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Minimum correlated generalized Lp/Lq deconvolution (MCG-Lp/Lq-D) is an important tool to detect periodic impulses in
vibration mixture. It is proved to be a more stable technique than maximum correlated kurtosis deconvolution (MCKD) to
recover the fault impulse under strong noise conditions. However, MCG-Lp/Lq-D still has limitations. One of the necessary
conditions for the success of MCG-Lp/Lq-D is to provide a precise period of fault. An imprecise prior period will lead to
performance degradation or even failure of the method. *erefore, in this paper, a MCG-Lp/Lq-D with adaptive fault period
estimation capability is proposed, adaptive minimum correlated generalized Lp/Lq deconvolution (AMCG-Lp/Lq-D). *e
proposed method uses the autocorrelation function of envelope signal to estimate the fault period adaptively in each iteration and
then takes the estimated period as the input parameter of MCG-Lp/Lq-D for the next iteration optimization. *e proposed
method does not require precise prior fault period input, which greatly improves the fault recovery accuracy and application range
of MCG-Lp/Lq-D. Eventually, simulated and experimental data verify the effectiveness and superiority of AMCG-Lp/Lq-D.

1. Introduction

Fault diagnosis of rotating machinery is very important for
making equipment maintenance plan, preventing equip-
ment damage, and ensuring operation safety. Failure of
rotating machinery might lead to serious equipment damage
and safety accidents. Many advanced fault detection
methods have been proposed and applied in engineering
practice. *ese methods can be divided into several cate-
gories, including spectral kurtosis [1–3], sparse represen-
tation [4–6], cyclostationarity methods [7–10], signal mode
decomposition methods [11–13], deep learning [14, 15], and
blind deconvolution (BD) [16–19]. BD methods can recover
fault impulse adaptively from noise observation, which has
been developed and promoted in fault diagnosis.

*e essence of BD is to adaptively construct an inverse
filter to eliminate the influence of the transmission path on
the collected vibration signal [20]. According to whether the
prior knowledge of the period is used, BD can be divided

into nonperiod dependent BD and period dependent BD.
Minimum entropy deconvolution (MED) is a representative
example of nonperiod dependent BD [16] and has been
applied to bearing fault diagnosis by Sawalhi et al. [21]. It can
recover the fault impulse in the original vibration signal by
designing a filter based on the maximum kurtosis of the
filtered signal. However, many researches show that MED is
sensitive to large peaks in signals [18, 22] and not robust
enough to noise [23, 24], leading to the fact that MED might
not be able to recover repetitive fault-related impulses.
Aiming at the deficiency of MED, Jia et al. [18] proposed
sparse filtering (SF) with the generalized Lp/Lq (G-Lp/Lq)
normwith p< q. Compared with kurtosis, the G-Lp/Lq norm
is less sensitive to large peaks in signals [22, 25], which
makes SF based on the G-Lp/Lq norm minimization more
robust to large impulses and noise than MED. However,
when there is strong background noise in the vibration
signal, SF usually needs to use a smaller p value to improve
the robustness of the method.*e use of smaller p values will
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reduce the sensing ability of the G-Lp/Lq norm to fault
impulses [22, 25], resulting in the failure of SF to recover any
fault features. In order to overcome the defects of MED and
SF simultaneously, BD using the fault impact periodic nature
(period dependent BD) is developed.

Maximum correlated kurtosis deconvolution (MCKD)
[24] is a typical period dependent BD. Compared with MED,
MCKD uses prior knowledge of fault impulses period to en-
hance the periodic fault impulses submerged in noise [24].
MCKD can adaptively design the target filter by maximizing
the correlated kurtosis [24] (CK) of the filtered signal. CK can
not only emphasize the high kurtosis of signal, but also
highlight the periodic impulse. MCKD has stronger recovery
performance of the fault impulse than MED. Subsequently,
multipoint optimal minimum entropy deconvolution adjusted
(MOMEDA) [23] based on multi-D-norm maximization is
proposed to directly solve the optimal filter. However, the case
studies in [26, 27] prove that both MCKD and MOMEDA are
not robust enough to process strong noise signals, while BD
based on the correlated generalized Lp/Lq (CG-Lp/Lq) norm
minimization (minimum correlated generalized Lp/Lq
deconvolution, MCG-Lp/Lq-D) shows better robustness to
noise. *is is because the CG-Lp/Lq norm analyzes the cor-
relation function of the filtered signal rather than the filtered
signal itself [26], which can be regarded as the extension of the
G-Lp/Lq norm in the signal correlation domain. *erefore,
CG-Lp/Lq norm is a low-order statistic and also emphasizes the
periodicity of the impulse train, which makes MCG-Lp/Lq-D
more robust to random large peaks and noise in the signal, thus
making it more suitable for processing strong noise signals.
However, MCG-Lp/Lq-D is very demanding for the prior fault
period input precision. In engineering practice, due to the
influence of both rotation speed fluctuation and measurement
error [28, 29], the precise fault period is usually hard to be
obtained through theoretical calculation.*is greatly limits the
application of MCG-Lp/Lq-D in engineering practice. *e
purpose of this study is to overcome the limitation of the
dependence on the precise fault period of MCG-Lp/Lq-D.

