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/e nonlinear vibration behaviors of stiffened cylindrical shells under electromagnetic excitations, transverse excitations, and in-
plane excitations are studied for the first time in this paper. Given the first-order shear deformation theory and Hamilton
principle, the nonlinear partial differential governing equations of motion are derived with considering the von Karman geometric
nonlinearity. By employing the Galerkin discretization procedure, the partial differential equations are diverted to a set of coupled
nonlinear ordinary differential equations of motion. Based on the case of 1 : 2 internal resonance and principal resonance-1/2
subharmonic parametric resonance, the multiscale method of perturbation analysis is employed to precisely acquire the four-
dimensional nonlinear averaged equations. From the resonant response analysis and nonlinear dynamic simulation, we dis-
covered that the unstable regions of stiffened cylindrical shells can be narrowed by decreasing the external excitation or increasing
the magnetic intensity, and their working frequency range can be expanded by reducing the in-plane excitation. Moreover, the
different nonlinear dynamic responses of the stiffened cylindrical shell are acquired by controlling stiffener number, stiffener size,
and aspect ratio. /e presented approach in this paper can provide an efficient analytical framework for nonlinear dynamics
theories of stiffened cylindrical shells and will shed light on complex structure design in vibration test engineering.

1. Introduction

With the remarkable development of astronautic science and
technology (i.e., space station, spacecraft, satellite, and
rocket), the advanced and large-thrust electrodynamic vi-
bration shakers are needed to simulate the actual working
conditions and test the structural vibration performance
[1–3]. As the critical component of electrodynamic vibration
shakers, armature structures can generate the wanted vi-
bration waveforms with given vibration signals, and its
resonance frequency directly determines the upper limit of
the working frequency of vibration shaker [4, 5]. During
operations of vibration shaker, due to the large deformation
and structural torsion induced by electromagnetic envi-
ronment, unstable nonlinear dynamic behaviors such as
bifurcation and chaos may appear in armature structure,
which will produce vibration waveform deviations and

considerably reduce the test accuracy. /erefore, effective
nonlinear vibration analysis for armature structures to
satisfy the test accuracy becomes increasingly important in
space engineering. However, for armature structures oper-
ating in an electromagnetic environment (as shown in
Figure 1), complex geometric configurations not only exist
but also are subjected to transverse excitations, in-plane
excitations, and electromagnetic excitations [6–8]. /ese
factors significantly increase the analysis complexity of
nonlinear vibrations for armature structures. Up to now, few
studies have been performed on revealing the nonlinear
vibrations of armature structures under electromagnetic
environment, which greatly limits the development of high-
accuracy vibration test equipment. /e realistic demands on
improving vibration tests motivate us to start this research
on the nonlinear vibrations of armature structures. In this
study, by considering the geometric configurations and
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stiffness distribution, we simplify the armature structure to
the cylindrical shell structure with ring stiffeners, to facilitate
reveal the dynamic characteristics by employing nonlinear
shell theory, Hamilton principle, and perturbation analysis
theory. /e novelty of the study is to establish the dynamic
model of stiffened cylindrical shells subjected to electro-
magnetic excitations, transverse excitations, and in-plane
excitations for the first time, and the current studies can
provide a heuristic way for space engineers to realize the
nonlinear vibrations of armature structure in a macroscopic
view.

Different from the regular cylindrical shells, the struc-
tural traits of stiffened cylindrical shell are closer to the real
engineering structure (i.e., armature structure), and thereby
the stiffened cylindrical shell can perform more accurately
the nonlinear vibration analysis from geometric modeling
perspective. Up till now, stiffened cylindrical shells have
been widely used in the civil, mechanical, aerospace, and
aeronautic engineering fields [9–13]. /e nonlinear shell
theories have been studied in the past several decades [14].
Just like Donnell’s shell theory [15, 16] and Sanders’ shell
theory [17, 18], Novozhilov theory [19, 20], Koiter theory
[21, 22], and Flügge-Lur’e-Byrne theory [23, 24], which are
classic shell theories, assure the computing efficiency in
dynamic equation establishment for thin cylindrical shells.
To describe the nonlinear vibrations of thin shells accurately,
the first-order shear deformation theory [25–27] and the
third-order shear deformation theory [28–30] are usually
applied. Amabili [31] analyzed the nonlinear vibration of
cylindrical shells with simply supported boundary and

retained all the nonlinear terms of displacement and rotation
in plane by using first-order shear deformation theory. Yazdi
[32] studied the large amplitude vibration of composite
hyperbolic shells considering von Karman’s geometric
nonlinearity and first-order shear deformation theory.
Karimiasl [33] studied large amplitude vibration behaviors
of multiscale doubly curved shells with piezoelectric layer by
adopting Reddy’s third-order shear deformation theory. Gu
et al. [34] explored the nonlinear dynamics of circular cy-
lindrical shells considering small initial geometric imper-
fection. Amabili and Reddy [35] improved the shell
deformation theory to consider the rotation inertia terms,
the shear deformation terms, and the nonlinear terms of the
in-plane and lateral nonlinear displacements. According to
these investigations, it is found that different nonlinear shell
theories have different application scenarios. Moreover, due
to the existence of stiffeners, the nonlinear behavior will
produce some different characteristics and result in serious
consequences, such as the bifurcation point drifts backward,
and if the current theories and analysis results of regular
cylindrical shells are directly used for stiffened cylindrical
shells, unexpected deviations will arise. /erefore, it is
significant for us to choose the appropriate nonlinear shell
theory according to the geometric configuration of stiffened
cylindrical shells.

Under the coupling effects of various complex excita-
tions, the nonlinear vibrations and bifurcation phenomenon
of stiffened cylindrical shells would be incurred andmay lead
to significant noises and resonance issues [36–38]. At
present, there are more and more researches focusing on the
frequency, chaotic motions, and instability for circular cy-
lindrical shells under complex multiple excitations, and
fruitful results have been achieved. Goncalves et al. [39]
investigated the nonlinear vibration of cylindrical shells
subjected to pulsating axial loads by using Donnell’s shadow
shell equation. Liu et al. [40] studied the bifurcation, in-
termittent chaos, and nonlinear vibration of a large de-
ployable space antenna under 1 : 3 internal resonant thermal
load. Dogan [41] established nonlinear response model for
double-wall Sandwich cylindrical shells under random ex-
citation and studied the parameter sensitivity on the non-
linear responses. Kumar et al. [42] studied the nonlinear
response of elliptical shell under transverse harmonic load.
Duc et al. [43] investigated the nonlinear response of
functionally graded cylindrical shell with a ceramic metal-
ceramic layer under uniformly distributed radial loads.
Breslavsky et al. [44] studied that the dynamic behavior of
cylindrical shells subjected to multiharmonic excitation is
particularly complex and exhibits many types of nonlinear
behaviors: simple periodic vibration, quasiperiodic oscilla-
tions, subharmonic response, period-doubling bifurcations,
and chaos.

