
Abolfathi et al. [18] analysed the dynamic characteristics of
isolator with load error.*e analysis showed that although the
mistuned case degraded the performance of the isolator
compared with the perfectly tuned case, it still performed
better than the corresponding linear isolator provided that the
amplitude of excitation is not too large. Moreover, Shaw et al.
[19] found that the performance of a mount with a symmetric
stiffness-displacement relationship is highly sensitive to load
error and a mount with an asymmetric stiffness-displacement
relationship can offer significant performance advantage in
this situation. Besides, typical oblique coiled springs were used
to provide negative stiffness. Some other forms of negative
stiffness structure are proposed and studied, such as disk
spring [20, 21], notched flexure [22], magnetic spring [23–25],
Euler buckled beam [26–28], cam roller spring [29–31],
scissor-like structure [32–34], and other novel structures
[35–37]. Different negative stiffness elements have their ad-
vantages. Disk spring and Euler buckled beam can offer great
support capacity with small deflection. Cam roller spring and
scissor-like structure can provide designed nonlinear stiffness
through reasonable structural parameters. Negative stiffness
provided bymagnetic spring does not need direct contact, and
the design of isolator can be flexible. *e damping of QZS
isolator affects its resonant frequency and dynamic charac-
teristic. Some related work has been carried out to analyse and
improve the vibration isolation performance. Hao et al. [38]
proposed QZS isolator with bilateral damping in parallel with
vertical spring. By adapting bilateral damping constraint
strategy, better vibration isolation behaviour can be achieved
at both low and high frequencies. Lu et al. [15] studied the
single-stage and two-stage isolators with nonlinear damping,
which is achieved by configuring linear dampers and shows
better performance at high frequency than those with linear
viscous damping. In addition to damping produced by
damper, the friction of QZS isolator during vibration pro-
duces damping and causes energy dissipation, which should
be considered in practical application. Sun et al. [39, 40]
considered the structural rotational friction of the joints and
horizontal friction during sliding on the track in their analysis
of the scissor-like structured platform. Ahn [41] put forward a
movable magnet track for a linear motor stage, and friction
and cable stiffness of which are taken into account during the
mover motion. Besides, Li et al. [42] proposed a novel type of
constant force compression mechanism and considered the
friction between cam and spring sliders. *e results show that
the prototype has satisfactory characteristics as with the
design requirement under both micro-friction and non-
ignorable conditions.
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Figure 1: Schematic representation of a typical QZS mechanism
with a vertical spring and two oblique springs.
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Of all these QZS isolators mentioned above, the three-
spring QZS isolator is most widely studied as a classical
structural model. *e design and analysis methods applied
to the three-spring isolator provide strong guide to various
extended QZS isolators and isolators with different nega-
tive stiffness elements. A good QZS isolator has low dy-
namic stiffness around the equilibrium position and large
load-bearing capacity. So, a general criterion for deter-
mining structural parameters of QZS isolator in previous
papers is to achieve low nondimensional stiffness around
the equilibrium position, but there is a difference between
QZS isolator and linear isolator. Lower nondimensional
stiffness of linear isolator means lower isolation frequency,
which may not be true on QZS isolator, because there is an
implicit relationship between geometric parameter and
stiffness ratio of QZS isolator. So, an improved optimi-
zation criterion for determining the optimal structural
parameters of the typical QZS isolator is proposed and the
optimization criterion is to achieve the maximum dis-
placement range without exceeding the given frequency.
*e nonlinear and prestressed oblique springs of the QZS
system were studied by introducing two extended variables
of structural parameters in previous work, but the effects of
every extended parameter on static performance remain
unclear when these parameters take different values.
According to the previous work and in a more general case,
an extended QZS isolator consisting of vertical spring with
fixed stiffness and prestressed oblique springs is discussed
to further improve stiffness characteristic. In addition,
when the QZS isolator vibrates, there is friction produced
by rotating joint in practical application and it may affect
the vibration isolation performance. *e influence of
friction on both static and dynamic characteristics is in-
vestigated in this study. *is research can provide some
guidelines in the design of the typical QZS isolator and
other complex QZS isolators.

*e study is organized as follows: first, an improved
optimization method for structural parameters of the typical
QZS isolator is proposed; second, the static characteristics of
the parameters of the extended QZS isolator are analysed;
then, the influence of the friction on the stiffness and dy-
namic characteristics of QZS mechanism is discussed; and
finally, the conclusions are presented.

