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)e fruit fly optimization algorithm-general regression neural network (FOA-GRNN) coupled model and the Finite Element
Method-Smoothed Particle Hydrodynamics (FEM-SPH) numerical calculation method are comprehensively used. )e control
problem of blasting vibration in the process of mining hidden resources under complex environmental conditions has been
studied. Taking a lead-zinc mine as the engineering background, the development of hidden resources in the collapse area due to
unreasonable mining was studied. Based on the establishment of the first mining stope and its mining method in this area,
biosimulation and generalized neural networks were introduced to solve this problem, the coupling of blasting parameters was
analyzed, and the 3D nonlinear dynamic coupling model was constructed for numerical simulation. )e results show that the
blasting parameters of deep-hole mining were optimized, including the values of six output quantities: hole distance, row spacing,
side hole distance, explosive unit consumption, minimum resistance line, and interval ratio (the Root Mean Squared Error value is
only 0.051). )e error between the network optimization parameters and the empirically obtained values was controlled to within
0.05; five possible edge-hole charge structures were designed (the interval ratio is 0.696), and the vibration velocity peak and
pressure peak variations with time after detonation are reflected by the simulation results. )e dynamic evolution law of the rock
mass velocity vector and the damage of the rock damage was revealed. According to the analysis in this paper, the smallest and
optimal edge-hole charge structure of the surrounding rock was obtained.

1. Introduction

)e underground goaf is common in mining projects [1–3].
)ey are temporary or permanent underground spaces
formed for ore mining [4]. )e roof and the two gangs of
the goaf are susceptible to pressure changes and redistri-
bution caused by the sudden collapse of the overburden.
Unstable underground goaf may damage the stability of the
surrounding diverticulum and cause instability, which not
only causes huge economic losses but also causes serious
harm to personnel [5–7]. Compared with the instability
damage caused by excavating intact rock masses, the goaf of
the gangs which are filled with complex materials is more
likely to collapse. In fact, although the engineer will have
the mining sequence in the early stage of the excavation, in
the mining environment, if the pillar is not enough to
balance the external force and prevent the loosening and

deformation of the two-package, the roof is likely to occur
and collapse. In addition, the control of the stability of the
two-pack backfill plays an important role in the mining;
especially for the larger underground goaf, improper
mining design will directly lead to the collapse of the roof.
Generally, the influence of blasting vibration on the sta-
bility of the surrounding rock in the collapsed area is very
important. )e study on the stability of surrounding rock
under blasting impact in the collapsed area is a popular and
difficult problem in ore body mining.

When mining in the collapse zone, the surrounding rock
mechanical properties are poor, the strength is low, and the
disturbance caused by the excavation will be very obvious.
)e blasting dynamic impact load may generate more
pressure and more settlement problems. Even a slightly
inappropriate excavation scheme can lead to a larger area of
collapse. )is will seriously affect the safety of mining.
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)erefore, the careful comparison of mining methods and
proper selection of blasting schemes is particularly impor-
tant for exploiting hidden resources under such conditions.
)ere are still many unanswered questions about how to
efficiently and safely exploit hidden resources under unfa-
vorable mining conditions. )e key to dealing with such
problems is to select reasonable blasting parameters to re-
duce the impact damage to surrounding rocks. At this point,
it is necessary to conduct an in-depth study of the blasting
damping scheme.

)ere are many methods for analyzing the stability of
surrounding rock under blasting impact under complex
environmental conditions. In summary, there are three
classic methods: (1) the physical model experimental method
[8], (2) the mechanical model analysis method [9], and (3)
the numerical simulation method [10, 11]. )ese methods
have some limitations according to their respective char-
acteristics. For example, using physical model experimental
methods, due to a large number of different rock mass
materials in the collapsed area, it is difficult to construct
physical models consistent with the actual conditions, and
this work consumes many manhours. Additionally, the
material resources and the impact of the loading and
measurement of blasting power are difficult to determine. In
addition, mechanical analysis methods are solutions that
usually rely on certain assumptions. )e surrounding rock
faces complex hydrogeological and engineering geological
conditions in the collapsed area, so this analysis method is
also very limited [12–15].

With the rapid development of computer technology,
numerical simulation has been used in recent years to study
the stability of surrounding rock in mining. Several models,
such as finite element models (FEMs) [16], boundary ele-
ment models (BEMs) [17], and discrete element models
(DEMs) [18], have been proposed for numerical simulation,
and all three methods have advantages and disadvantages.
)e Finite Element Method is the most popular; it has been
widely used to analyze practical problems in geotechnical
engineering.

In general, numerical simulation methods for studying
the stability of surrounding rock under blasting impact loads
in a collapsed area are very popular. Considering the fact that
the exploitation of hidden resources in a special environ-
ment requires higher control of the blasting vibration [19],
the coupling method Smoothed Particle Hydrodynamics-
(SPH-) DAM-Finite Element Method (FEM) reproduces the
overall blasting responses of presplitting blasting and step
blasting. )e accuracy and feasibility of this coupling
technique are verified by on-site monitoring. )e results
show that this method has an obvious control effect on
blasting vibration. Based on this method, SPH-FEM is
coupled in AUTODYNA numerical simulation software
[20] and can be used to simulate and explore mining blasting
vibration control under complex environmental conditions.
Due to a large number of mining sites in previous mining
efforts, a range of blasting parameters can be selected. When
mining the hidden resources, it is necessary to learn from the
previous blasting parameters and then optimize the mining
sites for the collapsed area. Reference [21] proposed an ISVR

model for mapping the parameters of smooth blasting pa-
rameters. By coupling a genetic algorithm to search the
optimal parameters of the ISVR model, a control optimi-
zation method for smooth blasting parameters is proposed,
and all the blasting parameters are determined. Preferably,
this process takes a long time, which is not practical.
)erefore, the appropriate preferred method is selected to
optimize the preliminary blasting parameters, and then the
numerical simulation is carried out so that the blasting
parameters can be accurately designed.