According to these researches on circular cylindrical
shells, we find that the main objective of the current re-
searches aims at investigating the regular cylindrical shells
subjected to radial or/and in-plain excitations. However,
multiscale composites, doubly curved shells and circular
cylindrical shells with longitudinal or circumferential stiff-
eners, are not conventional in engineering practice. /e
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Figure 1: Armature structure under electromagnetic environment.
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existence of stiffeners will affect the dynamic characteristics
of stiffened cylindrical shells and significantly increase the
analysis complexity compared to that of ordinary cylindrical
shells without stiffeners [45, 46]. Moreover, stiffened cy-
lindrical shells operating in electromagnetic environment
usually suffer the coupling effects of transverse excitations,
in-plain excitations, and electromagnetic excitations.
Without considering complex multiple excitations in one
unified framework, it will bring about unacceptable analysis
deviations when describing the complex amplitude-fre-
quency characteristics and chaotic motion behaviors
[47–49]. Especially subjected to the strong electromagnetic
environment, it is evitable to bring in unacceptable analysis
deviations if the electromagnetic excitation and various
external excitations are not considered simultaneously.

In this paper, the nonlinear vibrations of stiffened cy-
lindrical shells subjected to electromagnetic environment
are studied from a theoretical analysis view. A dynamic
model of stiffened cylindrical shells subjected to transverse
excitations, in-plane excitations, and electromagnetic exci-
tations is proposed for the first time. To begin with, in the
framework of the first-order shear deformation shell theory,
the governing equations of motion for stiffened cylindrical
shells are derived by using Hamilton’s principle. /en, the
governing equations of motion are discretized into non-
linear ordinary differential governing equations by utilizing
the Galerkin discretization procedure. /e multiscale
method of perturbation analysis is employed to obtain four-
dimensional nonlinear averaged equations under the 1 : 2
internal resonance and principal resonance-1/2 sub-
harmonic parametric resonance. Moreover, the nonlinear
dynamic behaviors and the jump phenomena are revealed in
the amplitude-frequency curves by considering the effects of
geometric parameters and multiple excitations. Lastly, the
periodic and chaotic motions of the stiffened cylindrical shell
are investigated by Runge–Kutta approach, and the influ-
ence of stiffener number, stiffener size, and aspect ratio on
the nonlinear dynamic responses of the stiffened cylindrical
shell is acquired.

2. Dynamic Equations of Motion

/e simplified geometric model of stiffened cylindrical shell
in an external uniform electromagnetic field (0, 0, Bz) is
presented, as shown in Figure 2. /e basic parameters of
stiffened cylindrical shell involve shell length L, shell middle
surface radius R, shell thickness h, stiffener height hs,
stiffener thickness ds, and stiffener spacing bs. To analyze the
vibration characteristics of the stiffened cylindrical shell, the
cylindrical coordinate system (x, θ, z) is built on the left-edge
middle surface. Herein, x denotes the axis direction of
stiffened cylindrical shell, and θ and z represent the cir-
cumferential and radial directions of the stiffened cylindrical
shell.

To describe the vibration behaviors of stiffened cylin-
drical shells, by considering the transverse shear deforma-
tion, Reddy’s first-order shear deformation theory-based
[25–27] dynamic model is constructed. Assuming that the
transverse normal would not remain normal to the middle

surface after shell deformation, the displacement field is
established:

u(x, θ, z, t) � u0(x, θ, t) + zϕx(x, θ, t),

v(x, θ, z, t) � v0(x, θ, t) + zϕθ(x, θ, t),

w(x, θ, z, t) � w0(x, θ, t),

⎧⎪⎪⎨

⎪⎪⎩
(1)

where u0, v0, and w0 indicate middle surface displacements
along the x-axis, θ-axis, and z-axis, respectively; ϕx and ϕθ
are the rotation angle along the θ-axis and x-axis, respec-
tively; t is the time variable. With considering the von
Karman geometric nonlinearity rule [50], the geometric
equation is built:
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(2)

where εxx, εθθ, cxθ, cxz, and cθz denote the strain components;
(ε0xx, ε0θθ, c0

xθ, c0
xz, c0

θz) are the membrane strains; (ε1xx, ε1θθ,
c1

xθ, c1
xz, c1

θz) are the flexural strains.
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In light of the general Hook’s law, to further reveal the
stress behavior in terms of displacement, the constitutive
relation of stiffened cylindrical shells is indicated:
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where Qij (i� 1, 2 and j� 1, 2; i� 4–6 and j� 4–6) are the
elastic constants of stiffened cylindrical shell:
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in which (σxx, σθθ, σs
θθ) are the coefficients of the normal

stress; τxθ are the coefficients of the shear stress; (τxz, τθz) are
the coefficients of the bending stress; E is Young’s modulus
of the cylindrical shell; Es is Young’s modulus of stiffeners.

/e force and bending moment distributions on middle
surface of cylindrical shells are shown in Figure 3, and they
can be quantified in equation (5).
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(5)

As operating in electromagnetic environment, stiffened
cylindrical shells make deformation under the electromag-
netic force, and the structural deformation further leads to
the change of distribution condition of electromagnetic flux
and electromagnetic force. /ese coupling effects between
the electromagnetic field and the mechanical field bring in
the high nonlinearity and large time-varying characteristics,
which leads to great difficulty in performing the quantitative
analysis of mechanical behavior for stiffened cylindrical
shells. In this study, to clearly describe the mechanical

L

R
Middle surface

Stiffener 

Cylindrical shell 

h s

bs ds

Bz

Figure 2: Simplified geometric model of stiffened cylindrical shell.
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behavior of stiffened cylindrical shells, considering the in-
fluence of electromagnetic force on virtual work under
external excitations, the dynamic equations of motion under
electromagnetic environment are established. By introduc-
ing the Lorentz law of force [51], the electromagnetic force
acting on stiffened cylindrical shells is presented as follows.

