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To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical
materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth
processing was established herein. )e modified Mohr–Coulomb constitutive model is developed using the user-defined
material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield
criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data
from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb
yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large
average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the
modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements
value, +7.56% in axial forces). )e results of numerical simulation using the modified Mohr–Coulomb yield criterion are
closer to the measured data.

1. Introduction

Since the Wenchuan earthquake in 2008 (Ms� 8.0), China
has suffered from numerous serious earthquakes, like the
Kaohsiung earthquake (Ms� 6.7, 2016) and the Yushu
earthquake (Ms� 7.1, 2010) [1]. Most earthquakes pose
potential threats to underground structures in mountainous
areas. Taking the Longmen Mountain Fault Zone in the
north-western margin of the Sichuan Basin as an example,
an earthquake in this fault zone would impact a large
number of traffic tunnels and underground structures. )e
subway stations and other underground structures were
critically damaged [2, 3] in the Kobe earthquake in Japan,
which were considered aseismic structures [4–7] in high-
intensity earthquake area. )e Lushan earthquake (Ms� 7.0,
2013), the Jiuzhaigou earthquake (Ms� 7.0, 2017), and the

Changning earthquake (Ms� 6.0, 2019) show that the
tunnels within the Sichuan Basin are threatened by high-
intensity earthquakes. )erefore, studies of the seismic
performance of underground structures should receive more
attention.

)ere are three main types of approaches for the analysis
of seismic performance of underground structures: field
investigations, model tests, and numerical simulations
[8–13]. Numerical simulation methods have been widely
used to analyse the dynamic response of tunnel structure in
some bad conditions, but the computational ability of
computers and the mechanical models needs to be studied
further in the existing software. Most numerical analysis
results should be verified using field tests or model tests, and
improvements in the accuracy for numerical analysis would
be beneficial.
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)e classical Mohr–Coulomb yield criterion is the most
widely used constitutive model in geotechnical mechanics. It
focuses on the response of brittle materials to shear stress
and normal stress. However, classical Mohr–Coulomb
theory overestimates the tensile properties of geotechnical
materials. Jia and Chen’s article shows that there are up to
18.7% differences in yield stress [14]. )e dynamic response
of the surrounding rocks in underground structures exhibits
a clear tension-compression cycle during strong earthquake
motion. When calculating the dynamic response of an
underground structure, the classical Mohr–Coulomb yield
criterion should be corrected.

Zienkiewicz and Pande suggested using a hyperbola to
approximate the two Mohr–Coulomb straight lines in the
meridional plane. Deng et al. proposed the equal-area-cone
principle, which uses a series of modified Drucker–Prager
yield criteria to replace the Mohr–Coulomb yield criterion.
But, the replaceable Drucker–Prager criteria are related to
the stress states of rocks, which means the criteria of every
element used may be changed during a dynamic simulation
and need more computing resources [15–19]. Jia et al.
combined the classical Mohr–Coulomb theory with the
maximum tensile stress theory, which uses a parameterm to
reduce the yield stress but leaves no definition of the pa-
rameter m [20]. Based on these previous studies, a consti-
tutive model with the tensile strength replacing the
parameter m in Jia’s model was developed. )e modified
model was applied to the dynamic numerical simulation of
underground structures, and its advantages were compared
with those of the classical Mohr–Coulomb model.

2. Modified Mohr–Coulomb Yield Criterion

For the constitutive model of geotechnical materials, the
yield function is expressed in the form of stress invariants for
convenience, as shown in the following:
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3
,
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where sx � σx − σm, sy � σy − σm, sz � σz − σm, and σm is
the mean stress, σ is the equivalent stress, and σm J2 and J3
are the second and the third stress invariants, respectively.

)e Lode angel equation is as follows:

θ �
1
3
sin− 1

−
3

�
3

√

2
J3

σ2
􏼠 􏼡, −30° ≤ θ≤ 30°. (2)

)e classical Mohr–Coulomb model overestimates the
tensile strength of materials. Jia et al. developed a modified
Mohr–Coulomb yield criterion [20]; the yield function is
given in (3). K(θ) represents the yield curves with different
Lode angles in the π plane.K(θ) is calculated using (4):

F � σm sin ϕ +

�������������������

σ2K2
(θ) +(mc cos ϕ)

2
􏽱

− c cos ϕ � 0,

(3)