Recently, in order to overcome the limitation of the de-
pendence on fault period for MCKD, Miao et al. proposed
improved MCKD (IMCKD) [30]. IMCKD uses the autocor-
relation function of the envelope signal for filtered signal
(adaptive period estimation method, APE [31–33]) to estimate
the fault period of signal. It solves the problem that MCKD is
dependent on prior period, thus improving MCKD to be a
nonperiod dependent method. Inspired by IMCKD, APE can
be considered to be introduced intoMCG-Lp/Lq-D to construct
to overcome the second limitation of MCG-Lp/Lq-D. However,
when the SNR is very low, especially when there are concurrent
faults in the vibration signal [34], APE might fail to detect the
real fault period, whichwill causeMCG-Lp/Lq-D to converge to
the incorrect result [34, 35]. Actually, in most engineering
practice, the fault period can be obtained by theoretical cal-
culation according to the rotation speed and the component
geometry parameter [6, 36, 37]. Although the rotation speed
fluctuation and themeasurement error of component geometry
parameter might cause the difference between the theoretical
calculation value and the real value of the fault impulse period, it
is an approximate estimation of the real fault period.*erefore,

when APE fails under strong noise, the theoretical calculation
period will be a good input of period parameters for MCG-Lp/
Lq-D. In other words, this theoretical calculation period can be
used to guide APE to track the real fault period to ensure the
precision of the input period used by MCG-Lp/Lq-D.

According to the above discussion, a new deconvolution
method, the adaptive MCG-Lp/Lq-D (AMCG-Lp/Lq-D), is
proposed in this paper. AMCG-Lp/Lq-D uses the improved
APE (adaptive period estimation with constraint, APEC)
method to estimate the period parameters needed by MCG-
Lp/Lq-D. *e principle of APEC is as follows. Firstly,
according to the theoretical calculation period, the APEC
constructs the constraint range of the period estimation
which contains the real fault period. *en, the APEC is used
to estimate the period within this constraint range, and the
estimated period is regarded as the fault period used in this
iteration. If the APEC still fails within this constraint range,
the theoretical calculation period is regarded as the fault
period used in this iteration. Firstly, when there is an error
between the input period and the real fault period, the use of
APEC can make MCG-Lp/Lq-D no longer iterate with an
imprecise period, which is beneficial to improve the per-
formance of fault recovery. Because in engineering practice,
the prior fault period obtained through theoretical calcu-
lation is often not precise, the use of APEC ensures that
MCG-Lp/Lq-D can use precise fault period for iteration,
thus expanding the practicality of MCG-Lp/Lq-D. Addi-
tionally, because the APE technique used in the IMCKD is
completely adaptive, when there is strong noise interference
in the signal, the estimated period might differ greatly from
the real fault period. By contrast, the APEC technique can
make the proposed method avoid using the period pa-
rameters which are greatly different from the real fault
period during iteration. *is is beneficial to improve the
computational efficiency of the proposed method. Fur-
thermore, AMCG-Lp/Lq-D inherits the original advantages
of MCG-Lp/Lq-D, including excellent robustness to noise
and concurrent fault diagnosis ability.

*e rest of this paper is arranged as follows. Section 2
reviews the basic theory of MCG-Lp/Lq-D. In Section 3, the
limitations of APE are discussed. APEC is proposed, and
based on this, AMCG-Lp/Lq-D is proposed. In Sections 4
and 5, the performances of AMCG-Lp/Lq-D in the pro-
cessing of vibration mixtures separate containing single fault
signal and concurrent fault signal through simulated and
experimental data. Finally, the conclusions are in Section 6.

2. Theoretical Review

MCG-Lp/Lq-D is a deconvolution method based on the CG-
Lp/Lq norm. *e CG-Lp/Lq norm is defined as follows:
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where Corr(y, T) is the correlation function related to fil-
tered signals y1 � y(1: N − T) and y2 � y(T + 1: N). v is
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used to denote the correlation function,
v � Corr(y, T) � y1y2. T is the precise period (in sample) of
the fault impact in the vibration signal. It can be calculated
by T � Fs/Fd, where Fs is the sampling frequency, and Fd is
the fault feature frequency. *e definition of MCG-Lp/Lq-D
is represented as

min
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where f ∈ RL is the desired filter. *e output signal after
deconvolution is obtained by y � x ∗ f , ‖f‖2 � 1, and x ∈ RN

is the input vibration mixture signal. For the convenience of
numerical calculation, Hankel matrix H ∈ R(N− L+1)×L is
constructed based on x. *erefore, the output result after
deconvolution becomes

y � Hf , ‖f‖2 � 1, (3)

where H is defined as

H �
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At this point, the definition of v can be expressed as

v � y(1: N − L + 1 − T) · y(T + 1: N − L + 1)

� (H(1: N − L + 1 − T, :) · f) · (H(T + 1: N − L + 1, :) · f),
(5)

where H(1: N − L + 1 − T, : ) is the new matrix of the
Hankel matrix from the first row to the N − L + 1 − T th
row, represented by H1. H(T + 1: N − L + 1, : ) is the new
matrix of the Hankel matrix from the T + 1 th row to the
N − L + 1 th row, represented by H2. *e definitions of H1
and H2 are separately shown as follows:
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Due to the fact that the minimization of Jp,q(v) is still a
nonsmoothness problem, c � (v2 + ε)1/2 is used to replace v
[26]. According to equations (4)–(6), the minimization
problem in equation (2) can be described by the following
equation:

min
f
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‖f‖2 � 1.
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*e optimization problem in (7) can be solved by the
gradient descent algorithm [38]. *e gradient can be
expressed as
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*e specific steps of MCG-Lp/Lq-D are as follows:

Step 1: Input the precise fault period T, convert the
input signal x into Hankel H, and obtain the Hankel
matrixes H1 and H2.
Step 2: Initialize the filter coefficients,
f0 � [0, 1, 0, . . . , 0].
Step 3: Obtain Jp,q(v) through forward propagation;
calculate dJp,q/df based on equation (8).
Step 4: Update filter coefficients by gradient descent
algorithm.
Step 5: Repeat Steps 3 and 4 until the stop criteria are
fulfilled.