Based on the law of electromagnetic induction [52], the
electric current induced by cylindrical shell motion in radial
electromagnetic field can be expressed as

J � σ(V × B) � σ
zu
zt

× B􏼠 􏼡, (6)

where J denotes the electric current vectors, σ denotes the
conductivity, V denotes the speed, and B denotes the
electromagnetic intensity, where B� (0, 0, Bz). /erein, i, j,
and k are regarded as the vector in the three directions of x, θ,
and z; then, the displacement vector of the stiffened cylin-
drical shell u can be expressed as

u � u0 + zϕx( 􏼁i + v0 + zϕθ( 􏼁j + w0(x, θ, t)k. (7)

In the constant electromagnetic field, the Lorentz elec-
tromagnetic force per unit volume can be expressed as
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Furtherly, the Lorentz forces Fx and Fθ (in x and θ-axis)
and electromagnetic moments Mx and Mθ (in θ and x-axis)
can be derived as follows:
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Figure 3: (a) Force distribution and (b) bending moment distribution on middle surface of the cylindrical shell.
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Based on the nonlinear constitutive equation and the
magnetic force described by the Lorentz law of force, the
nonlinear dynamic equation of the system can be estab-
lished. Given Hamilton’s principle [53], the nonlinear dy-
namic equation of stiffened cylindrical shell under
electromagnetic environment is established as follows:

􏽚
t1

t2

[δ(T − U) + δW]dt � 0. (11)

/erein, the kinetic energy δT, potential energy δU, and
virtual work δW under external excitations can be signified
as follows:

δT � 􏽚
V
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δU � 􏽚
V

σxxδεxx + σθθδεθθ + σxθδεxθ + σxzδεxz + σθzδεθz( 􏼁dV + 􏽚
Vs

ds

bs

σθθδεθθdVs, (12b)

δW � 􏽚
V

Fxδu0 + Fθδv0 + Mxδϕx + Mθδϕθ( 􏼁dV + 􏽚
A

Nw0,xxδw0dA + 􏽚
A
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where N�N1sin (ω1t) represents the in-plane excitation, N1
represents the in-plane excitation amplitude, F� F1sin (ω2t)
represents the time-depend transverse excitation, F1 rep-
resents the transverse excitation amplitude, ω1 represents

the in-plane excitation frequency, and ω2 represents the
transverse excitation frequency.

/e nonlinear partial differential governing equations of
motion for stiffened cylindrical shell are given by
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substituting the kinetic energy, potential energy, and virtual
work into Hamilton’s equation:

δu0: Nxx,x +
Nxθ,θ

R
� I0€u0 + I1

€ϕx + σB
2
z _u0h,

δv0:
Nθθ,θ

R
+ Nxθ,x + N

s
θθ,θ � I1

€ϕθ + I0€v0 + σB
2
z _v0h,

δw0: Nxx,x

zw0

zx
+ N

s
θθ,θ

zw0

zx
+ Nxx

z
2
w0

zx
2 + N

s
θθ

z
2
w0

zx
2 +

Nθθ,θ

R

zw0

Rzθ

+ Nθθ
z
2
w0

R
2
zθ2

−
Nθθ

R
+ Nxθ,x

zw0

R zθ
+ Nxθ

z
2
w0

R zθ zx
+

Nxθ,θ

R

zw0

zx

+ Nxθ
z
2
w0

Rzθ zx
+ Qx,x +

Qθ,θ

R
− N

z
2
w0

zx
2 + F � I0 €w0,

δϕx:
Mxθ,θ

R
+ Mxx,x − Qx � I2

€ϕx + I1€u0 −
σh

3
B
2
z

12
_ϕx,

δϕθ:
Mθθ,θ

R
+ Mxθ,x + M

s
θθ,θ − Qθ � I1€v0 + I2

€ϕθ −
σh

3
B
2
z

12
_ϕθ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By substituting the force and moment resultants (5) into
equation (13), the governing equations of motion in the

generalized displacements (u0, v0, and w0) can be rewritten
as

A11
z
2
u0

zx
2 + A11

zw0

zx

z
2
w0

zx
2 + A12

z
2
v0

Rzθ zx
+ A12

zw0

Rzθ
z
2
w0

Rzθ zx
+ A12

zw0

R zx
+ B11

z
2ϕx

zx
2 + Bs

z
2ϕx

zx
2 + As

z
2
u0

zx
2 + As

zw0

zx

z
2
w0

zx
2

+ B12
z
2ϕθ

Rzθ zx
+ A33

z
2
u0

R
2
zθ2

+ A33
z
2
v0

Rzθ zx
+ A33

z
2
w0

Rzθ zx

zw0

Rzθ
+ A33

zw0

zx

z
2
w0

R
2
zθ2

+ B33
z
2ϕx

R
2
zθ2

+ B33
z
2ϕθ

Rzθ zx
� I0€u0 + I1

€ϕx,

(14a)