K(θ) � cos θ −
1
�
3

√ sin ϕ sin θ. (4)

When m � 0, (3) is identical to the yield function of
Mohr–Coulomb model (5). However, Jia and Chen did not
provide a physical definition or recommend a value for the
parameter m:

σm sin ϕ + σK(θ) − c cos ϕ � 0. (5)

)e yield function of the maximum tensile stress theory
is given in (6), where Tc is the tensile strength:

2
�
3

√ σ sin θ + 120°( 􏼁 + σm − Tc ≥ 0. (6)

Zienkiewicz and Pande suggested replacing the classical
Mohr–Coulomb yield surface function with a hyperbola
[19]:

σm − d( 􏼁
2

a
2 −

σ2

b
2 � 1. (7)

To fit Zienkiewicz and Pande’s hyperbola (7) using the
maximum tensile stress yield function (6), the parameters in
(7) can be set as a � c cot ϕ − Tc, b � (c cot ϕ − Tc)sin ϕ/
K(θ), and d � c cot ϕ. K(θ) is defined in (4). (7) can be
simplified to

F � σm sin ϕ +

��������������������������

σ2K2
(θ) + Tc sin ϕ − c cos ϕ( 􏼁

2
􏽱

− c cos ϕ � 0.

(8)

In the following, the yield function of the modified
Mohr–Coulomb is set as (8).

)e classical Mohr–Coulomb yield surface is not
smooth, and it has a singular vertex point. )e corners and
singular vertex point make the numerical calculations dif-
ficult. Shi and Yang suggest using a curve fit to approximate
it [21]. Jia and Chen used a piecewise function to smooth the
yield surface [20]. Since (8) is a special case of (3), Jia’s K(θ)

is introduced in (8). )e result is obtained in

F � σm sin ϕ +

��������������������������

σ2K2
(θ) + Tc sin ϕ − c cos ϕ( 􏼁

2
􏽱

− c cos ϕ � 0.
(9)

K(θ) is calculated using (10) and (12), as follows:

K(θ) � cos θ −
1
�
3

√ sin ϕ sin θ, when |θ|≤ θT, (10)

K(θ) �
1
3
cos θT􏼢3 + tan θT tan 3θT

+
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�
3

√ tan 3θT − 3 tan θT( 􏼁sin ϕ􏼣,

(11)

2 Shock and Vibration



−
1

3 cos θT

sin θT +
1
�
3

√ sin ϕ cos θT􏼠 􏼡sin 3 θ, when |θ| > θT.

(12)

Based on Jia’s research, θT � 27° is recommended.
Limestone was used as an example. )e cohesion is 60 kPa,
the friction angle is 25°, and the tensile strength is 50 kPa.
Figure 1 shows the curves of the constitutive model used in
this paper and Jia’s model in the stress space.)e x-axis is the
mean stress (σm), and the y-axis is the equivalent stress (σ).

As shown in Figure 1, the model proposed by Jia is
sensitive to the value of parameter m and no recommended
value of m is given in Jia’s paper [20]. )e uniaxial tensile
strength is substituted for the parameter m. )e constitutive
model in this paper is similar to the classical
Mohr–Coulomb constitutive model in the compression
stage, and the control criterion of the tensile stress is ap-
proximated in the tensile section. )e results are consistent
with the experimental results under uniaxial tension.

)e plastic potential function is consistent with the yield
function:

G � σm sin ϕ +

��������������������������

σ2K2
(θ) + Tc sin ϕ − c cos ϕ( 􏼁

2
􏽱

. (13)

)e parameters in (13) are identical as those in (9).

3. Constitutive Model Used in
ABAQUS Software

ABAQUSTM can employ FORTRANTM programs to develop
user-defined materials (UMATs). )e calculation process of
the general user subroutine [20] is shown in Figure 2.

3.1. Calculation of Plastic Parameters. When the stress ex-
ceeds the yield surface, it needs to adjust the stress and return
to the updated yield surface (Figure 3). )e method used is
called the constitutive integration algorithm [20].

As shown in Figure 3, the stress state at point A (σA) is in
the yield plane, while that at point B (σB) is outside of the
yield plane:

σB � σA + DeΔε

� σA + Δσe.
(14)

In (14), De is the elastic matrix, Δσe is the elastic stress
increment, and σB is the probing stress. To bring the probing
stress σB into the yield plane, the change in the stress Δσ is
calculated in (15), where b � zG/zσ:

Δσ � DeΔε − ΔλDeb

� Δσe − ΔλDeb.
(15)

)e stress at point C is calculated in

σC � σB − ΔλDeb. (16)

)e function of the backward Euler algorithm is to
gradually iterate point C onto the yield surface. )e yield

function F is expanded using a first-order Taylor expansion
at point B:
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􏼠 􏼡
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T
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a
T
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′
.