3. Proposed Deconvolution Technique

3.1. Adaptive Period Estimation Method. Since the fault
signal of rotating machinery is usually a nonstationary
amplitude modulation signal, the envelope demodulation
signal is easier to judge the fault information contained in
the signal than the original signal [39]. According to the
definition of autocorrelation function, the position corre-
sponding to the maximum value of the autocorrelation
function for the envelope signal is the best estimation of the
period for fault signal. *eoretically, the periodicity of the
signal can be accurately detected by using envelope signal.
*e autocorrelation function of the envelope is defined as
follows:

Ex(t) � |x(t) + j(Hilbert(x(t)))|, (9)
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where Ex(t) is the envelope signal of time series x(t).
Hilbert(·) represents the Hilbert transform. j is the unit for
the imaginary part.

Ax(τ) �  Ex(t)Ex(t + τ)dt, (10)

where Ax(τ) is the envelope autocorrelation function with
respect to lag τ.

Figure 1 illustrates the envelope autocorrelation function
of a periodic fault impulse whose real fault period is Tr.
According to the definition of envelope autocorrelation
spectrum, when τ ≈ Tr, the envelope autocorrelation
function of the fault signal reaches its maximum value
(except zero point) [40]. *erefore, the lag τ corresponding
to the maximum value of Ax(τ, τ ≠ 0) is the period (in
sample) of fault impulse. In order to distinguish the real
period from the estimation period, the estimation period is
denoted as Te.

A simulation signal with SNR � − 2 dB is used to illus-
trate the effectiveness of APE, where the sampling frequency
of signal Fs is 10 kHz, the fault feature frequency Fd is
103Hz, and corresponding fault period is equal to 98. *e
simulation signal is plotted in Figure 2(a). Because the
simulation signal has a high SNR, its impulse features can be
clearly observed. Figure 2(b) illustrates the envelope auto-
correlation function of simulation signal, where Te � 98.*e
period estimated in Figure 2(b) is the same as the real fault
period.*is shows that APE can accurately estimate the fault
period of simulation signal when SNR � − 2 dB.

When SNR � − 8 dB, the waveform of the simulation
signal is shown in Figure 3(a). It can be seen from Figure 3(a)
that the fault impulse is disturbed by noise, and its impulse is
hard to be observed. Its envelope autocorrelation function is
presented in Figure 3(b), where the period detected by APE
is Te � 4. *is lag corresponds to a global maximum point,
which suggests that APEmight not be able to correctly detect
the real fault period under strong noise interference.
However, by careful observation of Figure 3(b), it can be
found that, near the locations marked by green line and
black dot, a local maximum of envelope autocorrelation
function can be observed. Its corresponding lag is exactly 98,
which suggests that a fully adaptive period estimation based
on APE might fail. However, it is possible to obtain the real
fault period if APE is used in a local range containing the real
fault period.

When SNR � − 13 dB, the fault impulse is completely
submerged by strong noise, and it can hardly be observed, as
shown in Figure 3(c). Its envelope autocorrelation function
is presented in Figure 3(d), where the period detected by
APE is Te � 4 which is greatly different from the real fault
period. Additionally, a local maximum is not found in local
range near 98.*is indicates that the real fault period cannot
be detected correctly by completely relying on APE for
period detection under the condition of low SNR [41].

In summary, when the SNR is high, APE can correctly
estimate the period of the signal. As the noise increases, the
APE will gradually fail, but APE still has possibility to detect
the real fault period in a local range containing the real fault
period. When the SNR is very low, APE cannot detect the

real fault period even in the local range containing the real
fault period. *e latter two are the two defects of APE in
processing the signals with strong noise, which might affect
the performance of BD method based on APE (such as
IMCKD). In order to overcome the above defects, this paper
proposes a period detection method, APE with constraint,
APEC, which uses the prior period to guide APE to perform
period selection.

3.2.AdaptivePeriodEstimationwithConstraint. For the first
defect, when the SNR of signal is relatively low, APE is
interfered by other local maximums and cannot detect the
real fault period. However, it can be found from Figure 3(b)
that the real fault period is the maximum within a local
range of the envelope autocorrelation function. *erefore,
it can be considered to detect the real fault period in this
local range to avoid other interference maximum points,
such as 4 in Figure 3(b). Based on this idea, a constraint
range can be constructed based on the real fault period and
its corresponding random fluctuation [28, 29]. *e real
fault period is always hard to be obtained in engineering
practices. *e theoretical calculation period is usually used
to replace the real fault period [36]. However, due to the
influence of random fluctuation, there is a difference be-
tween the theoretical calculation period and the real fault
period, with the range within 2% [28, 29]. *erefore, the
theoretical calculation period T and the difference caused
by random fluctuation can be introduced to construct the
constraint range containing the real fault period in this
paper.*is constraint range can be used by APE to estimate
the period, avoiding interference from other local maxi-
mums. *e steps of constraint construction are as follows:
Firstly, the theoretical calculation period T is calculated
based on [6, 36, 37]. Secondly, based on the random
fluctuation range in [28, 29], in order to extend the ap-
plication range of the proposed method, 5% random
fluctuation is used in this paper to construct this constraint,
[T − 5%T, T + 5%T], named TC. *irdly, APE is used to
estimate the period within the constraint range. For the
second defect, when the SNR of signal is extremely low,
APE cannot find the local maximum value within the
constraint range containing the real fault period, as shown
in Figure 3(d). *e value of theoretical calculation period T

Ax (τ)

Ax (τ = 0)

Ax (τ ≈ Tr)

τ

Figure 1: Envelope autocorrelation spectrum of signal.
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is assigned to the estimation period Te to ensure that APE
can still give a period approximate to the real fault period.
By improving the above two defects, the proposed APEC
can ensure that the estimation period Te will not deviate
from the real fault period Tr to a large range even in the case
of the failure of APE.