In the research presented here, a nonlinear three-dimen-
sional numerical model is established to simulate the dynamic
process of stope excavation under complex environmental
conditions. )e collapsed area of a lead-zinc mine was selected
as the survey object. First, the firstmining stope in the collapsed
area is established, and then the blasting parameters in the
collapsed area are optimized.)en, the Finite Element Method
is used to analyze the deformation and stress distribution
characteristics of the surrounding rock during the mining
process in the collapsed area. )e stability of surrounding rock
under blasting impact load in the collapsed area is studied.)e
research results reveal the mechanism of the influence of the
surrounding rock under the blasting impact load on the sta-
bility of the collapsed area. In the present study, the above five
blasting damping schemes compare the dynamic evolutions of
the stress and deformation, the displacement field of the
surrounding rock mass, and the distribution characteristics of
the damaged area. Finally, a suitable blasting charge structure
scheme is proposed for the recovery of hidden resources in the
collapsed area. )e research results can provide necessary
guidance for the safe and efficient recovery of hidden resources
with surrounding rock control in the collapsed area. In ad-
dition, the results can provide a reference for the optimization
of the blasting parameters of stopes in similar mine collapse
areas.

2. Hidden Resources Mining Status

)e bottom of the No. 1 stope in a metal mine is ap-
proximately 22.5 m high and collapses after mining stops
(Figure 1), which affects the safety of the adjacent six
stopes. )e No. 7 stope is a relatively safe stope. Safe
mining of the stope and adequate and high-quality filling
work is the key to recovering more mining resources.
Because the No. 7 stope is very high (55m), the mining
sequence is from bottom to top, and for the bottom 22m
high ore body (out of the virtual coil in Figure 1), the
mining method is bottomless deep-hole back mining.
After filling, the blasting vibration should be reduced
during mining to protect the surrounding rocks as much
as possible.

3. Optimization of Blasting Parameters
Based on FOA-GRNN Coupling

Determining reasonable blasting parameters is a prerequisite
for effectively controlling the blasting vibration of the
abovementioned stope. )e traditional empirical formula
has a large range of blasting parameters and is subjective,
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while the field test is expensive and the experimental location
is difficult to select. By fully considering the nonlinear re-
lationship between the blasting parameters and their
influencing factors [22], the neural network was introduced,
and its high degree of nonlinear mapping ability can avoid
the establishment of mathematical equations in the opti-
mization process of blasting parameters, allowing the ad-
aptation of the nonlinear relationship between the blasting
parameters and their mapping parameters. A fruit fly op-
timization algorithm (FOA) that simplifies the optimization
process and improves engineering applicability was intro-
duced. With the fruit fly optimization algorithm (FOA) and
optimization of the neural network [23], better results could
be achieved. )e generalized regression neural network
(GRNN) is a neural network model based on nonlinear
regression. It has advantages over traditional neural net-
works in terms of data fitting and learning speed, especially
when the training samples are small, and it has achieved
good regression effects. It has been successfully applied in
research in fields of study such as rock burst.

3.1. GRNN and Its Standard of Error Analysis. )e above
General Regression Neural Network (GRNN) model is
composed of four layers: input layer (input layer), mode layer
(pattern layer), summation layer (summation layer), and
output layer (output layer) (Figure 2).)e number of neurons
in the input layer is equal to the dimension of the input vector
in the sample. )e input vector was directly submitted to the
pattern layer with the number of n elements. Each element of
the layer corresponds to a training sample, and the Gaussian
function was generally selected as the kernel function.Xi is the
center vector of each unit kernel function. )e summation
layer contains molecular units and denominators; the output
value of each unit is in the denominator unit summation
mode layer, and the molecular unit weights each unit in the
pattern layer, where the weight of each training sample is the
f(x0, y) value of each training sample; the output layer di-
vides the output of the summation numerator and the de-
nominator to obtain an estimate of f(x0, y).

In the joint density function f(x, y) of two random
vectors, let x0 denote the observation of x. )e value of the
function y based on x0 is y0, and its mathematical description
is
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Here, xi and yi (i �1, 2, 3, . . ., n) are the input and
output values of the i sample, d is the dimension of the
random vector x, and σ is the smoothing factor, which is also
known as the spread parameter value.

Substituting f(x, y) with f(x, y) in (1),
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)eGeneral Regression Neural Network (GRNN) model
is simpler than the backpropagation(BP) neural network
model, and only one spread parameter value is needed,
which reduces the influence of human factors and reduces
the randomness of the network structure design.)e fruit fly
optimization algorithm (FOA) was used to optimize the
GRNN model, and the optimal smoothing factor σ was
selected to minimize the mean square error between the
output value and the actual value of the GRNN model [24].
)e Root Mean Squared Error (RMSE) was used as the
analytical standard, that is, the difference between the pa-
rameter analysis value and the true value of the parameter
[25]. RMSE could be used to measure the average error while
analyzing the degree of change in the data. )e smaller the
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Figure 2: Generalized regression neural network structure.
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Figure 1: Current status of hidden resources exploitation.
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RMSE value was, the higher the concentration of preserved
fruit flies [26], and the more accurate the analytical model.

RMSE �
1
n



n

i�1
[x(t) − y(t)]

2
. (4)

Here, x(t) is the original value and y(t) is the analytical
value.

For the GRNN model that was based on the FOA op-
timization algorithm, the mean square error of the output
value of the training sample and the actual value was used as
a moderate function to find the optimal smoothing factor.
)e specific steps were as follows [27].

Set the size of the population to N, which is the pop-
ulation of randomly formed initial fruit flies [28]:

x(t) � x1(t), x2(t), . . . , xN(t) . (5)

Here, xi(t) is an evolutionary individual encoded by real
numbers:

(i) Based on the FOA optimization algorithm, the op-
timization process is shown in Figure 3. It was
programmed byMATLAB, and the parameter values
in GRNN were minimized so that the individual flies
and the fruit fly population were optimal and
consistent.

(ii) Substituting the optimal solution into the parame-
ters of the GRNN, the MATLAB function newgrnn()
was used to input the training data and obtain the
network output value.