(17)

)e backward Euler algorithm is used to pull the stress
back to the yield surface, as follows:

σC � σB − ΔλDebC. (18)

)e initial estimate of σC is based on the stress at point B:

σC � σB − ΔλDebB. (19)

)e vector r is defined as the difference between the
current stress and the backward Euler stress:

r � σ − σB − ΔλDebC( 􏼁

� σ − σB + ΔλDebC.
(20)

When r � 0, the stress is back on the yield plane. )e
Taylor expansion of r with fixed σB is

rn � r0 + _σ + _λDeb + ΔλDe

zb

zσ
_σ. (21)

When rn � 0,

_σ � − I + ΔλDe

zb

zσ
􏼠 􏼡

− 1

r0 + _λDeb􏼐 􏼑

� −Q
− 1

r0 − _λQ
− 1

Deb.

(22)

I is the identity matrix.
)e Taylor expansion of the yield function F at point C is

as follows:

FCn � FC0 +
zF

zσ
􏼠 􏼡

T

_σ +
zF

zεpl
_εpl � FC0 + a

T
C _σ + AC
′ _λ � 0.

(23)

Substituting (22) into (23) gives

_λ �
FC − a

T
CQ

− 1
r0

a
T
CQ

−1
Deb + AC

′
. (24)

)e equivalent plastic strain rate ′/εpl is as follows:
_εpl � _λB(σ). (25)

For the von Mises yield criteria, B(σ) � 1, whereas for
the yield criterion of rock and soil, B(σ)≠ 1.

3.2. Solution of the Stiffness Matrix of the Same Tangent Dct.
According to (19), if the subscript of the stress state C of the
current configuration in the following formula is ignored
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and the subscript B represents the elastic probing stress, (19)
can be expressed as

σ � σB − ΔλDeb. (26)

)e differential form of (26) is

_σ � De _ε − _λDeb − ΔDe

zb

zσ
_σ. (27)

)e simplified form of (27) is as follows:

_σ � I + ΔλDe

zb

zσ
􏼠 􏼡

− 1

De(_ε − _λb)

� Q
− 1

De(_ε − _λb) � R(_ε − _λb),

(28)

where R � Q− 1De.
To bring the stress σ back to the yield plane, _F � 0 is

needed. According to the yield function F, the consistency
conditions are as follows:

_F � a
T _σ − A′ _λ � 0. (29)

Substituting (28) into (29) gives

_λ �
aT

R_ε
aT

Rb + A′
. (30)

Substituting (30) into (27) gives

_σ � R −
RbaT

R
T

aT
Rb + A′

􏼠 􏼡_ε

� Dct _ε.

(31)

)e stiffness matrix of the same tangent is Dct.

3.3. Newton–Raphson Iterative Algorithm for Plastic
Parameters under the nth Loading Step. In the fully implicit
backward Euler method, the plastic strain and the equivalent
plastic strain increment are calculated at the end of the nth
incremental step. )e integral algorithm can be expressed as
follows:

ε(n+1)
� ε(n)

+ Δε,

ε(n+1)
p � ε(n)

p + Δλ(n+1)
b

(n+1)
,

ε(n+1)
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B

(n+1)
,
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− ε(n+1)
p􏼐 􏼑,

F
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� F
(n+1) σ(n+1)

, ε(n+1)
pl􏼐 􏼑.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

(32) includes nonlinear equations about (ε(n+1), ε(n+1)
p ,

ε(n+1)
pl ) and (ε(n), ε(n)

p , ε(n)
pl ), and the strain increment Δε � Δt_ε

is given at tn. )ese nonlinear equations are solved using the
Newton–Raphson iterative method, and the stresses are
updated as follows.

Step 1. )e initial values of the plastic strain and the
equivalent plastic strain are the convergence values at the
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Figure 1: Yield criterion function used in this article.
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end of the last loading step. )e incremental value of the
plastic parameter is set to 0 to calculate the elastic stress as
follows:

k � 0: ε(n)
p(0) � ε(n−1)

p ,

ε(n)
pl(0) � ε(n−1)

pl ,

Δλ(n)
0 � 0,

σ(n)
(0) � De: ε(n)

− ε(n)
p(0)􏼐 􏼑.