3.3. Adaptive Minimum Correlated Generalized Lp/Lq
Deconvolution. It can be known from IMCKD that the
introduction of period estimation technology can improve
the performance of MCKD. Inspired by IMCKD, this paper
introduces APEC into MCG-Lp/Lq-D, thus proposing
AMCG-Lp/Lq-D. *e proposed method is a novel fault
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detection technique, which can adaptively find the real fault
period in each iteration by APEC to realize deconvolution
algorithm. *e flowchart of the proposed method is given in
Figure 4. *e specific implementation steps of AMCG-Lp/
Lq-D are as follows:

Step 1: Input the theoretical calculation period T, select
the maximum count of iteration n and the length of
filter L, and initialize the filter coefficients of AMCG-
Lp/Lq-D, f0 � [0, 1, 0, . . . , 0]. *e count of iteration
i � 1.
Step 2: Construct the constraint TC containing the real
fault period to obtain APEC, according to T.
Step 3: Obtain the estimation period Te by APEC.
Format the Hankel matrix H, according to Te, and
obtain the Hankel matrixes H1 and H2.
Step 4: Obtain Jp,q(Corr(x, T)) by forward propaga-
tion; subsequently calculate the gradient term dJp,q/df
based on equation (8).
Step 5: Update the filter coefficients f by gradient de-
scent algorithm.
Step 6: Calculate the output signal filtered by the
updated filter, y(i) � xT ∗ f .
Step 7: Repeat Steps 3 to 6 until the maximum number
of iterations is reached.

Considering that the length of filter will also affect the
performance of the proposed method, a recommended se-
lection strategy for filter length is proposed to ensure that the
filter can completely cover the whole fault resonance fre-
quency band. Equation (11) should be satisfied when
selecting the filter length.

L> 2Fs/fRS, (11)

where fRS is the resonance frequency. Due to the iteration
process of the proposed method, too long filter length will
significantly increase the computational complexity,
whereas too short filter length will cause performance de-
terioration of the proposed method. *erefore, in order to
avoid the above two extreme results, a tradeoffmust be made
when choosing the filter length. It should be noted that in
order to ensure the fairness and effectiveness of the proposed
method compared with other methods, in the subsequent
simulation analysis section and experimental analysis sec-
tion, all the BD methods used for processing vibration
signals use filter length of 100, and the maximum number of
iterations is 400. Additionally, p � 1 and q � 2 are used by
both AMCG-Lp/Lq-D and MCG-Lp/Lq-D. *e sampling
frequencies of all measured signals are all 10 kHz; the
sampling time is 1 s.

4. Simulation Case Studies

Two bearing simulation signals that separately contain single
fault and concurrent fault are used to test the performance of
the proposed method. As a comparison, IMCKD, MCKD,
and MCG-Lp/Lq-D are also used to process these simulated
vibrations.

4.1. Single-Fault Simulation Signal Test. According to
equation (11) [24, 42] a set of impacts is designed:

S(t) � 
N

n�1
Anh t − nTr − 

n

i�0
τi

⎛⎝ ⎞⎠

· cos 2πfRS t − nTr − 
n

i�0
τi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠e− β t− nTr− 
n

i�0 τi( 
,

(12)

where A represents the amplitude of the simulated, and h(t)

represents the unit step function. *e real fault period is
Tr � Fs/Fd. τi denotes the effects of random slippage, which
usually accounts for 1-2% of Tr. β denotes the structure
damper coefficient. Table 1 shows the parameters of sim-
ulation bearing fault signal. A Gaussian noise whose SNR �

− 12 dB is added to the simulation signal S(t).
*e single fault simulation vibration signal is shown in

Figure 5(a), and its envelope spectrum is shown in
Figure 5(b). *e red dotted lines represent harmonics
corresponding to Fd � 113Hz.

In order to prove the robustness of the proposed
method to the input prior period. *eir prior fault feature
frequency will be set as 108Hz and 116Hz that deviate
from the real fault feature frequency, and the corre-
sponding fault period will be 92.6 and 86.2, respectively.
*e deviation fluctuation between these two periods and
the real period is within 5%. MCG-Lp/Lq-D andMCKD use
the same prior period input as AMCG-Lp/Lq-D. *e signal
in Figure 5 is processed by AMCG-Lp/Lq-D, MCG-Lp/Lq-
D, MCKD, and IMCKD, respectively.*e results are shown
in Figures 6–8.

When the input fault feature frequency is set to 116Hz
higher than the real fault feature frequency, it can be
observed that only the proposed MCG-Lp/Lq-D can detect
the fault features of bearing and greatly enhance its
amplitude, as shown in Figures 5(b), 6(b), 6(d) and 6(f ).
*e variation curve of the period obtained by APEC
during the iteration process is plotted in Figure 9(a). It can
be found that APEC converges to Te � 88 ≈ 10000/113 �

Tr at the red dot mark, which indicates that even when the
prior period is imprecise, AMCG-Lp/Lq-D can adaptively
correct the period through APEC and eventually converge
to the real period. However, neither MCG-Lp/Lq-D nor
MCKD can detect the fault features, which indicates that
these two methods have higher requirements on the
precision of the prior period. *is is also the main lim-
itation of MCG-Lp/Lq-D and MCKD in engineering
practice.