3.2. Establishment of an FOA-GRNN Blasting Parameter
Optimization Model. )e input layer included ore bulk
density, elastic modulus, tensile strength, rock solidity, in-
ternal friction angle, and cohesion.)e output layer includes
hole pitch, row spacing, edge-hole distance, explosive unit
consumption, minimum resistance line, and interval ratio.
In the early stage, the measured model of the stope detected
by 3D Cavity Monitoring System (CMS) was sorted out, and
105 sets of blasting parameter data with good blasting effect
were obtained, which were divided into two parts:

(i) One hundred parameter datasets were used as
training samples.

(ii) 20 datasets were used as testing samples. )e
MATLAB software was used to optimize the training
of the fruit fly optimization algorithm-general re-
gression neural network (FOA-GRNN) model
sample. For the relationship between the lengths,
Table 1 lists 100 sets of training sample data. In this
table, ρr is the density of rock (g/cm3), E is the elastic
modulus (GPa), Rm is the compressive strength
(MPa), F is the rock solidity, φ is the internal friction
angle (°), c is the cohesion (MPa), Hd is the hole
distance (m), db is the distance between two rows
(m), Sh is the side hole spacing (m), Eu is the ex-
plosive unit consumption (kg/m3), W is the mini-
mum resistance line (m), and Ir is the interval ratio.

Among them, the FOA program is needed to dynami-
cally adjust the smoothing factor σ in GRNN and construct
an analytical model. To test the difference in model classi-
fication detection capabilities, the σ value needs to be
normalized to be in the range [0∼1]. )erefore, the input
parameters are normalized according to the following for-
mula to prevent input variables with different physical
meanings and dimensions from causing unequal use. At the
same time, this normalization can speed up the convergence
of the network.

xij � xij − xmin(i) / xmax(i) − xmin(i) . (6)

In the formula, xij is the actual input of the i input
indicator at the i sample point, and Xmax(i) and Xmin(i) are
the actual maximum and minimum values of the i input
indicator.

Because the network output is a preferred result after
normalization, the network output needs to be
denormalized.

x � xij xmax(i) − xmin(i)  + xmin(i). (7)

3.3. FOA-GRNN of the Optimization Blasting Parameter.
We assign P1 to P6 in the FOA-GRNN model as input
neurons and E1 to E6 as output neurons. )e position of the
fruit fly population is initialized to [0, 1]; the iterative fruit fly
searched for the random flight direction of the food, and the
range of the distance was [-10, 10]; the number of iterations
is 100 (shown in Figure 4). After searching for the best P1 to
P6 through 100 iterations, the analysis results approached
the RMSE convergence trend graph between the analytical
value and the actual target value. Figure 4 shows the tra-
jectory of the Drosophila group used in the optimization; the
group of fruit flies was concentrated and flew to the location
near the highest concentration of flavor [4.4, 3.8] (shown in
Figure 5). )e results suggest that the optimization process
was orderly and converged in a uniform direction, so the
results obtained were accurate and reliable. )e RMSE value
was only 0.051, and it is considered that the parameter
preference model was stable and effective.

Five sets of test samples were used to determine the
blasting parameters using the FOA-GRNN model, and the
test sample data were input (Table 2). )e comparison
between the FOA-GRNN preferred results and the actual
engineering blasting parameters is shown in Table 3 (E∗1 to
E∗6 were the output neurons of the test samples).

Input layer Hidden layer Output layer

Input
Output

w w wb b b

Figure 3: Neural network architecture diagram.

4 Shock and Vibration



Table 1: Model training sample.