A12
z
2
u0

R zx zθ
+ A12

zw0

zx

z
2
w0

Rzθ zx
+ A22

z
2
v0

R
2
zθ2

+ A22
zw0

Rzθ
z
2
w0

R
2
zθ2

+ A22
zw0

R
2
zθ

+ B12
z
2ϕx

Rzθ zx
+ B22

z
2ϕθ

R
2
zθ2

+ A33
z
2
u0

Rzθ zx
+ A33

z
2
v0

zx
2 + A33

z
2
w0

zx
2

zw0

Rzθ
+ A33

zw0

zx

z
2
w0

Rzθ zx
+ B33

z
2ϕx

Rzθ zx
+ B33

z
2ϕθ

zx
2 � I1

€ϕθ + I0v0,

(14b)
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As

z
2
u0

zx
2

zw0

zx
+ As

zw0

zx

z
2
w0

zx
2

zw0

zx
+ Bs

z
2ϕx

zx
2

zw0

zx
+ As

zu0

zx

z
2
w0

zx
2 + As

1
2

zw0

zx
􏼠 􏼡

2
z
2
w0

zx
2 + Bs

zϕx

zx

z
2
w0

zx
2

zw0

zx

+ A11
z
2
u0

zx
2 + A11

zw0

zx

z
2
w0

zx
2 + A12

z
2
v0

Rzθzx
+ A12

zw0

Rzθ
z
2
w0

Rzθzx
+ A12

zw0

Rzx
+ B11

z
2ϕx

zx
2 + B12

z
2ϕθ

Rzθzx
􏼠 􏼡

+ A11
zu0

zx
+ A11

1
2

zw0

zx
􏼠 􏼡

2

+ A12
zv0

Rzθ
+ A12

1
2

zw0

Rzθ
􏼠 􏼡

2

+ A12
w0

R
+ B11

zϕx

zx
+ B12

zϕθ
Rzθ

⎛⎝ ⎞⎠
z
2
w0

zx
2

+ A12
z
2
u0

Rzxzθ
+ A12

zw0

zx

z
2
w0

Rzθzx
+ A22

z
2
v0

R
2
zθ2

+ A22
zw0

Rzθ
z
2
w0

R
2
zθ2

+ A22
zw0

R
2
zθ

+ B12
z
2ϕx

Rzθ zx
+ B22

z
2ϕθ

R
2
zθ2

􏼠 􏼡
zw0

Rzθ

+ A12
zu0

zx
+ A12

1
2

zw0

zx
􏼠 􏼡

2

+ A22
zv0

Rzθ
+ A22

1
2

zw0

Rzθ
􏼠 􏼡

2

+ A22
w0

R
+ B12

zϕx

zx
+ B22

zϕθ
Rzθ

⎛⎝ ⎞⎠
z
2
w0

R
2
zθ2

−
1
R

A12
zu0

zx
+ A12

1
2

zw0

zx
􏼠 􏼡

2

+ A22
zv0

Rzθ
+ A22

1
2

zw0

Rzθ
􏼠 􏼡

2

+ A22
w0

R
+ B12

zϕx

zx
+ B22

zϕθ

Rzθ
⎛⎝ ⎞⎠

+ A33
z
2
u0

Rzθzx
+ A33

z
2
v0

zx
2 + A33

z
2
w0

zx
2

zw0

Rzθ
+ A33

zw0

zx

z
2
w0

Rzθzx
+ B33

z
2ϕx

Rzθzx
+ B33

z
2ϕθ

zx
2􏼠 􏼡

zw0

Rzθ

+ A33
zu0

Rzθ
+ A33

zv0

zx
+ A33

zw0

zx

zw0

Rzθ
+ B33

zϕx

Rzθ
+ B33

zϕθ
zx

􏼠 􏼡
z
2
w0

Rzθzx

+ A33
z
2
u0

R
2
zθ2

+ A33
z
2
v0

Rzxzθ
+ A33

z
2
w0

zx Rzθ
zw0

Rzθ
+ A33

zw0

zx

z
2
w0

R
2
zθ2

+ B33
z
2ϕx

R
2
zθ2

+ B33
z
2ϕθ

Rzxzθ
􏼠 􏼡

zw0

zx

+ A33
zu0

Rzθ
+ A33

zv0

zx
+ A33

zw0

zx

zw0

Rzθ
+ B33

zϕx

Rzθ
+ B33

zϕθ
zx

􏼠 􏼡
z
2
w0

Rzθzx

+ A44
zϕx

zx
+ A44

z
2
w0

zx
2 + A55

zϕθ
Rzθ

+ A55
z
2
w0

R
2
zθ2

+
B
2
zh

2μ0

zw0

zx
􏼠 􏼡

2

+
zw0

Rzθ
􏼠 􏼡

2
⎡⎣ ⎤⎦

+ ρgh
zw0

zx
− ρgh(L − x)

z
2
w0

zx
2 − N

z
2
w0

zx
2 + F � I0 €w0

(14c)

Bs

z
2
u0

zx
2 + Bs

zw0

zx

z
2
w0

zx
2 + Ds

z
2ϕx

zx
2 + B33

z
2
u0

R
2
zθ2

+ B33
z
2
v0

Rzθ zx
+ B33

z
2
w0

Rzθ zx

zw0

Rzθ
+ B33

zw0

zx

z
2
w0

R
2
zθ2

+ D33
z
2ϕx

R
2
zθ2

+ D33
z
2ϕθ

Rzθ zx
+ B11

z
2
u0

zx
2 + B11

zw0

zx

z
2
w0

zx
2 + B12

z
2
v0

Rzθ zx
+ B12

zw0

Rzθ
z
2
w0

Rzθ zx
+ B12

zw0

Rzx

+ D11
z
2ϕx

zx
2 + D12

z
2ϕθ

Rzθ zx
− A44ϕx − A44

zw0

zx
+
σh

3
B
2
z

12
zu0

zt
+ z

zϕx

zt
􏼠 􏼡 � I2

€ϕx − I1 €u0

, (14d)

B12
z
2
u0

Rzx zθ
+ B12

zw0

zx

z
2
w0

Rzθ zx
+ B22

z
2
v0

R
2
zθ2

+ B22
zw0

Rzθ
z
2
w0

R
2
zθ2

+ B22
zw0

R
2
zθ

+ D12
z
2ϕx

Rzx zθ

+ D22
z
2ϕθ

R
2
zθ2

+ B33
z
2
u0

Rzθ zx
+ B33

z
2
v0

zx
2 + B33

z
2
w0

zx
2

zw0

Rzθ
+ B33

zw0

zx

z
2
w0

Rzθ zx
+ D33

z
2ϕx

Rzθ zx
+ D33

z
2ϕθ

zx
2

− A55ϕθ − A55
zw0

Rzθ
+
σh

3
B
2
z

12
zv0

zt
+ z

zϕθ

zt
􏼠 􏼡 � − I1€v0

+ I2
€ϕθ. (14e)

Note that the parts which involve magnetic field strength
BZ are used to describe the contribution of the

electromagnetic environment. Moreover, the coefficients Aij,
Bij, Dij, As, Bs, and Ds can be further expressed as follows:
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Aij, Bij, Dij􏼐 􏼑 � 􏽚
h/2

− (h/2)
Qij 1, z, z

2
􏼐 􏼑dz, (15a)

As, Bs, Ds( 􏼁 � 􏽚
(h/2)+hs

h/2
E

sbs

ds

1, z, z
2

􏼐 􏼑dz. (15b)

3. Equations’ Discretization and
Perturbation Analysis

In this section, a two-step solution procedure is considered
to solve the nonlinear dynamic equations of the stiffened
cylindrical shell: (i) the Galerkin discretization approach is
applied to divert the partial differential equations into or-
dinary differential equations; (ii) the multiscale method of
perturbation analysis is adopted to obtain the four-di-
mensional average equation of the system. /e solution
procedures of the nonlinear dynamic equations are sum-
marized as follows.

Considering the deformation features of armature
structures, simply supported boundaries are employed to
constrain both ends of the stiffened cylindrical shell, which
can be expressed as

v0 � w0 � ϕθ � Mxx � 0,

􏽚
2πR

0
Nxx|x�0,Ldθ � 􏽚

2πR

0
Ndθ, atx � 0, x � L,

(16)

where N0 represents the in-plane excitation.
Regarding the fact that in-plane inertial terms are much

smaller than the transverse inertial terms [54], the ordinary
differential governing equations are derived by ignoring the
in-plane inertial term in governing equations. Herein, the
continuous system of the partial governing differential
equation is truncated into a two-degree-of-freedom system
of ordinary differential governing equations by using the
Galerkin discretization approach, and the reasonable ap-
proximation functions are desired to expand the displace-
ments in the middle surface. Since most of the vibration
energy mainly concentrates in the first-order and second-
order modes, accounting for 90% or more of the system
energy [55], the first two modes are taken into account to
describe the nonlinear dynamic behaviors of stiffened cy-
lindrical shells. Based on [56, 57], the displacements u0, v0,
w0, ϕx, and ϕθ which satisfy the boundary conditions are
represented as