When the input fault feature frequency is set to 108Hz
lower than the real fault feature frequency, the proposed
AMCG-Lp/Lq-D still has a good fault feature recovery
performance by comparing envelope spectra in Figures 5(b),
8(b), 8(d), and 8(f ). By observing Figure 9(b), APEC con-
verges from the red dot mark to Te � 89 ≈ 10000/113 � Tr,
which again proves the superiority of AMCG-Lp/Lq-D.
Although MCG-Lp/Lq-D also detects the real fault feature
frequency, its recovered feature amplitude is significantly
smaller than AMCG-Lp/Lq-D.
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By contrast, as shown in Figures 7(a) and 7(b), IMCKD
cannot detect the fault features under the condition of strong
noise. *e variation of the estimation period for IMCKD
during the iteration is shown in Figure 9(c). It can be seen
that although IMCKD can also update the fault period, it
cannot converge to the real fault period. *is indicates that
APE has a large defect in processing strong noise signals.

In order to fully study the computational complexity of
AMCG-Lp/Lq-D, the computational efficiency of the four
BDs is given in Table 2. It is worth noting that the calculation
times shown in Table 2 are the average of each method
running 30 times. *e equipment used is 2.60GHz Intel
Core i7-6700HQ. *e software version used is Matlab
R2019 B. It can be seen that, due to the increase of APEC

Table 1: Parameters of single fault simulation vibration signal.

A β fRS(Hz) Fd(Hz) fr(Hz)

1 1000 3000 113 10.29

Construct TC according to T, obtain
APEC 

Select filter length L and
maximum iteration count n,
initialize filter coefficients f,

iteration count i = 1
Input Fs and Fd, obtain T

Obtain Te according to APEC,
based on Te, format x to H,

obtain H1 and H2

Update filter coefficients f

Compute filtered signal y(i),
update Te

(i), according to APEC

Update Hankel matrix H, obtain
new H1 and H2 according to

updated Te
(i)

i<n?

Update iteration count i=i+1

True

False

Frequency spectrum and
envelope spectrum analysis

Obtain Jp,q (Corr, (x,T)),
calculated the gradient
term dJp,q

df

Figure 4: Flowchart of AMCG-Lp/Lq-D.
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Figure 5: Single fault simulation vibration signal: (a) waveform; (b) envelope spectrum.
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technology, AMCG-Lp/Lq-D does take more time to
complete the iteration than MCG-Lp/Lq-D. However, there
is no doubt that only the proposed method can successfully
estimate the real fault period and achieve the best fault
feature enhancement effect among four methods. *is in-
dicates that the proposed method can obtain better fault
detection results without significantly increasing computa-
tional complexity.

In summary, IMCKD, MCKD, and MCG-Lp/Lq-D
cannot obtain satisfactory results when the SNR of simu-
lation signal is low and the prior period is different from the
real fault period. By comparing Figures 8(a) and 8(e), it can
be seen that MCKD is sensitive to strong noise, resulting in
its convergence to a single large peak. However, MCG-Lp/
Lq-D has a pretty good antinoise capability, which is the
reason that MCG-Lp/Lq-D can still detect fault features
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Figure 6: Processing results of AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD for single fault simulation vibration signal (with the input of
116Hz): (a, c, e) waveforms obtained by AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD; (b, d, f ) corresponding envelope spectra.
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weakly even without precise prior period, as shown in
Figure 8(d). AMCG-Lp/Lq-D shows very strong fault fea-
tures detection capability under the above two prior periods,
and the period of its filtered signal converges to the real fault
period. *is indicates that the proposed APEC has stable
period estimation capability under the condition of strong
noise, which ensures that the deconvolution method con-
verges to the correct result.

4.2. Concurrent Fault Simulation Signal Test. A concurrent
simulation signal is used to verify the superiority of AMCG-
Lp/Lq-D.*e concurrent simulation vibration signal is made
by adding a set of new single fault simulation impacts to the
simulation signal in Figure 5(a).*e parameters of the newly
added simulation impacts are listed in Table 3. *e time-
domain waveforms of the simulation signal containing
concurrent fault and its envelope spectrum are shown in
Figure 10. In Figure 10(b), the red dotted line corresponds to
Fd � 91Hz, while the yellow line corresponds to
Fd � 112Hz. IMCKD, MCKD, and MCG-Lp/Lq-D are also
used to deal with this signal. *e results of these three
methods are compared with that of the proposed AMCG-Lp/
Lq-D.

Firstly, the fault with feature frequency of 91Hz is de-
tected. *e prior period is set as 105.3 and its corresponding
frequency is 95Hz. *e concurrent fault simulation vibra-
tion signal is processed by AMCG-Lp/Lq-D, MCG-Lp/Lq-D,
and MCKD, and the results are shown in Figure 11. In
Figure 11(b), it can be observed that AMCG-Lp/Lq-D ac-
curately identifies the fault features corresponding to 91Hz
in the concurrent fault. In the meanwhile, according to
Figure 12(a), after about nine iterations, APEC converges to
Te � 110 ≈ 10000/91 � Tr at the red dot mark. Although
this fault is also identified by MCG-Lp/Lq-D, its recovery
performance of fault features is not ideal, as shown in
Figure 11(d). MCKD converges to the single peaks in the
signal and completely fails to recover the fault features
submerged in the noise, as shown in Figure 11(f). *is case
demonstrates the importance of precise prior period to the

performance of MCKD and MCG-Lp/Lq-D. However, the
proposed method is very robust. Even if the input prior
period parameters are imprecise, AMCG-Lp/Lq-D can still
obtain good results.