(33)

Step 2. Check the yield condition and convergence of the
k-th iteration.

F
(n)
(k) � F σ(n)

(k), ε
(n)
pl(k)􏼐 􏼑. (34)

If F
(n)
(k) < tolerance, the calculation is convergent. Oth-

erwise, proceed to Step 3.

Step 3. )e increment of the plastic parameter is calculated,
and the increments of the stress and the equivalent plastic
strain are obtained.

δλ(k) �
F(k) − a

T
(k)Q

− 1
r0

a
T
(k)Q
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Deb + A

’
(k)

,
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zσ
􏼠 􏼡

− 1

r0 + _λDeb􏼐 􏼑,

δεpl(k) � δλ(k)B.

(35)

Step 4. )e plastic strain, stress, and plastic multiplier are
updated.

Δλ(k+1) � Δλ(k) + δλ(k),

ε(n)
pl(k+1) � ε(n)

pl(k) + δεpl(k),

ε(n)
pl(k+1) � ε(n)

pl(k) + D
−1
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⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Set k � k + 1, and return to Step 3.
When using the implicit backward Euler algorithm, the

first derivative of the yield function, the first derivative of the
potential function, and the second derivative of the potential
function are needed.

3.4. Derivations of Yield Function and Potential Function

3.4.1. ;e First Derivative of Yield Function. )e vector a is
the derivative of the yield function with stress:

a �
zF

zσ

� C1′
zσm

zσ
+ C2′

zσ
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zσ
.
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�
1
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T
,

C1′ � sin ϕ,

C2′ � α′ K − tan 3 θ
dK

dθ
􏼠 􏼡,

C3′ � α′ −

�
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√

2 cos 3 θσ2
dK

dθ
􏼠 􏼡,

α′ �
σK
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σ2K2
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2
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dK

dθ
�

−3B cos 3 θ, |θ|> θT,

sin θ −
1
�
3

√ sin ϕ cos θ, |θ|≤ θT.
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⎪⎪⎩
(39)

3.4.2.;e First Derivative of Potential Function. )e vector b
is the derivative of the potential function with stress:

b �
zG

zσ
� C1

zσm

zσ
+ C2

zσ
zσ

+ C3
zJ3

zσ
. (40)

where C1 � zG/zσm; C2 � zG/zσ − tan 3 θ/σzG/zθ; and
C3 � −

�
3

√
/2 cos 3 θσ3zG/zθ. )e other parameters are

calculated as follows:

C1 � sin ϕ,

C2 � αC
mc
2 ,

C3 � αC
mc
3 .

(41)

)e calculation of dK/dθis shown in (39). )e calcula-
tion of α is shown in
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α �
σK
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3.4.3. Quadratic Derivation of Plastic Potential Function.
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�
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+
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4. Verification of the Modified Model

)rough comparison to the actual data from the shaking
table test, the relative errors of both the improved
Mohr–Coulomb model and the classical Mohr–Coulomb
model were calculated. )e calculation accuracy of the
improved constitutive model was analysed.

4.1. Introduction to the Shaking Table Test. )e primary
objective of the shaking table test was to test how the vi-
bration-absorptive material protects a tunnel in a fault zone
[21]. )e overall layout of the shaking table is shown in
Figures 4 and 5. )e detailed accelerometer monitoring plan
is presented in Table 1. )e rock surrounding the tunnel
between the two fault zones is placed on a movable platform
with 10 cm-thick foam pieces on both the left and right sides.
Both the left and right sides of the model contain a 25 cm-
thick foam board to absorb the reflected earthquake waves.
)e accelerometers used in the test were LC0113M piezo-
electric accelerometers [22] (Figures 6 and 7). Strain gauges
used in the test were BX120-50AA resin-based strain gauges.

)e prototype of the model is the Longxi tunnel which
was highly damaged in theWenchuan earthquake.)e input
wave of the shaking table is part of the east and west vector
components of the Wolong seismic waves which is widely
used in simulating tunnel dynamic response [21]. )e
original seismic wave lasts for 180 s, and the peak acceler-
ation value is 0.98 g. )e input wave occurs at 20 s to 110 s.
)e time history curve of the input wave is shown in Fig-
ure 8. )e frequency-domain analysis shown in Figure 9
suggests that the predominant frequency is about 2.3Hz and
the majority of the frequency domain is below 10Hz.