u0 � U1(t)cos
πx

L
􏼒 􏼓cos(3θ) + U2(t)cos

3πx

L
􏼒 􏼓cos(θ),

v0 � V1(t)sin
πx

L
􏼒 􏼓cos(3θ) + V2(t)sin

3πx

L
􏼒 􏼓cos(θ),

w0 � W1(t)sin
πx

L
􏼒 􏼓sin(3θ) + W2(t)sin

3πx

L
􏼒 􏼓sin(θ),

ϕx � Ψx1(t)cos
πx

L
􏼒 􏼓sin(3θ) + Ψx2(t)cos

3πx

L
􏼒 􏼓sin(θ),

ϕθ � Ψθ1(t)sin
πx

L
􏼒 􏼓cos(3θ) + Ψθ2(t)sin

3πx

L
􏼒 􏼓cos(θ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where W1 and W2 (t) denote the time-dependent total
amplitude;U1 (t),U2 (t),V1 (t),V2 (t),Ψx1 (t),Ψx2 (t),Ψθ1 (t),
and Ψθ2 (t) denote the time-dependent amplitude functions.

Considering the evenly distributed periodic vibration
load of the armature structure in engineering practice, to
simulate the real loading conditions, the transverse uni-
formly distributed harmonic excitation is applied to the
stiffened cylindrical shell. /e uniformly distributed trans-
verse harmonic excitation can be indicated as

F � F1 sin
πx

L
􏼒 􏼓cos(3θ) + F2 sin

3πx

L
􏼒 􏼓cos(θ), (18)

where F1 and F2 represent the amplitudes of the transverse
excitation.

Considering that the transverse nonlinear vibrations are
the primary motion type for stiffened cylindrical shells, the
inertia terms in equation (14) are removed in partial dif-
ferential governing equations. By substituting equations (17)
and (18) into (14) and applying the Galerkin discretization
procedure, the equations in u0, v0, ϕx, and ϕθ directions in
displacements equation are established simultaneously, in
which the generalized coordinatesU1 (t),U2 (t),V1 (t),V2 (t),
Ψx1 (t), Ψx2 (t), Ψθ1 (t), and Ψθ2 (t) can be expressed by the
generalized coordinates W1 and W2 and brought into the w0
direction, and the two-degree-of-freedom discrete ordinary
differential governing equations of transverse motion for the
stiffened cylindrical shell can be driven as

W1
..

+ ζ12W1
.

+ ω2
1W1 + ζ14W

3
1 + ζ15W1W

2
2 + ζ16N1W1 cos(Qt) � ζ17F1 cos(Ωt),

W2
..

+ ζ22W2
.

+ ω2
2W2 + ζ24W

2
1W2 + ζ25W

3
2 + ζ26N1W2 cos(Qt) � ζ27F2 cos(Ωt),

⎧⎪⎨

⎪⎩
(19)

whereW� [W1 W2]T represent the transverse displacements
vectors; ζij (i� 1, 2, j� 2–7) represent the coefficients; Q and
Ω represent the excitation frequencies; point above variables

represents the time derivative; N1 represents the amplitude
of in-plane excitation. Note that, even for the first two
modes, the established governing equation also involves
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quadratic terms, cubic terms, and parametric and transverse
excitations, which illustrates the high nonlinearity of
transverse vibrations of stiffened cylindrical shells.

For the high-dimensional nonlinear dynamic systems,
when there exists a special internal resonant relationship
between two linear natural frequencies, the large amplitude
nonlinear responses may suddenly happen owing to the
modal interactions [58]. In this section, to reveal the non-
linear vibration behaviors of stiffened cylindrical shells, the
perturbation analysis for the system’s primary resonance is
implemented with the multiscale method. By considering
the case of 1 : 2 internal resonance and primary resonance-1/
2 subharmonic parametric resonance, the resonant relations
of stiffened cylindrical shells are given as follows:

2ω1 � ω − εσ1,

ω2 � ω − εσ2,
(20)

where ω�Q�Ω, ε is the small perturbation parameter, and
σ1 and σ2 are the two detuning parameters.

To obtain the dimensionless ordinary differential gov-
erning equations for the stiffened cylindrical shell, the
transformations of the variables and the parameters are
introduced as follows:

τ � tω1,

W1 � f1h,

W2 � f2h,

Ω �
Ω
ω1

,

Q �
Q

ω1
,

ζ12 �
ζ12
ω1

,

ζ14 �
ζ14h

2

ω2
1

,

ζ15 �
ζ15h

2

ω2
1

,

ζ16 �
ζ16
ω2
1
,

ζ17 �
ζ17
ω2
1h

,

ζ22 �
ζ22
ω1

,

ζ24 �
ζ24h

2

ω2
1

,

ζ25 �
ζ25h

2

ω2
1

,

ζ26 �
ζ26
ω2
1
,

ζ27 �
ζ27
ω2
1h

,

ω1 � 1,

ω2 �
ω2

ω1
,

� 2,

(21)

Substituting equation (21) into equation (19), the di-
mensionless equations are acquired as follows:

z
2
f1

zτ2
+ ζ12

zf1

zτ
+ ω2

1f1 + ζ14f
3
1 + ζ15f1f

2
2 + ζ16N1 cos(Qτ)f1

� ζ17F1 cos(Ωτ),

(22a)

z
2
f2

zτ2
+ ζ22

zf2

zτ
+ ω2

2f2 + ζ24f
2
1f2 + ζ25f

3
2 + ζ26N1 cos(Qτ)f2

� ζ27F2 cos(Ωτ).

(22b)

To precisely obtain the uniform solutions of equations
(22a) and (22b), the multiscale method [54] is employed in
the following form:

fn(t, ε) � un0 T0, T1, T2( 􏼁 + εun1 T0, T1, T2( 􏼁

+ ε2un2 T0, T1, T2( 􏼁 + · · · , (n � 1, 2),
(23)

where time scale variables T0 � τ, T1 � ετ, and T2 � ε2τ.
To express the equation conveniently, the time deriva-

tives used in the multiscale method are given as follows:

d
dt

�
z

zT0

zT0

zt
+

z

zT1

zT1

zt
+ · · · � D0 + εD1 + · · · , (24a)

d2

dt
2 � D0 + εD1 + · · ·( 􏼁

2

� D
2
0 + 2εD0D1 + · · · ,

(24b)

where the partial derivative operators
D0 � z/zT0 andD1 � z/zT1.