Secondly, the fault with feature frequency of 113Hz is
detected. *e prior period is set as 87 and its corresponding
frequency is 115Hz. *e processing results of AMCG-Lp/
Lq-D, MCG-Lp/Lq-D, andMCKD are shown in Figure 13. It
can be found that only the proposed AMCG-Lp/Lq-D can
clearly find the fault features corresponding to 113Hz in the
composite fault, whereas the other two methods cannot
detect the fault features. *e iteration process of APEC for
AMCG-Lp/Lq-D is shown in Figure 12(b). It can also be
clearly observed that APEC converges to
Te � 88 ≈ 10000/113 � Tr at the red dot. Additionally,
according to the results shown in Figures 13(a), 13(c), 13(e),
and 14(a), the time-domain waveforms of both MCKD and
IMCKD have large peaks, whereas that of the proposed
AMCG-Lp/Lq-D and MCG-Lp/Lq-D does not have. *is
proves that AMCG-Lp/Lq-D and MCG-Lp/Lq-D have good
robustness to strong noises. *e comparison between
Figures 13(b) and 13(d) shows that APEC can update the
fault period in each iteration and promote AMCG-Lp/Lq-D
to converge to the correct result. However, MCG-Lp/Lq-D
fails to detect any fault features, indicating that the per-
formance of MCG-Lp/Lq-D is heavily dependent on the real
period.

Since the concurrent fault has two different fault periods,
IMCKD theoretically cannot detect two different periods at
the same time. *is is the main reason for the failure of
IMCKD in this concurrent fault diagnosis task, as shown in
Figure 14(b). *e period variation of the filtering signal
during its iteration is shown in Figure 12(c). Additionally,
since APE performs global period detection, the estimated
range of period fluctuation is too large, resulting in that
IMCKD fails to converge, as shown in Figure 12(c).
*erefore, IMCKD cannot detect any faults. By contrast, the
results in Figures 9(a), 9(b), 12(a), and 12(b) show that the
estimation period obtained by APEC rapidly converges to a
stable value after a certain number of iterations. *is makes
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Figure 7: Processing result of IMCKD for single fault simulation vibration signal: (a) waveform; (b) envelope spectrum.
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AMCG-Lp/Lq-D have a strong capability to detect the real
fault period when dealing with the signal containing single
or concurrent faults.

*e simulation case study shows that the proposed
AMCG-Lp/Lq-D exhibits very strong robustness under the
condition of strong noise and when there is a difference
between the given prior period and the real period. However,

none of the other three methods can achieve good results.
IMCKD completely modifies MCKD to a nonperiod de-
pendent method, which makes IMCKD unable to realize
concurrent fault detection. Additionally, due to the influence
of strong noise, its period estimation method, APE, cannot
find the fault period accurately, which eventually leads to
IMCKD unable to converge.
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Figure 8: Processing results of AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD for single fault simulation vibration signal (with the input of
108Hz): (a, c, e) waveforms obtained by AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD; (b, d, f ) corresponding envelope spectra.
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5. Experimental Case Studies

In this section, a group of single fault experimental data and
a group of concurrent fault experimental data are used to test
the proposed method to verify its application value in en-
gineering practice. Both sets of experimental data were
obtained through the test rig shown in Figure 15(a). *e
main components of the test rig are motor, testing wheelset,
driving wheels, and axle box.*e bearings tested are axle box
bearings of high-speed railway vehicles, which belong to
double-row tapered roller bearings.

Table 4 demonstrates the geometric dimensions of the
bearings used, where dP(mm) is the pitch diameter,
dR(mm) is the roller-ball diameter, Z is the number of balls,
and θ(rad) is the contact angle of balls. *e test wheelset is
driven by the driving wheel at the bottom and supported by
the axle box bearing. Figure 15(b) shows the installation
position on the axle box of the accelerometer used to collect
the vibration mixture signals. An ZW9609A-18SN7068
accelerometer for collecting vibration signals is mounted on
the axle box, as shown in Figure 15(b). Figures 15(c) and
15(d) separately demonstrate the obvious outer-race faults
and rolling element faults of the two tested bearings. It is
worth noting that the bearing with rolling element fault also
has obvious outer-race fault. Both sets of experimental data
were obtained at speeds close to 100 km/h (rotation fre-
quency is 10.29Hz). *e feature frequencies corresponding
to the outer-race fault and the rolling element fault are
83.33Hz and 67.86Hz, respectively.

It must be noted that the test rig experiment has the
conditions to precisely collect the relevant parameters used
in precise calculation of the real fault feature frequency.
However, in engineering practices, the acquisition of some
parameters is restricted by the testing environment, resulting
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Figure 9: Period estimation of AMCG-Lp/Lq-D and IMCKD for single fault simulation vibration signal: (a) AMCG-Lp/Lq-Dwith the input
of 116Hz; (b) AMCG-Lp/Lq-D with the input of 108Hz; (c) IMCKD.

Table 2: Computational efficiency.

AMCG-L1/L2-D (s) MCG-L1/L2-D (s) MCKD (s) IMCKD (s)
23.83 20.68 19.97 24.52

Table 3: Parameters of newly added single fault simulation vi-
bration signal.

A β fRS(Hz) Fd(Hz) fr(Hz)

1 800 1600 91 10.29
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in that they cannot be precisely obtained. In order to verify
the superiority of the proposed method in engineering
practices, in the case studies of this section, the fault feature
frequency will be calculated by using some values deviating
from the real speed instead of using the real speed. *is is
used to simulate the possible speed measurement error in
practical engineering.