2. Optimization Criteria for Typical
QZS Mechanism

2.1. StiffnessofTypicalQZSMechanism. As shown in Figure 1,
a typical isolator with high-static-low-dynamic-stiffness
(HSLDS) consists of a vertical spring and two oblique springs,
whose stiffness coefficients are K0 and K1, respectively. *e
positions of two oblique springs are symmetric compared with
that of a vertical spring, and the distance between their two
hinged ends is 2a. *e initial support point C is at the height of
h0 fromA and B, and two oblique springs have an initial length
of L0 and an angle of θ0 with respect to the horizontal direction.
If the support force of themechanism F is nondimensionalized
by K0a, then the nondimensional force F, varying with the

vertical nondimensional displacement of the support point x,
can be given by the following equation:

F � x + 2α(c − x)

�����

1 + c
2



��������������

x
2

− 2cx + 1 + c
2

 − 1⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where x � x/a, α � K1/K0, and c � h0/a. *e nondimen-
sional stiffness is obtained by differentiating equation (1)
with respect to x.

K � 1 + 2α 1 −

�����

1 + c
2



x
2

− 2cx + 1 + c
2

 
3/2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. (2)

According to the symmetry of the mechanism, the
minimum value of K is at the equilibrium position where the
displacement xe satisfies the following equation:

xe � c. (3)

Combining equation (2) with equation (3) and taking into
account the QZS condition, the relationship between structural
parameters α and c of QZS mechanism is given as follows:

α �
1

2
�����

1 + c
2



− 1 

.
(4)

So equation (2) becomes as follows:

Kqzs � 1 +
1

�����

1 + c
2



− 1
1 −

�����

1 + c
2



x
2

− 2cx + 1 + c
2

 
3/2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. (5)

*ere is only one independent geometric parameter c to
be determined in equation (5), and the stiffness ratio pa-
rameter α can be calculated by equation (4). When oblique
spring is horizontal, it has maximum compression length.
*e deformation ratio of oblique spring at equilibrium is η,
which satisfies the following equation:

η � 1 −
1

�����

1 + c
2

 . (6)

*e value of η increases monotonously with the increase
in c, and the maximum value ηm is the limit deformation
ratio to behave linear stiffness. So, the geometric parameter c

ranges between (0,
�������������

1/(1 − ηm)2 − 1


), and the optimal
values of h0 and L0 are then found in the interval (0, a�������������

1/(1 − ηm)2 − 1


) and (0, a/(1 − ηm)), respectively. *e
value of ηm is determined by the structure of the coil spring,
such as pitch and diameter. If ηm is 0.5, then the range of c is
(0,

�
3

√
).

2.2. Optimization Criteria for QZS Mechanism. *e optimal
structural parameters can be obtained by the trade-off be-
tween vibration isolation performance and load capacity.
*e optimization of QZS mechanism is to make it have the
lowest natural frequency near the equilibrium point, which
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can be equivalent to the maximum displacement from the
equilibrium point at a given frequency. In addition, the
stiffness of vertical spring K0 is a decisive parameter to
determine its load capacity and a relatively higher value of
K0 is beneficial.

In an ideal condition, the QZS mechanism subjected to
mass load stays at the equilibrium position where the oblique
springs move along their axial direction, and the support
force entirely comes from the vertical spring. *e support
force F0 at the equilibrium position is given by the following
equation:

F0 � K0ac � Mg, (7)

where M is the rated load. *e natural frequency of the QZS
mechanism can be expressed as follows:

f �
1
2π

��
K

M



, (8)

where K is the stiffness of the QZSmechanism and yields the
following:

K � KK0. (9)

By substituting equations (7) and (9) into equation (8),
the natural frequency of the QZS mechanism can be re-
written as follows:

f �
1
2π

���
Kg

ac



. (10)

Equation (10) indicates that the geometric parameter c is
contained in the expression of the natural frequency with
respect to the nondimensional stiffness. To achieve expected
performance, the natural frequency of the isolator should be
constrained during operation. *e optimization criterion is
the realization of the maximum displacement from the
equilibrium position at a given natural frequency.