Substituting equations (23) and (24b, 24a) into (22a) and
(22b) and balancing the coefficients of the like power of ε
yield the following differential equations:

ε0 orderD
2
0u10 + ω2

1u10 � 0, (25a)

D
2
0u20 + ω2

2u20 � 0, (25b)
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ε1 orderD
2
0u11 + ω2

1u11 � ζ12D0u10 + 2D0D1u10 + ζ14 u10( 􏼁
3

+ ζ15u10 u20( 􏼁
2

+ ζ16N1u10
1
2
e

− iQT0 +
1
2
e

iQT0􏼒 􏼓

− ζ17F1
1
2
e

− iT0Ω +
1
2
e

iT0Ω􏼒 􏼓,

(25c)

D
2
0u21 + ω2

2u21 � ζ22D0u20 + 2D0D1u20 + ζ24 u10( 􏼁
2
u

(0)
2

+ ζ25 u20( 􏼁
3

+ ζ26N1u20
1
2
e

− iQT0 +
1
2
e

iQT0􏼒 􏼓

− ζ27F2
1
2
e

− iT0Ω +
1
2
e

iT0Ω􏼒 􏼓.

(25d)

Since equations (25a) and (25b) are linear ordinary
differential equations, the complex form solutions can be
expressed as follows:

u10 � A1 T1( 􏼁e
iω1T0 + e

− iω1T0A1 T1( 􏼁, (26a)

u20 � A2 T1( 􏼁e
iω2T0 + e

− iω2T0A2 T1( 􏼁, (26b)

where A1 and A2 are the complex conjugate of A1 and A2.
Substituting equations (26a) and (26b) into (25c) and (25d)
yield

D
2
0u11 + ω2

1u11 � e
iω1T0 2ζ15A1 T1( 􏼁A2 T1( 􏼁A2 T1( 􏼁( +

1
2
ζ16N1A1 T1( 􏼁e

iεσ1T0+iεσ2T0

+ 3ζ14A1 T1( 􏼁
2
A1 T1( 􏼁 + iζ12ω1A1 T1( 􏼁 +2iD1A1 T1( 􏼁ω1􏼁 + cc + NST,

(27a)

D
2
0u21 + ω2

2u21 � e
iω2T0 2ζ24A1 T1( 􏼁A2 T1( 􏼁A1 T1( 􏼁( + 3ζ25A2 T1( 􏼁

2
A2 T1( 􏼁 + iζ22ω2A2 T1( 􏼁

−
1
2
ζ27F2e

iεσ2T0 + 2iD1A2 T1( 􏼁ω2􏼓 + cc + NST,
(27b)

where cc and NSTdenote the complex conjugate part on the
right side of equation (27) and the terms that do not
produce secular terms, respectively. Note that the variable
symbol ζ is rewritten as ζ to facilitate the following formula
derivation.

To write the modulation equations in polar coordinates,
the amplitude functions are set as functions A1 and A2,
which can be denoted in the exponential form as follows:

A1 T1( 􏼁 �
1
2
a1e

iϕ1 , (28a)

A2 T1( 􏼁 �
1
2
a2e

iϕ2 . (28b)

Substituting equations (28a) and (28b) into (27a) and
(27b) and separating the real and imaginary parts, four-
dimensional averaged equations in the polar form are
obtained:

_a1 �
1
4
ζ16a1N1 sin ϕ1( 􏼁 +

1
2
ζ12a1ω1, (29a)

_a2 �
1
2
ζ22a2ω2 −

1
2
ζ27F2 sin ϕ2( 􏼁, (29b)

_ϕ1 �
1
4
ζ15a1a

2
2 +

1
4
ζ16a1N1 cos ϕ1( 􏼁 −

1
2
a1ω1 σ1 + σ2( 􏼁 +

3ζ14a
3
1

8
,

(29c)

_ϕ2 �
1
4
ζ24a

2
1a2 +

3ζ25a
3
2

8
−
1
2
ζ27F2 cos ϕ2( 􏼁 − a2 T1( 􏼁σ2ω2.

(29d)

Ultimately, to obtain the numerical solutions effectively,
the complex partial differential kinetic equations (i.e.,
equation (14)) are simplified into simple four-dimensional
average equations (i.e., equation (29)).

4. Analysis of Resonant Responses

In this section, based on the established four-dimensional
averaged equations (equations (29a)–(29d)) in the polar
form, by considering the electromagnetic excitations,
transverse excitations, and in-plane excitations, the ampli-
tude-frequency characteristics of stiffened cylindrical shells
are investigated in this section. It should be noted that the
established four-dimensional averaged equations are derived
and solved on MATHEMATICA and MATLAB, respec-
tively. /e basic parameters of the stiffened cylindrical shell
are set as follows: elastic modulus E� 2.1× 1011 Pa, density
ρ� 7800 kg/m3, Poisson’s ratio ]� 0.3, conductivity
σ � 2.3×106 (Ω·m)− 1, L� 0.485m, R� 0.1665m, h� 0.007m,
and in-plane and transverse excitation frequencies are
Q�Ω� 150Hz [26]. Moreover, by setting the left parts of
equations (equations (29a)–(29d)) to equal zero, the effects
of different parameters on the resonant responses of the
stiffened cylindrical shell are studied, and the nonlinear

Shock and Vibration 11



dynamic responses are described in amplitude-frequency
curves under the cases of the primary resonance-1/2 sub-
harmonic parametric resonance and 1 : 2 internal resonance,
as shown in Figures 4–7. /erein, it is worth noting that the
dotted line represents the unstable region, the solid line
indicates the stable area, and the red dot represents the limit
point in these amplitude-frequency curves.

Figure 4 shows the influence of different transverse
excitation amplitude on the amplitude-frequency curve. /e
simulation results reveal that the amplitude of the first-order
mode is larger than that of the second-order mode. Both the
first two modes make left bending formants, so it can be
judged that the system makes nonlinear softening charac-
teristics. Moreover, with the increase of transverse excitation
amplitude F2, the amplitudes and resonant interval become
larger and the unstable region increases gradually. /ese
changes indicate that the stronger resonance responses are
excited since more energy is absorbed with the increase of
the transverse excitation. Furthermore, the resonance re-
gions of the first-order modes are consistent with that of the
second-order modes, which illustrates that the resonance of
the first-order modes is caused by the main resonance
phenomenon of the second-order modes. Besides, the
bending of the amplitude-frequency curves also leads to the
multiple amplitudes and the jump phenomena. Herein, the
multiple amplitudes mean that there are many possible
responses in stiffened cylindrical shells, and the actual re-
sponses are determined by the initial conditions; the jump
phenomenon in stiffened cylindrical shells means that the
amplitude changes abruptly.