5.1. Single-Fault Experimental Data Test. *e single outer-
race fault experimental vibration signal and its envelope
spectrum of the bearing outer-race fault are shown in
Figure 16. *e red dotted line in Figure 16(b) marks the
feature frequency of the bearing outer-race fault. When the
operation speed is 106 km/h (the corresponding shaft ro-
tation frequency is 10.87Hz), the input prior period is set as
113.7, and the corresponding frequency of this period is
88Hz. Figures 17 and 18 show the processing results of
AMCG-Lp/Lq-D, MCG-Lp/Lq-D, MCKD, and IMCKD. It
can be found that when the prior fault feature frequency is
set to 88Hz higher than the real fault feature frequency, the
proposed AMCG-Lp/Lq-D precisely detects the real fault
features and greatly improves its amplitude. *is can be
observed by making comparison among the envelope
spectra before and after processing in Figures 16(b), 17(b),
17(d), 17(f ), and 18(b). All other methods failed. *e APEC
variation of the proposed method in the iteration process is
shown in Figure 19(a). It can be observed that it converges to
Te � 119 ≈ 10000/83.33 � Tr. Although MCG-Lp/Lq-D also
detects the fault features, its recovery performance is far
from that of the proposed AMCG-Lp/Lq-D. By contrast,
MCKD and IMCKD are completely unable to detect the fault
features.

*e case study shows that the performance of fault
feature detection for MCG-Lp/Lq-D and MCKD will be
seriously affected if the precise prior period of bearing fault
cannot be provided under strong noise interference. Due to
the defects of APE, IMCKD cannot accurately detect the real
fault period, resulting in that the algorithm fails to converge,
as shown in Figure 19(b). By contrast, the APEC in the
proposed AMCG-Lp/Lq-D can approach the real fault

period continually in the iteration and finally makes AMCG-
Lp/Lq-D converge to the real period, so as to detect and
enhance the fault features.*is conclusion is the same as that
obtained in the simulation analysis of bearing single fault in
Section 4.1.

In order to test whether the computational complexity
of the proposed method in engineering practice is con-
sistent with the conclusion, related to computational
complexity, obtained in the simulated case study, the
computational efficiency of the four methods is given in
Table 5. AMCG-Lp/Lq-D, MCG-Lp/Lq-D, MCKD, and
IMCKD consume 20.03 s, 14.47 s, 13.12 s, and 24.52 s, re-
spectively, for iterative calculation. It can be seen that the
calculation time of AMCG-Lp/Lq-D and IMCKD is indeed
longer than that of MCG-Lp/Lq-D and MCKD due to the
addition of adaptive period estimation technology. How-
ever, only AMCG-Lp/Lq-D accurately estimates the real
fault period and finally detected the outer-race fault fea-
tures through 22 iterations when the input period deviates
significantly from the real fault period. By contrast,
IMCKD takes longer calculation time, and its period de-
tection effect is not ideal because of serious noise inter-
ference. *is further indicates that APEC used in the
proposed method has better period tracking ability in
engineering practice than APE used in IMCKD, especially
in the case of strong background noise.

5.2. Concurrent Fault Experimental Data Test. A set of
concurrent fault experimental vibration signals is used to
verify the concurrent fault diagnosis capability of AMCG-
Lp/Lq-D in engineering practice. Figures 20(a) and 20(b)
separately show the time-domain waveform and the enve-
lope spectrum of the collected concurrent fault experimental
vibration signal. In Figure 20(b), the red dotted line cor-
responds to the bearing outer-race fault of 83.33Hz, and the
yellow line corresponds to the bearing rolling element fault
of 67.86Hz. In the envelope spectrum, only the fundamental
frequency of the feature frequency of the outer-race fault can
be observed, but neither its harmonic nor the rolling element
fault can be detected.
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Figure 10: Concurrent fault simulation vibration signal: (a) waveform; (b) envelope spectrum.
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Firstly, the rolling element fault is detected. When the
operation speed is 105 km/h (the corresponding shaft ro-
tation frequency is 10.84Hz), the prior period of AMCG-Lp/
Lq-D, MCG-Lp/Lq-D, and MCKD is set as 140.85 and the
corresponding frequency is 71Hz. *is frequency deviates
from the real fault feature frequency of 67.86Hz, about 3Hz.
Figures 21 and 22 show the processing results of AMCG-Lp/
Lq-D, MCG-Lp/Lq-D, MCKD, and IMCKD.When the prior

fault feature frequency is set to 71Hz, it can be observed
from Figure 21 that only the proposed AMCG-Lp/Lq-D can
accurately detect the 67.86Hz bearing rolling element fault,
whereas MCG-Lp/Lq-D and MCKD cannot identify any
features related to the bearing rolling element fault.
According to the iteration process in Figure 23(a), APEC
finally converges to Te � 146 ≈ 10000/67.86 � Tr at the red
point.
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Figure 11: Processing results of AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD for concurrent fault simulation vibration signal (with the
input of 95Hz): (a, c, e) waveforms obtained by AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD; (b, d, f ) corresponding envelope spectra.
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Figure 12: Period estimation of AMCG-Lp/Lq-D and IMCKD for concurrent fault simulation vibration signal: (a) AMCG-Lp/Lq-Dwith the
input of 95Hz (to detect the fault of 91Hz); (b) AMCG-Lp/Lq-D with the input of 115Hz (to detect the fault of 113Hz); (c) IMCKD.
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Figure 13: Continued.
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Secondly, the outer-race fault is detected. *e prior
period of AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD is
set as 114.94 and the corresponding frequency is 87Hz. *e
processing results of the three methods are shown in

Figure 24. By comparing the processing results in
Figures 24(b), 24(d), and 24(f), it can be found that MCG-
Lp/Lq-D and MCKD cannot detect the fault features of the
bearing outer-race. Only the proposed AMCG-Lp/Lq-D can
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Figure 13: Processing results of AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD for concurrent fault simulation vibration signal (with the
input of 115Hz): (a, c, e) waveforms obtained by AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD; (b, d, f ) corresponding envelope spectra.
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Figure 14: Processing result of IMCKD for concurrent fault simulation vibration signal: (a) waveform; (b) envelope spectrum.