If the QZS mechanism has a critical frequency fc, then
the critical nondimensional displacement of the support
point xc can be expressed as follows:

xc � xe ± xd, (11)

where xd is the excursion from the equilibrium position.*e
nondimensional movement range of the isolator df at the
critical natural frequency fc is twice the value of xd. By
substituting equations (10) and (11) into equation (5), its
expression can be written as follows:

df � 2xd � 2

������������������������������������

g
�����
c2 + 1



g − 4π2f2
cac( 

��������������
c2 + 1 + 4π2f2

cac
 

2/3

− 1




.

(12)

*e physical quantities a and fc in equation (12) are
determined by the demands of the isolator and regarded as
constants here. *e curves of nondimensional movement
range with respect to the geometric parameter are plotted in
Figure 2, where the nondimensional movement range df

increases monotonically with the increase in the geometric

parameter c at the same critical natural frequency. In the

range of (0，
�������������

1/(1 − ηm)2 − 1


), a higher value of c means a
lower natural frequency of the mechanism near the equi-
librium position. When the critical natural frequency fc is
close to 0Hz, the nondimensional movement range df is
small and increases approximately linearly with the increase
in the geometric parameter c. When fc appropriate 1Hz, df

changes rapidly for its strong nonlinearity.
*e optimal geometric parameters cannot be obtained by

the QZS condition, for it has no upper limit. It is necessary to
propose another constraint considering load capacity. *e
QZS isolator usually uses a regulating unit to adjust the
support point to the initial equilibrium position D when
bearing different loads, as shown in Figure 3.

Supposing that the adjustable height is 2Δh and the load
is from M − ΔM to M + ΔM, then these parameters satisfy
the following equation:

K0Δh � ΔMg. (13)

Combining equations (7) and (13), ΔM can be expressed
as follows:

ΔM �
MΔh

ac
. (14)

Equation (14) reveals that a lower value of c results in a
higher value of ΔM for a given a, Δh, and M, which can
provide a larger load capacity. *us, a lower value of the
geometric parameter c should be preferred in view of load
capacity. Combined with the characteristics of vibration
isolation and load bearing, the optimum value of the geo-
metric parameter of the QZS mechanism can be determined
by equations (12) and (14). If only isolation performance is
considered, a better passive isolation performance can be
achieved by increasing the value of the geometric parameter
at the expense of load capacity and vice versa.

When the dimension of the QZS mechanism is limited
and L0 is a constant, the curves of the movement range df

with respect to the geometric parameter c are plotted in
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Figure 2: Nondimensional movement range versus the geometric
parameter at different given critical frequencies when a� 0.2m.
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Figure 4. It reveals that df has a maximum value when copt is
1.36 and L0 is in the range (0, 1]. According to the QZS
condition given in equation (4), the corresponding pa-
rameter αopt is 0.73.

Based on analysis by Carrella et al. [2], the optimum
structural parameters denoted by the letters with apostrophe
are a′/L0′ � 2/3 (namely, copt′ � 1.12, nondimensional by a)
and αopt′ � 1. Without loss of generality, let L0 � L0′ � 0.4m.
*e curves of stiffness and natural frequency with respect to
displacement from the equilibrium position under the two
sets of optimum structural parameters are plotted in Fig-
ure 5. It demonstrates that both stiffness and natural fre-
quency of the QZS system, designed by the optimization
method presented in this study, are lower than those in the
previous method under the same displacement. Moreover,
their difference increases when the support point moves
away from the equilibrium position.

If the QZS system is subjected to a small harmonic
disturbance, its response is very small and is approximate to
a linear system. *e curves of vibration transmissibility at
two different natural frequencies are plotted in Figure 6. It is
obvious that the system with a smaller resonant frequency
has better vibration isolation performance. If the harmonic
disturbance is large, the QZS system has nonlinear

behaviour. *e equation of motion can be approximated by
Duffing’s equation with linear and nonlinear terms b1 and b2
and nondimensionalized by K0a as follows:

1
ω0

2x″ +
2ξ
ω0

x′ + b1x + b2x
3

� F cos(ωt + ϕ), (15)

where ω0 �
�����
K0/M


, ξ � c/2

�����
K0M


, b1 � 1 − 2α(

�����
1 + c2



−1), and b2 � α
�����
1 + c2


, and ξ, ω, and F are damping ratio,

disturbance angular frequency, and nondimensional dis-
turbance force, respectively. An approximate solution is
obtained by applying the harmonic balance method. *e
disturbance force F and the response magnitude A have the
relationship as follows:

F
2

� b1 −Ω2 A +
3
4
b2A

3
 

2
+[2ξΩA]

2
, (16)

where Ω � ω/ω0. When isolator satisfies QZS condition, the
value of parameter b1 is 0 and equation (16) reduces to the
following:

F
2

� −Ω2A +
3
4
b2A

3
 

2
+(2ξΩA)

2
. (17)

Equation (17) reveals that response amplitude A is re-
lated to disturbance force F, angular frequency ratio Ω, and
nonlinear term b2. *e response magnitude curves with
different optimal c are plotted in Figure 7. It demonstrates
that the resonant peak slopes to the right side due to the
nonlinear term b2, and the peak frequency with c � 1.36 is
lower than the one with c � 1.13. According to equation (7),
the angular frequency ratio can be expressed as follows:

Ω �

���������������������������������
3
4
b2A

2
− 2ξ2 ±

1
A

������������������

4ξ4A2
− 3b2ξ

2
A
4

+ F
2



. (18)

*e angular frequency at the peak value has unique
solution, which satisfies the following equation:

4ξ4A2
− 3b2ξ

2
A
4

+ F
2

� 0. (19)

*e resulting angular frequency ratio of the quasi-zero
stiffness isolator is determined by the following equation:

Ωr �

����������
3
4
b2A

2
r − 2ξ2



, (20)
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Figure 3: Adjustable height of the regulating unit ∆h from the initial position E with load range ∆M.
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where Ar is the peak response amplitude and determined by
equation (19). *e relationship between Ω and c is drawn in
Figure 8. *e curve indicates that the resonant frequency of
nonlinear mechanism becomes small with the increase in c.
So, a larger c is also beneficial to vibration isolation
bandwidth in nonlinear condition, and the result is similar
to linear mechanism.

As shown in Figure 5(a), smaller curvature corresponds
to lower nonlinear term parameter b2. *e response mag-
nitude curves with different b2 are plotted in Figure 7, which
demonstrates that the resonant peak slopes to the right side
due to the nonlinear term. Despite the complex phenom-
enon around the resonant frequency, a lower vibration
magnitude can be achieved with a weaker nonlinearity above
the resonant frequency because its natural frequency is
rather small. *en, a conclusion can be drawn that the QZS
mechanism based on the optimization method in this study
has better performance of vibration isolation despite small
or large disturbance.

3. Optimization Criteria for Extended
QZS Mechanism

*ere is one independent variable in the typical QZS isolator
discussed above. As many negative stiffness structures are
proposed, different nonlinear stiffness expressions are de-
rived. Similarly, it deserves discussion on how to further
improve the vibration performance through an extended
three-spring isolator. *e nonlinear and prestressed oblique
springs of the QZS system were studied by introducing two
extended variables of structural parameters [3]. It revealed
that cubic softening nonlinear stiffness and prestressed
oblique springs could further improve the vibration isolation
behaviour with the optimum extended parameters, but the
effects of every extended parameter on static performance
remain unclear when these parameters take different values.
According to the previous work and in a more general case,
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some extended forms of the simple QZS isolator, such as
vertical spring with fixed stiffness and prestressed oblique
springs with variable stiffness, are analysed and the effects of
every structural parameter on the static characteristic are
explored, respectively.

An extended form of the QZS isolator has an initial
position where the vertical spring is in free length, as shown
in Figure 9. Stiffness of the oblique spring is as follows:

K � K1 − K2x
n− 1

, (21)

where K1 and K2 are the coefficients of linear and nonlinear
stiffness and n is the order of nonlinear term.When the value
of K2 is positive or negative, the oblique springs have
softening or hardening stiffness, respectively. *e restoring
force of oblique springs F1 with respect to displacement x is
as follows:

F1 � K1 L0 −

������������

h0 − x( 
2

+ a
2



+ δ 

− K2 L0 −

������������

h0 − x( 
2

+ a2


+ δ 
n

,

(22)

where δ denotes the pre-compression length. *us, the
support force Fext of the extended QZS isolator can be
written as follows:

Fext � K0x + 2F1 sin θ, (23)

where sin θ � (h0 − x)/L0. Two additional structural pa-
rameters are introduced as follows:

δ �
δ
a

,

β �
K2a

n− 1

K0
.