In view of the limitations of the shaking table and
considering the similarity criterion, the length similarity
ratio was taken as 1 : 25, the density similarity ratio as 1 :1.3,
and the stress similarity ratio as 1 : 32.5. A detailed list of
similarity relations is presented in Table 2.

)e prototype model for the rock material is classified as
Grade V according to the Chinese railway tunnel design
specifications (TB10003-2005) [23]. )e prototype for the
surrounding rock is strongly weathered rock. )e prototype
lining material is C30 concrete. )e prototype for the fault
zone is gravel. )e material similarity relationships are
detailed in Tables 3–5.

4.2. Introduction to theNumerical Simulation. )enumerical
simulation was conducted using ABAQUSTM software. )e
overall model layout is shown in Figure 10. )e model is
based on the shaking table test, and the modeling is 1 :1. A
viscoelastic boundary was introduced to absorb the reflected
earthquake waves. )e physical parameters are shown in
Table 6. )e prototype surrounding rock is a strongly
weathered rock mass, and the tensile strength of the model
material is 3.0 kPa [24]. )e stiffness damping coefficient of
the foam board and the damping material is 0.2.

)e input earthquake wave shown in Figure 11 is the first
26 s acceleration of the shaking table test. )e maximum

horizontal acceleration of the input wave is 0.97 g, and the
sampling is 200Hz.

)e maximum frequency of the seismic wave is 100Hz;
the seismic wave velocity in the surrounding rock is 1.35 km/
s; and the maximum length of the model units is 10 cm,
which is less than one-tenth of the maximum frequency
corresponding to the seismic wave wavelength. )e
boundary filtering effect is negligible. Rayleigh damping was
introduced in the dynamic analysis, and the damping matrix
is C � ηM + β:

η �
2ωiωj

ωi + ωj

ζ,

β �
2

ωi + ωj

ζ,

(46)

where ζ is the ith- or jth-order damping ratio of the natural
vibration frequency. ζ i � ζj and ωi and ωj are the ith- and
jth- order natural vibration frequencies, respectively. )e
damping ratio was obtained from the test and is ζ � 0.15.
When running the modal analysis in ABAQUSTM software,
the 1st to 6th orders of the natural vibration frequency are
acquired (Table 7).

)e Rayleigh damping parameters of the surrounding
rock were calculated as follows: η � 1.951 and β � 0.009.

4.3. Acceleration Analysis of the Modified Mohr–Coulomb
Model. )e peak accelerations are introduced as the mea-
surements [25–29]. By comparing the acceleration watch
points of the two Mohr–Coulomb models with the results of
the shaking table test, the peak acceleration similarity ad-
vantage of the modified Mohr–Coulomb yield criterion was
assessed.

As shown in Figures 12–19, both the classical and
modified Mohr–Coulomb yield criteria have acceleration
time histories similar to those of the shaking table test, which
indicates that both the classical and modified
Mohr–Coulomb yield criteria can relatively truly represent
the transmitted earthquake wave observed in the shaking
table test.

Based on Figures 13, 15, 17, and 19, the modified
Mohr–Coulomb yield criterion has more similar waveforms
in the low frequency band (<10Hz) than the classical
Mohr–Coulomb yield criterion. )e amplitudes of the
modifiedMohr–Coulomb criterion are closer to the test data
than those of the classical ones. )e frequencies of each peak
in the modified model are closer than those of the classical
model. In the middle frequency band (10–15Hz), both the
classical and modified Mohr–Coulomb yield criteria have
lower accelerations than the shaking table test. However,
further research is still required. In the high frequency band
(>15Hz), the two Mohr–Coulomb yield criteria and the
shaking table test have little energy (<0.005).

As reported in Table 8, the modified Mohr–Coulomb
yield criterion has more similar peak accelerations than the
classical Mohr–Coulomb yield criterion. Compared to the
shaking table test, the acceleration of the modified
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Figure 4: Layout of the shaking table test (all dimensions are in cm). (a) Longitudinal plane of the test and layout of accelerometers.
(b) Cross section of layout for strain gauges. (c) Layout of strain monitoring sections.