Shock and Vibration 15



extract the bearing outer-race fault features from the con-
current fault and enhance its amplitude. In addition, as
shown in Figure 23(b), the APEC of the proposed method
stabilizes to Te � 119 ≈ 10000/83.33 � Tr at the red point
after about 20 iterations. Figures 22(a) and 22(b) demon-
strate the processing result of IMCKD. Since IMCKD does
not have the ability to detect multiple faults, the failure of
IMCKD in this experimental case is reasonable. It can be

seen from Figure 24(c) that the fluctuation range of the
period obtained by APE is too large to converge, denoting
that detecting period in the global range might lead to
nonconvergence of the result. *is indicates that even if the
prior period is imprecise, the theoretical calculation period
can still guide AMCG-Lp/Lq-D to converge to the real result,
and the concurrent fault detection capability of the proposed
method is retained.

Loading device

Driving wheel

Bearing and axle box

wheelset

(a)

Accelerometer

Axle box

(b)

Outer-race
Fault

(c)

Roller
Fault

(d)

Figure 15: Photographs of bearing test rig: (a) testing rig; (b) installation of accelerometer; (c) outer-race fault; (d) rolling element fault.

Table 4: Bearing fault experimental data parameters.

dR(mm) dP(mm) Z θ(rad)

26.9 180 19 0.1571
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Figure 16: Single outer-race fault experimental vibration signal: (a) waveform; (b) envelope spectrum.
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Figure 17: Continued.
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Figure 17: Processing results of AMCG-Lp/Lq-D,MCG-Lp/Lq-D, andMCKD for single outer-race fault experimental vibration signal (with
the input of 88Hz): (a, c, e) waveforms obtained by AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD; (b, d, f ) corresponding envelope spectra.
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Figure 18: Processing results of IMKCD for single outer-race fault experimental vibration signal: (a) waveform; (b) envelope spectrum.
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Figure 19: Period estimation of AMCG-Lp/Lq-D and IMCKD for single outer-race fault experimental vibration signal: (a) AMCG-Lp/Lq-D
with the input of 88Hz; (b) IMCKD.
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Table 5: Computational efficiency.

AMCG-L1/L2-D (s) MCG-L1/L2-D (s) MCKD (s) IMCKD (s)
20.03 14.47 13.12 24.52

60

40

20

0

A
m

pl
itu

de

-80

-60

-40

-20

0 0.2 0.4 0.6 0.8 1
Time (s)

(a)

2

1.5

1

0.5

0

A
m

pl
itu

de

Frequency (Hz)
0 200 400 600 800 1000

(b)

Figure 20: Experimental vibration mixture signal containing the concurrent fault of outer-race and rolling element: (a) waveform; (b)
envelope spectrum.
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Figure 21: Continued.
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Figure 21: Processing results of AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD for concurrent fault experimental vibration signal (with the
input of 71Hz): (a), (c), and (e) waveforms obtained by AMCG-Lp/Lq-D, MCG-Lp/Lq-D, and MCKD; (b), (d), and (f) corresponding
envelope spectra.
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Figure 22: Processing results of IMCKD for concurrent fault experimental vibration signal: (a) waveform; (b) envelope spectrum.
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Figure 23: Continued.
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Figure 23: Period estimation of AMCG-Lp/Lq-D and IMCKD for concurrent fault experimental vibration signal: (a) AMCG-Lp/Lq-D with
the input of 71Hz (to detect the rolling element fault of 67.86Hz); (b) AMCG-Lp/Lq-Dwith the input of 87Hz (to detect the outer-race fault
of 83.33Hz); (c) IMCKD.
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6. Conclusions

In this paper, a BD independent of the precise prior fault
period is proposed, AMCG-Lp/Lq-D. It can still detect the
periodic impulse associated with the fault from the vi-
bration signals with strong noise even when the input
prior period is not precise. *erefore, the proposed
method can be considered as an improvement to sig-
nificantly expand the application value of MCG-Lp/Lq-D,
because in engineering practice, the fault period obtained
through theoretical calculation is often not precise. It
overcomes the problem of the dependence of MCG-Lp/
Lq-D on the precise prior period, which allows the
proposed method to have a wider range of applications
than MCG-Lp/Lq-D. Simulation and experimental case
studies verify three advantages of the proposed method.
Firstly, the proposed method can gradually estimate the
real fault period in iteration without significantly in-
creasing the computational complexity. *is ensures that
the proposed method will not always use an imprecise
fault period to iterate, thus guaranteeing the performance
of fault feature extraction for the proposed method,
which is unable to be achieved by MCG-Lp/Lq-D. Sec-
ondarily, compared with the fully adaptive period esti-
mation technique used by IMCKD, the APEC technique
used by AMCG-Lp/Lq-D still has better ability of precise
fault period detection even under strong noise interfer-
ence. *irdly, the proposed method still has the ability to
diagnose concurrent faults. Based on the fault feature
detection performance of the proposed method under
very low SNR conditions, the proposed method is more
suitable for bearing fault diagnosis tasks in engineering
practice than MCG-Lp/Lq-D.
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