(24)

*e dimensionless support force Fext and dimensionless
stiffness Kext are nondimensionalized by K0a and K0, re-
spectively, and can be separately written as follows:

Fext � x + 2α(c − x)

�����

1 + c
2



+ δ
Λ

− 1⎛⎜⎜⎝ ⎞⎟⎟⎠

− 2β
(c − x)

Λ

�����

1 + c2


+ δ − Λ 
n

,

(25)

and

Kext � 1 + 2α 1 −
F

A
3  − 2β

Δ]− 1

A
3 nA(x − c)

2
− Δ ,

(26)

where Λ �

��������������

x2 − 2cx + c2 + 1


, Γ �
�����
1 + c2


+ δ, Δ � Γ − Λ.

It is difficult to derive the displacement range of the
extended mechanism with all structural parameters at the
critical natural frequency, so the influence of every pa-
rameter on the vibration isolation characteristic under the
QZS condition is then analysed in statics.

3.1. Effect of Prestressed Oblique Springs. When the pre-
compressed length of oblique springs is δ at initial position,
the nondimensional movement range of the QZS mecha-
nism d1 at the critical nondimensional stiffness Kc is given
by the following equation:

d1 � 2

�������������������

Γ
1 − Kc Γ + Kc

⎡⎢⎣ ⎤⎥⎦

2/3

− 1




. (27)

*e effect of the structural parameter δ on stiffness
characteristic can be approximately equivalent to that of the
structural parameter c. It can be intuitively seen from
Figure 10(a) that the initial support point B of QZS
mechanism with pre-compressed oblique springs can move
to a new point A by the resilience of the oblique springs. As
the stiffness of vertical spring is constant, these two QZS
mechanisms have the same stiffness characteristic. Suppose
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Figure 8: Peak angular frequency ratio versus geometric parameter
when ξ � 0.1 and F � 1.
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Figure 9: An extended QZS mechanism consisting of prestressed
oblique springs with variable stiffness and vertical spring with fixed
stiffness.
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the geometric parameters of QZS mechanisms with initial
positions A and B are c1 and c2, then δ satisfies as follows:

δ �

�����

1 + c
2
1



−

�����

1 + c
2
2



. (28)

If the limit deformation ratio ηm is 0.5, the values of δ are
not greater than 1. *e relationship between the nondi-
mensional displacement d1 and the structural parameters c

and δ is illustrated in Figure 10(b). It shows that the increase
in δ, resulting in the increase in d1, improves the frequency
characteristic around the equilibrium position. Besides,
considering the linear deformation range of oblique spring, a
higher value of c reduces the available range of δ. When c is

0, the maximum δ can be obtained and the corresponding df

has the same value as the case that c has the maximum value.
*erefore, when the oblique springs are prestressed, the QZS
mechanism has a lower natural frequency around the
equilibrium position. Moreover, a greater value of com-
pression length brings about better isolation performance
and a more compact dimension of the mechanism.

3.2. Effect of Oblique Springs with Variable Stiffness.
When the oblique springs have nonlinear stiffness, the
nondimensional stiffness of the QZS mechanism Kqzs 1 then
can be given by the following equation:

Kqzs 1 � 1 +
Λ3 −

�����

1 + c
2



�����

1 + c
2



− 1 Λ3
1 + 2β

�����

1 + c2


− 1 
n

  −
2βΨn− 1

Λ3
nΛ(x − c)

2
− Ψ , (29)

where Ψ �
�����
c2 + 1


− Λ.

*e expression of Kqzs 1 is complicated, and the effect of
the extended parameters can be analysed qualitatively. *e
curves of the nondimensional stiffness and displacement for
different β and n are illustrated in Figure 11. *e nondi-
mensional stiffness-displacement curves, shown in
Figures 11(a)–11(c), gradually flatten near the equilibrium
position and become steep at displacement away from the
equilibrium position with the increase in β. Furthermore, as
the exponent n increases, the differences between the curves
for different β become smaller. A flatter nondimensional
stiffness-displacement curve means a larger movement
range of the mechanism at a given Kc, and the vibration
isolation performance can be improved near the equilibrium
position by introducing a stiffness parameter β with positive
value, particularly when n is small. Likewise, Figures 11(d)–
11(f ) reveal that the nondimensional stiffness has the

minimum value for the same β near the equilibrium position
when the value of n is 2. Besides, a larger β is beneficial to
increase the difference in values of Kqzs 1 for different n,
which results in better vibration isolation performance.
When n is 2, the stiffness of oblique spring becomes the
following:

K � K1 − K2x � K0(α − βx). (30)

According to equation (30), the stiffness of oblique
spring changes linearly with the displacement and the value
of β is constrained by the maximum displacement. In fact,
the beneficial values of β and n are aimed to increase the rate
of change in stiffness. If a larger n is chosen, a relative larger
β can be considered to compensate for the weakness.
Equation (24) indicates that the effect of β and n can be
equivalent to each other, and this is the same with the case of
δ and c. Hence, the static analysis indicates that the vibration
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Figure 10: (a) Schematic representation of mechanism with prestressed oblique springs (point B) and free state oblique springs (point A).
(b) Relationship among displacement of the QZS mechanism, geometric parameter, and nondimensional compression length at f � 0.5Hz
and a � 0.2m.
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Figure 11: Nondimensional stiffness versus nondimensional displacement for oblique springs with different variable stiffnesses. (a) n� 2,
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isolation performance of the mechanism around the equi-
librium position can be improved by oblique springs with
softening stiffness, and it is gradually improved with the
increase in β and the optimum n is 2.

*e extended QZSmechanism with pre-compressed and
variable stiffness oblique spring is compared with the typical
QZS mechanism, as shown in Figure 12. It reveals that the
extended QZS mechanism with both prestressed and soft-
ening stiffness oblique spring achieves the minimum di-
mensionless stiffness at the same displacement and any
extended QZS mechanism with one or more proper ex-
tended parameters has better stiffness behaviour than the
corresponding typical one. When x � 0.5, the nondimen-
sional stiffness K of the QZS isolator is 0.7. To decrease the
value of K by 20%, an extended QZS isolator with parameter
δ � 0.35 or β � 0.5, n � 2 can be feasible. If both parameters
are used, 66% reduction in K can be achieved. In summary,
the increase in the parameters c, δ, and β can improve the
vibration isolation performance around the equilibrium
position, and the optimal value of n is 2. Besides, the effect of
δ on stiffness behaviour can be equivalent to that of c, and
the effect of β and n can be equivalent to each other.

4. Influence of Friction

*e angle of the oblique spring varies during vibration
isolation, and the spring can only withstand axial force, so a
rotating pair of the support point C and sliding pair moving
along with oblique spring should be designed in the practical
QZS mechanism. *us, friction exists when the support
point C moves up and down. As the frictional force is
proportional to the pressure of the contact surface and the
axial force Fa of the spring is clearly much greater than the
radial force Fr in the system, rotational friction caused by the
axial force of the oblique spring is the main friction and
discussed here. *e force diagrams of the rotational pair and
the support point C are analysed, as shown in Figures 13(a)
and 13(b).

*e normal force Fn and the tangential force Ft of the
contact surface at the hinged endC in Figure 13(a) satisfy the
following equation:

Ft � μFn, (31)

where μ is the coefficient of rotational friction. *e support
force of the QZS mechanism thus yields the following
equation:

Fd � F0 + 2Fn sin θ + 2Ft cos θ, (32)

where Ft is a positive value when the support point Cmoves
downward. It can be seen that the term involving friction in
equation (32) is a variable about displacement, and the
nondimensional stiffness of the system is related to the
rotational friction, which can be derived as follows:

Kd � 1 + 2α 1 −

�����

1 + c
2



[1 − μ(c − x)]

1 +(c − x)
2

 
3/2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (33)

Equation (33) reveals that the minimum value of Kd is
not at the equilibrium point. As the extreme value of Kd is at
the point where the derivative value with respect to x is zero,
the corresponding xd near the equilibrium position is ob-
tained as follows:

xd � c −
3 −

������

8μ2 + 9


4μ
. (34)

*e value of Kd should be always a nonnegative value to
avoid negative stiffness. In other words, the minimum
nondimensional stiffness Kd min satisfies the following
equation:

Kd min � 1 + 2α 1 −Φ
�����

1 + c
2



 ≥ 0, (35)

where the intermediate parameter Φ satisfies the following
equation:

Φ �
16μ3 1 +

������

8μ2 + 9


 

6 4μ2 + 3 −

������

8μ2 + 9


  
3/2. (36)

When the minimum nondimensional stiffness Kd min
equals zero, the relationship of c, α, and μ in QZS mech-
anism containing friction is obtained as follows:

αqzs d �
1

2 Φ
�����

1 + c
2



− 1 

.
(37)

*e nondimensional stiffness of the QZS mechanism at
the equilibrium position Ke d can be derived as follows:
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Figure 12: Nondimensional stiffness versus nondimensional dis-
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Ke d � 1 −
1 −

�����

1 + c
2



1 −Φ
�����

1 + c
2

 . (38)

*e curves of Kqzs d, denoting the value of Kd under the
condition of the QZS mechanism, with respect to x, are
plotted in Figure 14(a). For the sake of comparison, the
minimum values of Kd with different μ are adjusted to x � 0.
It is shown that the slope of the curves decreases with the
increase in μ when x is greater than xd, and the result is the
opposite when x is less than xd. Besides, Figure 14(b)
demonstrates that Ke d is determined by c and μ. Ke d

varies greatly with μ and c when c is less than 1, and Ke d

changes little when c is greater than 1. As discussed in
Section 2.1, the optimal value of c is 1.36 when L0 is a
constant in the range (0, 1]. *e actual value of μ is usually
not greater than 0.1, and then, the corresponding Ke d is not
greater than 0.004, which has a very litter impact on the
nondimensional stiffness.
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Figure 13: (a) Force diagram of the rotating pairs at the common hinged end of the QZS mechanism. (b) Force diagram of the support
point C.
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Apart from the effect on stiffness, the friction also
generates friction damping, which affects the dynamic
characteristic. Assuming the damping ratio caused by
friction is ξ1, equation (17) becomes as follows:

F
2

� −Ω2A +
3
4
b2A

3
 

2
+ 2 ξ + ξ1( ΩA 

2
. (39)

*e response amplitude curves with different ξ1 are
drawn in Figure 15. It demonstrates that the damping ratio
can affect both peak response amplitude and resonant fre-
quency. As ξ1 increases, more energy is dissipated and thus
the response amplitude and resonant frequency decrease.
*e damping ratio is related to the coefficient of friction and
force of oblique spring, which can be determined by ex-
periment test.

As a result, the friction changes the zero-stiffness point
location that is no longer at the static equilibrium position,
but it has little influence on the stiffness characteristic
around the static equilibrium position. Besides, friction
damping caused by friction affects the dynamic character-
istic. *e response amplitude and resonant frequency de-
crease as the parameter ξ1 increases. Furthermore,
considering the errors of structural parameters and avoiding
the existence of a negative stiffness region in the practical
mechanism, a similar analysis can be conducted and the
isolation performance can be investigated.

5. Conclusion

An improved optimization method for the structural pa-
rameters of a typical QZS isolator with three springs has
been employed in this study. *e optimization criteria of the
QZS mechanism have been proposed to obtain the corre-
sponding optimum parameters by achieving the maximum
nondimensional displacement from the equilibrium posi-
tion without exceeding a given natural frequency and having
as great a load range as possible. Either of the vibration
isolation characteristics and load capacity can be improved
by adjusting the geometric parameter at the expense of the
other one. When the length of the oblique spring is a
constant and less than 1m, the optimum geometric pa-
rameter is 1.36, and the results show better vibration iso-
lation performance around the equilibrium position in the
range of both linear behaviour and nonlinear behaviour.

Further qualitative analysis of an extended QZS isolator
consisting of vertical fixed stiffness and prestressed oblique
springs with variable stiffness has been conducted, and it
reveals that prestressed oblique springs with softening
stiffness can improve the stiffness property and the best
exponent of the nonlinear stiffness is 2. Besides, the isolator
with multiple extended parameters has better stiffness
characteristic than one with single extended parameters.

Finally, the influence of friction is analysed in the
practical QZSmechanism.*e friction has little influence on
the stiffness characteristic of the QZSmechanism around the
static equilibrium position. Meanwhile, the damping ratio
caused by friction can affect both peak response amplitude
and resonant frequency.
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