Figure 5: Photograph of the shaking table test.
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Mohr–Coulomb yield criterion at A4H is 2.8% smaller, while
that of the classical Mohr–Coulomb yield criterion is 8.8%
smaller. At A5H, the acceleration of the modified

Mohr–Coulomb yield criterion is 1.6% larger than that of the
shaking table test, while that of the classical Mohr–Coulomb
yield criterion is 5.5% smaller.

Figure 20 shows that the average peak acceleration error
of the modified Mohr–Coulomb model is +2.71% and the
maximum relative error is +8.91%. )e average error of the
classical Mohr–Coulomb model is −6.98%, and the maxi-
mum relative error is −8.87%. )e modified model has a
lower average error than the classical model, and both
models have similar maximum relative errors. In aseismic
tunnel analysis, a larger acceleration peak value leads to a
more conservative aseismic design.

4.4. Displacement Analysis of the Modified Mohr–Coulomb
Model. )e peak horizontal displacements are introduced as
the measurements [30–32]. Displacement can be obtained
by acceleration double integral for time. By comparing the
displacement watch points of the two Mohr–Coulomb
models with the results of the shaking table test, the max-
imum horizontal displacement similarity advantage of the
modified Mohr–Coulomb yield criterion was assessed.

As shown in Figures 21–24, the displacements of the
shaking table test and classical and modified
Mohr–Coulomb yield criteria are in minus, which indicate
that the models were moving towards the negative direction
of the sensors. To simplify the following analysis, all dis-
placements are taken as absolute values.

As reported in Table 9, the modified Mohr–Coulomb
yield criterion has more similar maximum displacements

Table 1: Accelerometers and test objects.

Accelerometers Test objects
A1H Boundary acceleration
A2H Rock acceleration near the damping layer

A3H Tunnel acceleration at the fault with a damping
layer

A4H Tunnel acceleration between the faults

A5H Rock acceleration at the fault without a damping
layer

A6H Rock acceleration between the faults
A7H Rock acceleration near the damping layer
A8H Surface acceleration

Figure 6: Accelerometers installed on the shaking table.

Figure 7: Accelerometers buried in the simulation material.
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Figure 8: Time history curve of the input Wuolong wave for the
shaking table test.
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Figure 9: Frequency-domain analysis of acceleration of the
Wuolong wave.

Table 2: Similarity ratios of the shaking table test.

Physical
quantity Dimension Similarity

relation Similarity ratio

Length L lr 1 : 25
Elastic modulus FL− 2 Er 1 : 32.5
Density FTL− 4 ρr 1 :1.3
Stress FL− 2 σr � Er 1 : 32.5
Acceleration LT− 2 ar � Erρ−1

r l−1r 1 :1
Poisson’s ratio — μr � 1 1 :1
Friction angle — θr � 1 1 :1
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than the classical Mohr–Coulomb yield criterion. Compared
to the shaking table test, the displacement of the modified
Mohr–Coulomb yield criterion at A4H is 6.41% smaller,
while that of the classical Mohr–Coulomb yield criterion is
10.68% smaller. At A5H, the displacement of the modified
Mohr–Coulomb yield criterion is 5.37% larger than that of

the shaking table test, while that of the classical
Mohr–Coulomb yield criterion is 12.68% smaller.

Figure 25 shows that the average displacement error of
the modified Mohr–Coulomb model is +3.79% and the
maximum relative error is -6.41%.)e average displacement
error of the classical Mohr–Coulomb model is −8.47%, and

Table 3: Physical parameters of the surrounding rock.

Density (kg/m3) Elastic modulus (MPa) Poisson’s ratio Cohesion (kPa) Friction angle (°)
Model material 1300 1.07 0.25 3.06 25
Prototype material 1690 34.8 0.25 99.5 25
Similarity ratio 1 :1.3 1 : 32.5 1 :1 1 : 32.5 1 :1

Model box

Tunnel

Fault

Foaming plate
Surrounding rock

Figure 10: Computational model of the shaking table test.

Table 4: Physical parameters of the linings.

Density (kg/m3) Elastic modulus (MPa) Poisson’s ratio Cohesion (kPa) Friction angle (°)
Model material 1780 571.42 0.2 60.71 50.8
Prototype material 2314 18571 0.2 1973 50.8
Similarity ratio 1 :1.3 1 : 32.5 1 :1 1 : 32.5 1 :1

Table 5: Physical parameters of the faults.