Serial num.
Input layer Output layer

ρr E Rm F φ c Hd db Sh Eu W Ir
1 3.53 40.2 5.2 12 38.7 3.65 2.3 2.0 1.5 0.33 1.6 0.71
2 3.71 35.8 3.9 11 37.9 4.52 2.2 2.3 1.3 0.22 1.5 0.66
3 3.91 30.9 4.6 10 39.5 3.66 2.1 2.1 1.4 0.31 1.4 0.70
4 4.01 22.8 3.7 9 42.9 3.52 2.0 2.0 1.3 0.21 1.3 0.68
5 3.63 31.9 3.6 10 41.3 4.01 1.9 2.4 1.2 0.24 1.6 0.58
6 3.88 40.1 4.5 11 43.1 3.65 1.8 2.2 1.5 0.32 1.5 0.72
7 3.46 32.1 2.9 10 39.5 3.79 2.2 1.9 1.3 0.31 1.3 0.64
8 3.92 28.9 3.1 11 42.2 2.56 2.0 1.8 1.2 0.28 1.6 0.67
9 4.05 30.1 4.2 10 39.7 3.27 2.0 2.0 1.3 0.25 1.4 0.70
10 3.54 40.1 5.2 12 38.7 3.64 2.3 2.0 1.4 0.32 1.6 0.71
11 3.73 35.7 3.8 11 37.8 4.51 2.1 2.3 1.3 0.21 1.4 0.67
12 3.91 30.9 4.5 10 39,4 3.66 2.1 2.1 1.5 0.32 1.5 0.71
13 4.02 22.7 3.7 11 42.9 3.51 2.0 1.9 1.3 0.21 1.3 0.68
14 3.63 31.8 3.6 9 41.3 4.02 1.9 2.3 1.2 0.25 1.6 0.57
15 3.87 40.2 4.4 10 43.1 3.66 1.8 2.1 1.4 0.31 1.4 0.72
16 3.45 32.0 2.8 11 39.5 3.78 2.1 1.9 1.3 0.32 1.3 0.65
17 3.91 28.8 3.1 10 42.1 2.57 2.0 1.8 1.2 0.29 1.5 0.66
18 4.05 30.0 4.2 11 39.7 3.26 2.1 2.0 1.3 0.26 1.4 0.71
19 3.53 40.3 5.2 11 38.8 3.65 2.3 2.1 1.5 0.32 1.6 0.70
20 3.70 35.9 3.8 11 37.9 4.54 2.1 2.3 1.3 0.23 1.5 0.65
21 3.90 30.9 4.7 10 39.4 3.67 2.1 2.1 1.4 0.32 1.4 0.70
22 4.02 22.8 3.8 9 42.8 3.52 2.0 2.0 1.3 0.21 1.3 0.67
23 3.63 31.8 3.6 10 41.2 4.02 1.9 2.3 1.2 0.23 1.6 0.58
24 3.89 40.1 4.6 11 43.1 3.65 1.8 2.2 1.4 0.32 1.5 0.73
25 3.47 32.0 2.9 12 39.5 3.80 2.1 1.9 1.2 0.31 1.3 0.64
26 3.92 28.8 3.2 11 42.4 2.57 2.0 1.8 1.3 0.29 1.5 0.68
27 4.06 30.0 4.1 11 39.8 3.28 2.1 2.1 1.3 0.26 1.3 0.71
28 3.53 40.3 5.2 12 38.6 3.64 2.3 2.0 1.4 0.34 1.7 0.71
29 3.70 35.8 3.8 11 37.8 4.53 2.2 2.3 1.3 0.22 1.5 0.68
30 3.92 30.7 4.6 10 39.5 3.66 2.1 2.1 1.4 0.31 1.4 0.70
31 4.01 22.8 3.7 9 42.9 3.54 2.0 2.0 1.3 0.22 1.3 0.69
32 3.64 31.8 3.6 11 41.5 4.01 1.9 2.4 1.3 0.24 1.7 0.58
33 3.88 40.1 4.5 10 43.1 3.66 1.9 2.3 1.5 0.33 1.6 0.72
34 3.48 32.2 2.8 10 39.3 3.79 2.2 2.0 1.4 0.31 1.4 0.63
35 3.92 28.9 3.1 11 42.2 2.58 2.1 1.8 1.2 0.27 1.6 0.67
36 4.06 30.3 4.1 11 39.8 3.26 2.0 2.1 1.3 0.24 1.4 0.71
37 3.55 40.2 5.3 13 38.6 3.66 2.3 2.0 1.4 0.34 1.6 0.73
38 3.71 35.9 3.8 11 37.8 4.52 2.1 2.3 1.3 0.22 1.5 0.66
39 3.91 30.9 4.6 10 39.6 3.67 2.1 2.2 1.5 0.32 1.4 0.70
40 4.03 22.7 3.8 11 42.9 3.52 2.0 2.0 1.3 0.21 1.4 0.68
41 3.63 31.9 3.6 10 41.4 4.03 1.9 2.4 1.2 0.25 1.6 0.59
42 3.88 40.3 4.6 11 43.1 3.65 1.8 2.2 1.4 0.32 1.5 0.72
43 3.45 32.2 2.9 9 39.6 3.78 2.1 2.0 1.3 0.32 1.3 0.65
44 3.94 29.0 3.1 11 42.2 2.56 2.0 1.8 1.2 0.28 1.5 0.68
45 4.04 30.2 4.1 10 39.9 3.26 2.1 2.0 1.3 0.25 1.4 0.69
46 3.56 40.1 5.2 12 38.8 3.68 2.4 2.1 1.5 0.34 1.6 0.72
47 3.72 35.9 3.8 11 37.9 4.53 2.3 2.3 1.3 0.22 1.6 0.68
48 3.93 30.9 4.5 9 39.7 3.68 2.1 2.2 1.5 0.32 1.4 0.71
49 4.01 22.7 3.7 10 42.9 3.52 2.0 2.0 1.3 0.21 1.3 0.68
50 3.64 31.9 3.5 11 41.4 4.03 1.9 2.3 1.2 0.26 1.6 0.57
51 3.88 40.0 4.4 11 43.2 3.65 1.8 2.2 1.5 0.32 1.5 0.72
52 3.47 32.2 2.9 10 39.5 3.78 2.2 2.0 1.4 0.32 1.3 0.64
53 3.93 28.9 3.2 12 42.3 2.56 2.1 1.9 1.2 0.28 1.5 0.66
54 4.06 30.2 4.3 11 39.8 3.28 2.0 2.0 1.4 0.27 1.5 0.72
55 3.53 40.4 5.3 12 38.6 3.67 2.4 2.0 1.6 0.34 1.6 0.70
56 3.73 35.7 3.9 11 37.9 4.53 2.2 2.2 1.3 0.23 1.5 0.66
57 3.90 30.9 4.6 10 39.6 3.66 2.0 2.1 1.4 0.31 1.4 0.72
58 4.03 22.9 3.7 9 42.9 3.51 2.0 2.0 1.3 0.21 1.3 0.68
59 3.64 31.9 3.5 10 41.2 4.01 1.9 2.3 1.3 0.26 1.6 0.58
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Table 1: Continued.