To investigate the effects of in-plane excitation amplitude
N1 on the amplitude-frequency response, the amplitude
variation of the modes is analyzed, and the results are shown
in Figure 5. In Figure 5, the upper and lower four curves
represent the amplitude-frequency curve of the first two
modes when N1 � 3.2×107N/m2, N1 � 3.5×107N/m2,
N1 � 3.8×107N/m2, and N1 � 4.1× 107N/m2, respectively. It
can be seen from the figure that, with the increase of tuning
parameter σ1, there will be a jump of amplitude in the first
two modal amplitudes in an unstable region. Moreover, we
also find that the first-order and the second-order modal
limit points are σ1 � 0.2021 and σ1 � 0.2818 when
N1 � 3.2×107N/m2; σ1 � 0.2402 and σ1 � 0.3194 when
N1 � 3.5×107N/m2; σ1 � 0.2769 and σ1 � 0.3570 when
N1 � 3.8×107N/m2; σ1 � 0.3145 and σ1 � 0.3945 when
N1 � 4.1× 107N/m2. /e results show that, with the increase
of in-plane excitation amplitude N1, the unstable region
gradually moves to the right, which means that the natural
frequency of the system is increasing. Besides, with the
increase of N1, the ordinates of limit points of the first-order
modes move upward, while the ordinates of limit points of
the second-order modes remain unchanged, indicating that
the increase of N1 increases the energy of the first-order
modes but has little effect on the amplitude of the second-
order modes. /ese results illustrate that the subharmonic
parametric resonance which is forced by axial in-plane
excitation occurs in the first modes.

To verify the effects of electromagnetic intensities B on
the amplitude-frequency response of the system, the

amplitude changes of the modes under different electro-
magnetic intensities are analyzed. By setting transverse
excitation amplitude F2 � 4.5×105N/m2, in-plane excitation
amplitudeN1 � 3.2×107N/m2, and the amplitude-frequency
curves are drawn in Figure 6. Note that the upper and lower
four curves represent the amplitude-frequency response
curve of the first two modes when B� (18–21) T, respec-
tively. From the figure, we find that limit points of first two
modal tuning parameters are σ1 � 0.2021 and σ1 � 0.2818
when B� 18 T; σ1 � 0.2402 and σ1 � 0.3194 when B� 19 T;
σ1 � 0.2769 and σ1 � 0.3570 when B� 20 T; σ1 � 0.3145 and
σ1 � 0.3945 when B� 21 T. Besides, with the increase of the
electromagnetic intensity, the energy of the first two modes
is decreasing gradually. Moreover, when passing through the
resonance frequency, a certain degree of the mutation of the
first two modes is discovered.
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Figure 7 shows the effect of the small tuning parameter
σ2 on the amplitude-frequency responses of the system, in
which σ2 is used to adjust the second-order frequency. /e
upper and lower four curves represent the amplitude-fre-
quency curve of the first two modes when σ2 � 0; σ2 � 0.05
and σ2 � 0.10; σ2 � 0.15, respectively. /e two limit points of
the first two modal tuning parameters are σ1 � 0.2021 and
σ1 � 0.2818 when σ2 � 0; σ1 � 0.2658 and σ1 � 0.3328 when
σ2 � 0.05; σ1 � 0.3220 and σ1 � 0.3784 when σ2 � 0.10;
σ1 � 0.3721 and σ1 � 0.4193 when σ2 � 0.15. It can be found
that when increasing the small tuning parameter σ2, the
unstable region gradually shifts to the right. Meanwhile, with
the increase of σ2, the amplitudes and resonant intervals
become greater in amplitude-frequency curves. Besides, the
amplitude of the first-order modes uniformly moves up and
the ordinates of limit points move down, while the ordinates
of limit points of the second-order modes remain un-
changed. It is indicated that, with the increase of small
tuning parameter σ2, the energy of the first-order modes will
increase obviously, while the amplitude of the second-order
modes will not be affected basically.

5. Numerical Simulation of Periodic and
Chaotic Dynamics

In this section, with consideration of the influence of stiffener
number, stiffener size, and aspect ratio, the periodic and the
chaotic motions of stiffened cylindrical shells in the case of 1 :
2 internal resonance and primary resonance-1/2 sub-
harmonic parametric resonance are studied in the following
four cases. /erein, Case 1 is used to verify the feasibility of
the proposed method, and its solutions are regarded as the
benchmark results of the following cases; Cases 2–4 are ap-
plied to reveal the influence of stiffeners on the nonlinear
vibration behaviors by adjusting the parameters (i.e., stiffener
number, stiffener height, and aspect ratio). /e change of
parameters in Cases 1–4 is illustrated in Table 1.

5.1. Case 1. To describe the nonlinear vibration responses of
stiffened cylindrical shells, the basic parameters of the
stiffened cylindrical shell are set as follows: elastic modulus
E� 2.1× 1011 Pa, density ρ� 7800 kg/m3, Poisson’s ratio
]� 0.3, conductivity σ � 2.3×106 (Ω·m)− 1, shell length
L� 0.485m, shell middle surface radius R� 0.1665m, shell
thickness h� 0.007m, stiffener height hs � 0.003m, stiffener
spacing bs � 0.097m, stiffener thickness ds � 0.015m, and
electromagnetic intensity B� 15 T. Considering the trans-
verse excitation amplitude F1 � F2 �1× 104N and in-plane
and transverse excitation frequencies Q�Ω� 150Hz, the
periodic and chaotic motions of the stiffened cylindrical
shells are analyzed by adopting the fourth-order Run-
ge–Kutta approach. Note that the in-plane excitation am-
plitude N1 is assumed as a variable, while the basic
parameters remained as the fixed values in numerical
analysis.

To globally view the nonlinear vibration behaviors of the
stiffened cylindrical shell, the bifurcation diagrams of the
first two modes are depicted in Figure 8. Herein, the hor-
izontal axis represents the in-plane excitation amplitude N1
and the vertical axis represents the value of the first two
modal displacements W1 and W2. Figure 8 shows that, with
the increase of in-plane excitation amplitude, there exist
periodic and chaotic motions in two main different regions.
As N1 increased past N1 � 5.92×107, the system undergoes
changes from periodic motions to chaotic motions. /e
variation results are displayed in Figures 9 and 10. In these
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Table 1: /e change of parameters in Cases 1–4.