Density (kg/m3) Elastic modulus (MPa) Poisson’s ratio Cohesion (kPa) Friction angle (°)
Model material 1500 0.71 0.25 — 35
Prototype material 1950 23 0.25 — 35
Similarity ratio 1 :1.3 1 : 32.5 1 :1 — 1 :1

Table 6: Physical parameters of the materials.

Density (kg/m3) Elastic modulus (MPa) Poisson’s ratio Cohesion (kPa) Friction angle (°)
Surrounding rock 1300 1.07 0.25 3.06 25
Linings 1780 571.42 0.2 60.71 50.8
Fault 1500 0.71 0.25 - 35
Q235 steel 7500 210000 0.25 - -
Damping layer 150 70 0.05 - -
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Figure 11: Time history of the input wave of the numerical simulation.
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Figure 12: Acceleration time history at point A4H.
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Figure 13: : Frequency-domain analysis of point A4H.

Table 7: First six orders of the natural vibration frequency of the rock material.

1st order 2nd order 3rd order 4th order 5th order 6th order
Natural vibratory circular frequencies (rad/s) 8.98 12.58 18.705 19.304 23.185 23.58
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Figure 14: Acceleration time history at point A5H.
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Figure 15: Frequency-domain analysis of point A5H.
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Figure 16: Acceleration time history at point A6H.
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Figure 17: Frequency-domain analysis of point A6H.

12 Shock and Vibration



the maximum relative error is −12.68%.)e modified model
has both lower average and relative errors than the classical
model.

4.5. Axial Force Analysis of the Modified Mohr–Coulomb
Model. )e peak axial forces are introduced as the mea-
surements [33]. Axial forces can be obtained by calculating
the stress or strain at monitoring points. In numerical
simulations, axial forces can be obtained from the elemental
solutions. )e axial forces of the shaking table test could be
calculated from

N �
1
12

Ebh ε1 + ε2( 􏼁, (47)

where E is the elastic modulus of the lining, b is the width of
the element, h is the thickness of the lining, and ε1 and ε2 are
the strains of inner and outer surfaces at the watch point.

In this article, E � 571.42MPa, b � 0.064m, and
h � 0.01m.

As shown in Figures 26 and 27, there are both positive
and negative numbers of the axial forces of the shaking table
test and classical and modified Mohr–Coulomb yield cri-
teria, which indicate that the models were tensioned (pos-
itive numbers) and compressed (negative numbers). To
simplify the following analysis, all axial forces are taken as
absolute values.

In Table 10, the modifiedMohr–Coulomb yield criterion
has more similar maximum axial forces than the classical
Mohr–Coulomb yield criterion. Compared to the shaking
table test, the maximum axial force of the modified
Mohr–Coulomb yield criterion at the crown of section 1 is
6.03% higher, while that of the classical Mohr–Coulomb
yield criterion is 16.96% smaller. At the invert of section 2,
the maximum axial force of the modified Mohr–Coulomb
yield criterion is 3.10% larger than that of the shaking table
test, while that of the classical Mohr–Coulomb yield crite-
rion is 18.83% smaller.

Figures 28 and 29 show that the average axial forces error
of the modified Mohr–Coulomb model is +7.56% and the
maximum relative error is +17.55%. )e average axial force
error of the classical Mohr–Coulomb model is −23.93%, and
the maximum relative error is −27.0%. )e modified model
has both lower average and relative errors than the classical
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Figure 18: Acceleration time history at point A7H.
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Figure 19: Frequency-domain analysis of point A7H.

Table 8: Maximum accelerations at the monitoring points for the
different yield criterion models (unit: g).

Point Shaking table test Classical MC model Modified MC
model

A4H 1.037 0.945 1.017
A5H 0.980 0.944 1.016
A6H 1.014 0.945 1.016
A7H 1.234 1.128 1.344

Shock and Vibration 13



91.13%

96.33%
93.20%

91.41%

98.07%

103.67%

100.20%

108.91%

80

90

100

(%)

110

A4H A5H A6H A7H
Location of the monitoring points

Classic MC model
Shaking table test

Modified MC model
100% baseline

Figure 20: Histogram of the maximum accelerations at all monitoring points for the different yield criterion models.