Serial num.
Input layer Output layer

ρr E Rm F φ c Hd db Sh Eu W Ir
60 3.88 40.1 4.5 11 43.1 3.65 1.8 2.1 1.6 0.32 1.4 0.73
61 3.47 32.3 2.8 10 39.6 3.78 2.1 1.9 1.3 0.33 1.3 0.64
62 3.92 28.9 3.1 11 42.2 2.56 2.0 1.8 1.2 0.28 1.6 0.69
63 4.04 30.2 4.1 11 39.6 3.28 2.0 2.1 1.4 0.27 1.4 0.71
64 3.53 40.2 5.3 12 38.7 3.66 2.3 2.1 1.5 0.33 1.6 0.71
65 3.73 35.6 3.9 11 37.8 4.52 2.1 2.3 1.3 0.22 1.5 0.67
66 3.92 30.8 4.7 10 39.6 3.67 2.1 2.1 1.5 0.32 1.4 0.70
67 4.01 22.7 3.7 9 42.9 3.52 2.0 2.0 1.3 0.21 1.3 0.69
68 3.63 31.9 3.6 10 41.3 4.03 1.9 2.4 1.2 0.24 1.6 0.58
69 3.89 40.1 4.6 11 43.3 3.65 1.8 2.3 1.4 0.33 1.5 0.73
70 3.46 32.2 2.9 11 39.5 3.77 2.2 1.9 1.3 0.31 1.4 0.64
71 3.92 28.9 3.1 11 42.4 2.56 2.0 1.8 1.2 0.29 1.6 0.66
72 4.06 30.2 4.2 10 39.8 3.26 2.0 2.0 1.3 0.26 1.5 0.71
73 3.55 40.1 5.2 12 38.8 3.67 2.4 2.1 1.5 0.34 1.6 0.72
74 3.71 35.8 4.0 12 37.9 4.52 2.2 2.4 1.3 0.23 1.5 0.66
75 3.93 30.8 4.6 10 39.6 3.67 2.1 2.1 1.4 0.31 1.4 0.70
76 4.02 22.8 3.8 9 42.9 3.52 2.0 2.0 1.3 0.21 1.3 0.69
77 3.63 31.8 3.6 10 41.4 4.02 1.9 2.4 1.2 0.25 1.6 0.58
78 3.89 40.0 4.4 11 43.1 3.65 1.8 2.2 1.5 0.32 1.5 0.72
79 3.46 32.1 2.8 10 39.5 3.79 2.2 1.9 1.3 0.31 1.3 0.64
80 3.94 28.9 3.1 10 42.3 2.57 2.1 1.8 1.2 0.29 1.6 0.69
81 4.06 30.2 4.2 11 39.9 3.28 2.0 2.1 1.4 0.26 1.5 0.71
82 3.52 40.2 5.2 12 38.7 3.65 2.3 2.0 1.6 0.33 1.6 0.70
83 3.71 35.7 3.8 11 37.9 4.53 2.2 2.3 1.3 0.22 1.5 0.66
84 3.92 30.9 4.6 10 39.6 3.67 2.1 2.2 1.5 0.33 1.4 0.71
85 4.03 22.8 3.7 9 42.9 3.52 2.0 2.0 1.3 0.21 1.3 0.68
86 3.63 31.7 3.6 10 41.3 4.01 1.9 2.4 1.2 0.24 1.7 0.58
87 3.88 40.1 4.4 11 43.3 3.66 1.8 2.2 1.6 0.33 1.6 0.73
88 3.46 32.0 2.9 10 39.5 3.79 2.2 1.9 1.3 0.31 1.3 0.64
89 3.94 28.9 3.2 11 42.4 2.57 2.0 1.8 1.2 0.29 1.6 0.67
90 4.06 30.0 4.3 11 39.8 3.28 2.1 2.1 1.3 0.25 1.4 0.72
91 3.53 40.3 5.3 12 38.7 3.67 2.3 2.0 1.5 0.34 1.6 0.73
92 3.72 35.9 3.9 12 37.8 4.52 2.2 2.4 1.3 0.22 1.5 0.66
93 3.91 30.9 4.6 11 39.5 3.68 2.1 2.1 1.4 0.32 1.4 0.71
94 4.03 22.8 3.7 9 42.8 3.52 2.0 2.0 1.3 0.21 1.3 0.68
95 3.63 31.9 3.6 10 41.3 4.01 1.9 2.4 1.2 0.24 1.7 0.59
96 3.88 40.3 4.6 11 43.2 3.65 1.8 2.2 1.5 0.32 1.5 0.72
97 3.47 32.2 2.9 10 39.4 3.79 2.2 1.9 1.4 0.31 1.3 0.64
98 3.92 28.9 3.0 11 42.2 2.57 2.1 1.8 1.2 0.28 1.6 0.68
99 4.06 30.2 4.1 10 39.8 3.26 2.0 2.0 1.4 0.26 1.4 0.70
100 3.53 25.7 2.11 12 41.1 3.05 1.8 2.2 1.2 0.18 1.5 0.69
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Figure 4: Changes in RMSE values during the process of fruit fly optimization.
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Table 2: Data entered in the test group.

Serial num. P1 P2 P3 P4 P5 P6
101 3.82 31.2 4.5 10 39.4 3.62
102 3.54 41.2 5.2 11 38.5 3.69
103 4.05 23.1 3.6 10 42.8 3.48
104 3.48 25.6 2.12 12 40.8 3.06
105 3.52 24.8 2.11 12 41.6 3.15
106 3.81 31.2 4.51 11 39.6 3.63
107 3.55 41.0 5.2 11 38.5 3.69
108 4.04 23.1 3.61 10 42.9 3.49
109 3.48 25.7 2.12 11 40.8 3.08
110 3.53 24.7 2.10 12 41.7 3.16
111 3.83 31.3 4.49 10 39.3 3.61
112 3.54 41.4 5.2 11 38.5 3.68
113 4.06 23.2 3.61 11 42.6 3.48
114 3.47 25.6 2.12 12 40.8 3.07
115 3.53 24.9 2.10 11 41.7 3.16
116 3.81 31.1 4.5 10 39.3 3.64
117 3.55 41.1 5.21 11 38.5 3.70
118 4.05 23.1 3.62 10 42.7 3.48
119 3.47 25.5 2.11 11 40.8 3.07
120 3.54 24.8 2.12 12 41.7 3.16
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Figure 5: Drosophila path optimization.

Table 3: Comparison of FOA-GRNN output results with engineering practice parameters.

Serial num.
Engineering blasting parameters Output of FOA-GRNN

Maximum error value Average error value
E∗1 E∗2 E∗3 E∗4 E∗5 E∗6 E1 E2 E3 E4 E5 E6