0 5 10 15 20 25 30

-0.225

-0.150

-0.075

0.000

-0.225

-0.150

-0.075

0.000

0 5 10 15 20 25 30

-0.225

-0.150

-0.075

0.000

Shaking table test

Modified MC model

Time (s)

Classic MC model

D
isp

la
ce

m
en

t (
m

)
D

isp
la

ce
m

en
t (

m
)

D
isp

la
ce

m
en

t (
m

)

Figure 21: Displacement time history at point A4H.
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Figure 22: Displacement time history at point A5H.
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Figure 23: Displacement time history at point A6H.
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Figure 24: Displacement time history at point A7H.

Table 9: Maximum displacements at the monitoring points for the different yield criterion models (unit: m).

Point Shaking table test Classical MC model Modified MC model
A4H 0.234 0.209 0.219
A5H 0.205 0.179 0.216
A6H 0.323 0.307 0.324
A7H 0.287 0.271 0.300
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105.37%

100.31%

104.53%

A4H A5H A6H A7H
Locations of monitoring points

Classic MC model
Shaking table test

Modified MC model
100% baseline

80.00

90.00

100.00

110.00

(%)

Figure 25: Histogram of the maximum displacements at all monitoring points for the different yield criterion models.
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Figure 26: Axial force time history of section 1 spandrel.
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Figure 27: : Axial force time history of section 2 arch springing.
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model. In conclusion, the modified Mohr–Coulomb model
exhibits a better performance in simulating the dynamic
response of rocks during high-intensity horizontal
earthquake.

5. Conclusions

)e modified Mohr–Coulomb model was successfully de-
veloped and used to analyse the dynamic response of tunnels
during high-intensity earthquakes:

(1) Compared to the shaking table test, the classical
Mohr–Coulomb model has a relatively large average

error (−6.98% in peak accelerations, -8.47% in
maximum displacements, and -23.93% in axial
forces), while the modified Mohr–Coulomb model
has a smaller average error (+2.71% in peak accel-
erations, +3.79% in maximum displacements, and
+7.56% in axial forces).

(2) )e absolute values of the maximum acceleration
relative errors of the two models are similar.
Compared to the shaking table test, the classical
Mohr–Coulomb model has a +8.91% maximum
relative error and the modified Mohr–Coulomb
model has a −8.87% maximum relative error. )e

Table 10: Maximum axial forces at the monitoring points for the different yield criterion models (unit: N).

Section Point Shaking table test Classical MC model Modified MC model
1 Crown 7.96 6.61 8.44
1 Spandrel 15.61 11.35 17.82
1 Sidewall 8.31 6.13 8.62
1 Arch springing 28.13 19.69 30.66
1 Invert 9.72 7.48 10.50
2 Crown 5.76 4.32 5.88
2 Spandrel 6.60 4.82 6.73
2 Sidewall 4.10 3.16 4.51
2 Arch springing 7.35 6.39 8.64
2 Invert 1.29 1.06 1.33
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Figure 28: Histogram of the maximum axial forces at section 1 for the different yield criterion models.
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Figure 29: Histogram of the maximum axial forces at section 2 for the different yield criterion models.
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classical Mohr–Coulomb model has larger relative
errors in displacements (-12.68%) and axial forces
(-27.0%) than those of the modified Mohr–Coulomb
model (-6.41% in displacements and +17.55% in
axial forces).

(3) )e newmodified model has better waveforms in the
low frequency band (0–10Hz) than the classical
Mohr–Coulomb model. In the higher frequency
band (>15Hz), the difference between the two
models is negligible.

(4) )e classical Mohr–Coulomb model overshoots the
tensile properties of the geotechnical materials,
which leads to higher yield stresses in simulating the
surrounding rocks of the shaking table test. )e
greater the dynamic stress the rock bears, the less the
dynamic stress the tunnel lining bears during the
earthquake. Less dynamic stress of the lining leads to
lower peak accelerations, lower maximum dis-
placements, and fewer axial forces, which match the
numerical simulation results. )e modified
Mohr–Coulomb model reduces the yield stresses of
surrounding rocks and brings the simulation results
closer to the shaking table test data.

)e new modified Mohr–Coulomb yield criterion has
overall closer results in simulating the accelerations, dis-
placements, and axial forces of the tunnel linings in the hor-
izontal shaking table test than the classical Mohr–Coulomb
yield criterion. Since most seismic wave energy is in the low
frequency band (Figure 9), the modified Mohr–Coulomb yield
criterion works better than the classical one. Moreover, the
modified criterion presented in this article improves Jia’s
equation by replacing the undefined parameter m with the
tensile strength.
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