101 2.2 2.2 1.5 0.38 1.7 0.65 2.3 2.2 1.5 0.36 1.6 0.66 0.059 0.028
102 2.2 2.0 1.4 0.31 1.6 0.72 2.2 2.1 1.4 0.33 1.7 0.68 0.061 0.037
103 2.1. 2.1 1.3 0.23 1.5 0.69 2.0 2.1 1.2 0.22 1.5 0.71 0.077 0.033
104 2.0 2.2 1.2 0.19 1.4 0.66 1.9 2.2 1.2 0.20 1.3 0.73 0.095 0.044
105 1.9 2.1 1.2 0.21 1.6 0.77 1.8 2.1 1.3 0.21 1.5 0.74 0.063 0.039
106 2.2 2.1 1.5 0.39 1.7 0.65 2.3 2.2 1.5 0.37 1.6 0.66 0.058 0.029
107 2.1 2.0 1.4 0.31 1.6 0.73 2.2 2.1 1.3 0.34 1.6 0.67 0.062 0.037
108 2.1. 2.1 1.3 0.24 1.5 0.69 2.1 2.1 1.2 0.22 1.5 0.71 0.077 0.032
109 2.0 2.2 1.3 0.19 1.4 0.67 1.9 2.2 1.2 0.20 1.3 0.73 0.096 0.045
110 1.9 2.0 1.2 0.22 1.5 0.78 1.8 2.0 1.3 0.22 1.6 0.75 0.063 0.039
111 2.1 2.2 1.5 0.39 1.7 0.65 2.3 2.2 1.5 0.36 1.6 0.66 0.060 0.028
112 2.2 2.0 1.3 0.31 1.5 0.73 2.2 2.1 1.4 0.32 1.7 0.68 0.062 0.036
113 2.1. 2.1 1.3 0.23 1.5 0.69 2.1 2.0 1.2 0.22 1.6 0.72 0.077 0.033
114 2.0 2.2 1.2 0.18 1.4 0.66 1.9 2.2 1.3 0.20 1.3 0.74 0.095 0.044
115 2.0 2.0 1.2 0.21 1.6 0.78 1.9 2.1 1.3 0.21 1.5 0.74 0.064 0.040
116 2.2 2.2 1.5 0.38 1.7 0.64 2.3 2.2 1.5 0.36 1.6 0.66 0.058 0.029
117 2.2 2.1 1.4 0.32 1.6 0.72 2.2 2.1 1.4 0.33 1.7 0.68 0.061 0.037
118 2.1. 2.1 1.3 0.24 1.5 0.70 2.0 2.1 1.2 0.23 1.5 0.70 0.077 0.034
119 2.1 2.2 1.2 0.19 1.4 0.67 1.9 2.2 1.2 0.20 1.3 0.73 0.096 0.043
120 1.9 2.1 1.3 0.22 1.6 0.77 1.8 2.1 1.3 0.20 1.5 0.75 0.063 0.039
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From the comparison between the FOA-GRNN pa-
rameter optimization results and the actual blasting pa-
rameters of the mine, it was found that the error of the
network optimization parameters and the empirically ob-
tained values were controlled to within 0.05, and the pre-
ferred results were highly reliable. On this basis, the mining
section parameters were input into the trained FOA-GRNN
model, and the following optimized blasting parameters
were obtained, as shown in Table 4.

4. Numerical Model of Three-Dimensional
Coupled Fluid-Solid Nonlinear Dynamics

4.1. Principle of the Coupled Fluid-Solid Model. Practice
proved that optimizing the edge-hole charge structure
could reduce the blasting vibration, so in addition to the
preferred blasting parameters, the charge structure of the
side hole should be optimized. A numerical model to
reduce the occurrence of earthquakes in blasting was
constructed by using AUTODYN-3D, in which the ex-
plosive and stope units used fewer smooth-mesh
Smoothed Particle Hydrodynamics (SPH) particles. )e
coupled Finite Element Method (FEM) and SPH algo-
rithm was used to constrain the boundary. In addition, the
SPH particle and the LAGRANGE unit directly adopt
point-point contraction, and the absorption boundary
constraint was selected for the side and bottom of the
LAGRANGE unit. Figure 6 is a coupling technique flow
chart [29].

)e JWL equation of state could be used to indicate the
relationship between the specific volume (υ) and pressure
(P0) produced by explosives throughout the detonation
process [30]:

P0 � Ac 1 −
ω

R1Vx

 e
− R1Vx + Bc 1 −

ω
R2Vx

 e
− R2Vx +

ωEc

Vx

.

(8)

Here, P0, Vx, and Ec are the pressure, relative volume,
and initial specific energy, and Ac, Bc, R1, R2, and ω are the
material constants. Determining these correlation coeffi-
cients yields a state equation for the explosive. From the CJ
condition, the detonation pressure Pb, detonation rate Pb
and chemical energy Eb of a given explosive could be
determined.

)e ideal gas equation of state is used for the air

P0 � (ζ − 1)e0ρ + Ps. (9)

Here, P0 is the pressure, e0 is the specific heat, ζ is the
polytropic exponent, and Ps is the pressure offset. Here,
ζ � 1.4, ρ is 1.23mg/cm3, and e0 is 2.07×105mm/mg/ms.

)e Riedel-Hiermaier-)oma model (RHT) consti-
tutive parameters of rock were determined by laboratory
tests and solved according to the determination method of
RHT material constitutive model parameters [31], as
shown in Table 5 and Table 6. In Table 7 [32], A1, A2, A3,
B0, B1, T1, T2, and T0 are the material parameters; ρs0 is the
density of the material; Ft is the tensile strength; Fs is the

shear strength; Fc is determined by Fs; A, N, and Q are the
failure strength parameters; α and δ are the tensile strain
rate index; uniaxial compression (TENSRAT), the ratio of
the elastic limit to the uniaxial compressive strength, and
COMPRAT, the ratio of the uniaxial tensile elastic limit to
the uniaxial tensile strength, are the parameters on the
elastic limit surface; B is the residual strength surface
constant; M is the residual strength surface index; PRE-
FACT is the ratio of the elastic shear modulus to the
plastic hardening shear modulus; SHRATD is the ratio of
the residual shear modulus to the shear modulus before
the damage.

4.2. =ree-Dimensional Numerical Dynamic Calculation
Model forCoupledFlow-Solid toExplore theHiddenDanger in
the Stope. )e mining process is shown in Figure 7. )e
specific steps are as follows. First, a track-free track roadway
is formed. A rock drilling chamber approach and a top rock
drilling chamber are also formed. )e first step blasting
forms a bottom space, and then blasting upward occurs until
the roof is broken, at which point lateral blasting occurs. )e
ore is transported from the lower chamber. Figure 8 shows
the five feasible edge-hole charging structures designed with
the same charge (0.5 rolls or 1 roll, while the air gap was
0.5m, 0.6m, 1.0m, 1.1m, or 1.2m). Each roll of explosive
has a length of 0.67m and a diameter of 90mm, with an
interval ratio of 0.696. )e numerical analysis model was
established by simplifying Figure 7, as shown in Figure 9.
)e distance from the side hole to the filling body was 1.2m,
the minimum resistance line was 1.5m, the width was 6.6m;
the model length was 20m, the width was 24m, the height
was 20m, and the boundary was set as the transmission
boundary. Figure 10 shows the arrangement of the Gaussian
point monitoring.

Table 4: Output result.

Hole
distance
(m)

Distance
between
two rows

(m)

Side hole
spacing
(m)

Explosive unit
consumption

(kg/m3)

W
(m)

Interval
ratio

1.8 2.2 1.2m 0.18 kg/m3 1.5 0.69

SPH FEM

Autodyna

Coupled model

Damage modelSPH modeling

SPH-FEM-stope coupling method

Figure 6: Flow chart of coupling technology.
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5. Optimization of Nonlinear Dynamic
Disturbance

In this study, the original nonlinear dynamic disturbance is
optimized by setting Gaussian point elements in the blasting
process of five schemes on the original basis and then
reading the peak values obtained. Two directions, horizontal
and vertical, are set, respectively, and the most effective
charging structure scheme in lateral state protection is

analyzed according to the knot of blast vibration velocity and
pressure peak.

5.1. Law of Movement and Velocity Vector Variation in the
Rock Mass. It can be seen from Figure 11 that after the
explosives in the blast hole are detonated in turn, the cracks
that formed in the rock mass first appeared at the detonation
point of the first row of blast holes, and then, the propa-
gation of the detonation wave appeared to be ellipsoidal,

RoofBlast hole

Upper rock drilling chamber

Adjacent
stope

backfill

Lower
mining

chamberFractional
blasting

Blasting
throw

direction
3

2

1

Figure 7: Mining process.

One volume

Blast
hole

1 m 1.1 m

1.2 m 0.6 m

0.5
m

1 2 3 4 5

Half volume

Explosive

Sand

Bamboo tube

Figure 8: Side hole charge structure.

Table 5: Physical and mechanical parameters of the explosive.

Material name ρE (kg·m− 3) Detonation speed (m·s− 1) Pb (GPa) Ac (GPa) Bc (GPa) R1 R2 ω
Explosive 1050 3750 9.5 200 0.21 4.6 1.05 0.32

Table 6: Rock material parameters.

ρR (kg/m3) E (GPa) c σy (MPa) G (GPa)
3.24 7.8 0.24 0.8 14

Table 7: RHT constitutive parameters of rock.

Constitutive parameters Assignment Constitutive parameters Assignment Constitutive parameters Assignment
Reference density 2.75 g·cm− 3 T2 0 α 0.029
Porous density 2.52 g·cm− 3 T0 300 k δ 0.036
Porous sonic wave velocity 5223m·s− 1 Specific heat 653 J/(kgK) PREFACT 2
Initial compaction pressure 0.05GPa Covering the elastic surface Yes TENSRAT 0.75
Solid compaction pressure 1.6GPa Shear modulus 39.2GPa COMPRAT 0.65
Compaction index 4 Fc 0.14GPa Damage constant D1 0.04
ρs0 2.96 g·cm− 3 Ft/Fc 0.7 Damage constant D2 1

Fs/Fc 0.53 Minimum failure strain 0.013
A1 60.2GPa A 1.75 SHRATD 0.13
A2 90.3 GPa N 0.67 Tensile stress Hydro (Pmin) model
A3 72.4GPa Q 0.69 Failure mode Limit
B0 1.22 Brittle transition toughness 0.015
B1 1.22 B 1.6
T1 60.2GPa M 0.61
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Figure 11: )e variation law of the movement and velocity in the rock mass.
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Figure 10: Gauss monitoring points.
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rapidly expanding to the periphery, with a peak value at the
focus of the ellipsoid [19]. When the detonation wave
decayed, the velocity vector appeared elliptical and expanded
around the blast hole. Because the products of detonation in
the holes were mutually squeezed, there are more significant
speed vector concentration phenomena in the two rows of
the first row of blast holes [33].)e second row of blast holes
detonates and forms a new velocity field before the first row
of blast hole velocity fields dissipate [34], superimposing
with the previous velocity field. As the stress waves con-
tinued to diffuse and decay, the velocity field becomes more
uniform. When the explosive was just detonated [35], the
maximum deformation of the rock mass was mainly con-
centrated on the wall of the hole subjected to the detonation
pressure. Under the combined action of the detonation wave
and the explosion stress wave, the wall of the blast hole was
damaged by the power disturbance [36]. When the mag-
nitude of the tensile stress was greater than the ultimate
strength of the rock, the ore near the free surface was thrown
out. When the crack penetrated, the particles between the
first row of blast holes and the free surface were destroyed
and thrown out [37].

5.2. Dynamic Evolution Law of Surrounding Rock Blasting
Damage. Figure 12 shows that after the explosive was
detonated, the high-temperature and high-pressure det-
onation products pushed the surrounding rock mass to
expand outward, the violent shock wave pressure directly
acted on the blast hole, and the wall of the blast hole in the
blast zone first broke. When the pressure around the wall
of the blast hole was greater than the compressive strength
of the two rams, it was subjected to compression yielding
until crushing, thereby producing a compression com-
minution zone. Over time, the shock wave propagated in
the two-package body, causing radial cracks in the tan-
gential tensile stress zone; the cracks expanded toward the
periphery of the sample. When the shock wave reached the
boundary of the two filling bodies, the wave impedance of
the two filling bodies was different from that of the
surrounding air so that the shock wave was reflected in the
two filling bodies, thereby forming a tensile wave and
accelerating the destruction of the two filling bodies.
Because of the tensile stress caused by the lateral

deformation of the two-package body, the part was
damaged earlier. Under the dual action of tensile stress
and cracking, the initial crack that formed expanded to the
periphery, resulting in large-scale fracture of the two-layer
filling body. )e damaged area was also expanding.
Subsequently, the second row of blast holes detonated and
interacted with the ore blocks that had collapsed due to
detonation from the previous row of blast holes. When the
blast wave was terminated, the internal fluctuations of the
two filling bodies would not stop under the action of
inertia, and finally, the two gang filler bodies lost part of
their bearing capacity.

5.3. Vibration Velocity and Pressure-Time Curve Analysis of
Surrounding Rock Blasting. )e blasting speed-time and
pressure-time curves in Figures 13 and 14 show that due to
the reduction in the charging of the northern gang, the peak

kongjianjuli420
Cycle 9
Time 2.032E-002 ms
Units m, kg, ms

kongjianjuli420
Cycle 332
Time 4.511E-001 ms
Units m, kg, ms

kongjianjuli420
Cycle 2500
Time 2.950E+000 ms
Units m, kg, ms

kongjianjuli420
Cycle 3605
Time 4.221E+000 ms
Units m, kg, ms

(a) (a)(c)(b)

Figure 12: Dynamic variation law of surrounding rock damage.
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Figure 13: Time-velocity curve at the Gaussian monitoring point.
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Table 8: Summary table of blasting dynamic response at the Gaussian monitoring point.

Gaussian point Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Y-direction velocity peak (m/s)

1 1.772e− 2 1.765e− 2 1.754e− 2 1.755e− 2 1.754e− 2

2 8.651e− 3 8.643e− 3 8.631e− 3 8.631e− 3 8.630e− 3

3 1.342e− 2 1.333e− 2 1.326e− 2 1.216e− 2 1.213e− 2

4 1.756e− 2 1.747e− 2 1.740e− 2 1.742e− 2 1.740e− 2

5 7.699e− 3 7.695e− 3 7.690e− 3 7.394e− 3 7.094e− 3

6 2.063e− 2 2.059e− 2 2.044e− 2 2.023e− 2 2.003e− 2

7 9.089e− 3 9.085e− 3 9.078e− 3 9.076e− 3 9.070e− 3

8 8.095e− 3 8.088e− 3 8.075e− 3 9.855e− 3 9.955e− 3

9 1.852e− 2 1.841e− 2 1.834e− 2 1.835e− 2 1.835e− 2

10 8.246e− 3 8.238e− 3 8.225e− 3 8.191e− 3 8.171e− 3

Average value 1.296e − 2 1.292e − 2 1.287e − 2 1.289e − 2 1.264e− 2

Z-direction velocity peak (m/s)

1 1.049e− 2 1.047e− 2 1.041e− 2 8.625e− 3 7.625e− 3

2 4.758e− 3 4.751e− 3 4.744e− 3 4.744e− 3 4.743e− 3

3 4.879e− 3 4.865e− 3 4.858e− 3 2.982e− 3 2.711e− 3

4 4.282e− 3 4.274e− 3 4.266e− 3 4.358e− 3 4.658e− 3

5 3.651e− 3 3.639e− 3 3.630e− 3 3.543e− 3 3.417e− 3

6 9.342e− 3 9.336e− 3 9.330e− 3 1.011e− 2 1.035e− 2

7 4.867e− 3 4.852e− 3 4.843e− 3 4.831e− 3 4.830e− 3

8 7.876e− 3 7.863e− 3 7.841e− 3 4.872e− 3 4.460e− 3

9 2.787e− 3 2.774e− 3 2.766e− 3 5.443e− 3 5.432e− 3

10 3.786e− 3 3.778e− 3 3.774e− 3 3.756e− 3 3.748e− 3

Average value 5.672e− 3 5.660e− 3 5.646e− 3 5.326e− 3 5.197e− 3

Peak pressure (MPa)

1 2.129e2 2.124e2 2.104e2 2.097e2 2.096e2

2 1.362e2 1.353e2 1.334e2 1.337e2 1.341e2

3 1.243e2 1.212e2 1.204e2 1.432e2 1.483e2

4 2.431e2 2.429e2 2.422e2 2.422e2 2.422e2

5 8.828e1 8.821e1 8.801e1 7.361e1 6.894e1

6 2.284e2 2.281e2 2.253e2 2.239e2 2.236e2

7 1.075e2 1.069e2 1.054e2 1.055e2 1.057e2

8 9.671e1 9.662e1 9.601e1 9.599e1 9.598e1

9 2.269e2 2.257e2 2.249e2 2.250e2 2.252e2

10 2.248e2 2.242e2 2.231e2 2.142e2 2.126e2

Average value 1.689e2 1.682e2 1.669e2 1.667e2 1.666e2
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Figure 14: Time-pressure curve at the Gaussian monitoring point.
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blasting vibration and the blasting pressure are smaller than
those of the south gang for the two main blast holes. )e
value of the corresponding position indicates that the
blasting vibration could be reduced to some extent by re-
ducing the charge of the side hole.

By extracting the Gaussian point elements on the
northern gang during the blasting process of the five
schemes, the peaks obtained by reading are read. )rough
the comparative analysis of the blasting vibration velocity
and the pressure peak in the horizontal direction and the
vertical direction, it can be concluded that the charging
structure scheme that is the most effective protection for the
side states is exhibited in the following order: scheme 5,
scheme 3, scheme 4, scheme 2, and scheme 1, shown in
Table 8.

6. Conclusions

In this study, the FOA-GRNN coupling model was used to
optimize the blasting parameters of deep-hole mining. On
this basis, a three-dimensional numerical calculation model
of the nonlinear display dynamics of the first mining stope
was constructed, the velocity vector of the ore rock and the
dynamic change law of the rock damage were revealed, and
the optimal edge-hole charge structure that creates the least
damage to the surrounding rock was determined. )e
conclusions are as follows:

(1) )e error between the optimized parameters of the
FOA-GRNN model network and the empirically
obtained values is controlled within 0.05, and the
preferred results are highly reliable.

(2) )e more uniform the explosive is distributed up-
ward in the gun aperture, the smaller the blasting
vibration effect is. )e order of the effectiveness of
the five kinds of side hole charging structures to
control the blasting vibration effect is as follows:
scheme 5> scheme 3> scheme 4> scheme
2> scheme 1, suggesting that the charging structure
of the side hole adopts the half-volume medicine roll
plus 0.6m bamboo tube charge structure.

)e FOA-GRNN model has certain limitations in the
optimization and 3D numerical simulation of blasting
parameters and does not consider the influence of ob-
jective factors such as deposit thickness, dip angle,
geological structure, mining depth, and weak interlayer.
And in this study, the fuzzy and nonlinear characteristics
of the above influencing factors are fully considered in
the one-step research, which expands the sample in-
formation base, improves the optimization model, and
increases the optimization accuracy, which can give some
scientific support to mining enterprises and related
scientific research work.
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