Parameters Stiffener
number

Stiffener height
(m)

Aspect
ratio Others

Case 1 5 0.003 2 Same
Case 2 10 0.003 2 Same
Case 3 5 0.006 2 Same
Case 4 5 0.003 3.5 Same
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figures, (a) and (c) represent the phase portraits on the
planes(W1,

_W1) and (W2,
_W2), respectively; (b) and (d)

depict the waveforms on the planes (t, W1)and(t, W2),
respectively; (e) and (f) represent three-dimensional phase
portrait in the space of (W1,

_W1, W2) and the Poincare map
on the plane (W1,

_W1), respectively; Figure 9(f) shows one
point in Poincare maps, which indicates that the system
makes the periodic motions when N1 � 4×107N/m2. Under
the circumstances ofN1 � 7×107N/m2, we observe that each
excitation cycle produces different motion states in
Figures 10(a)–10(e) and the Poincare map shows a lot of
irregular points in Figure 10(f ); the dynamic phenomenon
illustrates that the system makes the chaotic motion be-
havior. Note that N1 indicates the in-plane excitation am-
plitude, while W1 and W2 represent the first and second
modal deformation, respectively.

5.2. Case 2. /e flexural, compressive, or bearing capacity of
stiffened cylindrical shells is seriously affected by the geo-
metric configurations of stiffeners. To improve the me-
chanical performance (such as strength and stiffness) and
increase the structural reliability of stiffened cylindrical
shells, the effects of stiffener number on nonlinear responses
under electromagnetic environment are investigated in this
subsection. /e geometric parameters of the stiffened cy-
lindrical shell are set as follows: shell length L� 0.485m, shell
middle surface radius R� 0.1665m, shell thickness
h� 0.007m, stiffener number n� 10, stiffener height
hs � 0.003m, stiffener spacing bs � 0.0485m, and stiffener
thickness ds � 0.015m.

/e bifurcation diagrams of the first two modes are
described in Figure 11. From Figure 11, it can be seen that
the shell’s motions change from periodic motions to com-
plex chaotic motions when N1 � 8.155×107N/m2. Figure 12
describes the nonlinear dynamic responses when in-plane
excitation amplitude N1 � 6.5×107N/m2. At this time, there
is only one fixed point in the Poincare map, which indicates
that the stiffened cylindrical shell is in single period motion.
WhenN1 � 9.5×107N/m2, the nonlinear dynamic responses
of the stiffened cylindrical shell are drawn in Figure 13: there

are infinite irregular points in the Poincare map and the
motion in the time history diagram is also irregular; this
phenomenon indicates that the stiffened cylindrical shell
makes chaotic motion behavior. Compared with Figures 8
and 11, we observed that when increasing stiffener number n
from 5 to 10, the critical value of N1 will increase from
N1 � 5.92×107N/m2 to 8.155×107N/m2, which illustrates
that the chaotic motion of stiffened cylindrical shells can be
effectively restrained by increasing the stiffener number.

5.3. Case 3. To verify the effects of various stiffening con-
figurations on the nonlinear dynamic responses, the periodic
and chaotic motions of the modes for stiffened cylindrical
shells are analyzed. /e geometries of the stiffened cylin-
drical shell are chosen as follows: shell length L� 0.485m,
shell middle surface radius R� 0.1665m, shell thickness
h� 0.007m, stiffener height hs � 0.006m, stiffener spacing
bs � 0.097m, stiffener thickness ds � 0.015m, and electro-
magnetic intensity B� 15 T. /e bifurcation diagrams when
stiffener height hs � 0.006m are drawn in Figure 14. From
Figure 14, it can be seen that the shell’s motions change from
periodicities to complex chaotic motions with the increase of
in-plane excitation amplitude N1. And the chaotic motion of
the system would emerge when N1 � 9.45×107N/m2.
Moreover, the nonlinear dynamic responses of
N1 � 6.5×107N/m2 and 9.5×107N/m2 are shown in Fig-
ures 15 and 16, respectively.

From the comparison of Figures 8 and 14, we find that
the critical value of N1 increases from 5.92×107N/m2 to
9.45×107N/m2 as the stiffener height increases from
0.003m to 0.006m. It can be seen that the higher stiffener
height can effectively suppress the chaotic bifurcation be-
havior of the stiffened cylindrical shell.

5.4. Case 4. Considering that different aspect ratios of
stiffened cylindrical shells in different operating environ-
ments will show vastly different response characteristics, we
further explore the influence of aspect ratio on dynamic
responses of stiffened cylindrical shells in this subsection. By
setting the aspect ratio as L/R� 3.5, the bifurcation diagrams
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of the first two modes are described in Figure 17. As shown
in Figure 17, the shell’s motions translate periodic motions
to chaotic motions when the critical value N1 reaches
8.91× 107N/m2. Moreover, the nonlinear dynamic re-
sponses of N1 � 7×107N/m2 and 10.19×107N/m2 are
depicted in Figures 18 and 19, respectively. By comparing
Figures 8 and 17, we find that, with the increase of aspect
ratio from 2 to 3.5, the critical value of in-plane excitationN1

increases from 5.92×107N/m2 to 9.37×107N/m2, which
indicates that the larger aspect ratio can well prevent the
chaotic phenomenon in the system.

Note that, in order to clearly explore the nonlinear
behavior under various parameters, the representative pa-
rameters (i.e., stiffener number, stiffener height, and aspect
ratio) are selected. Although the other stiffened cylindrical
shells with different parameter combinations can also be
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Figure 16: Chaotic motion of the stiffened cylindrical shell when N1 � 9.5×107N/m2. (a) Phase portraits on the plane (W1,
_W1). (b)
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calculated by adopting the proposed method, it should be
explored in further investigations.

6. Conclusions

In this study, the nonlinear vibration analysis for stiffened
cylindrical shells subjected to electromagnetic excitations,
transverse excitations, and in-plane excitations is studied for
the first time. Firstly, in the framework of the first-order
shear deformation theory, the nonlinear partial differential
governing equations of motion for stiffened cylindrical shells
are derived by using Hamilton’s principle. /en, the

nonlinear partial differential governing equations of motion
are diverted into a set of coupled nonlinear ordinary dif-
ferential equations by the Galerkin discretization procedure.
By using the multiscale method of perturbation analysis, we
obtain four-dimensional nonlinear averaged equations in
the polar forms under the case of 1 : 2 internal resonance and
principal resonance-1/2 subharmonic parametric resonance.
At last, we investigate the effects of different parameters on
the resonant responses and the chaotic dynamics of the
stiffened cylindrical shell. During the aforementioned
analysis, the nonlinear vibrations of stiffened cylindrical
shells can be concluded as follows:
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Figure 19: Chaotic motion of the stiffened cylindrical shell when N1 � 10.19×107N/m2. (a) Phase portraits on the plane (W1,
_W1). (b)

Waveform on the plane (t, W1). (c) Phase portraits on the plane (W2,
_W2). (d)Waveform on the plane (t, W2). (e)/ree-dimensional phase
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(1) From the analysis of resonant responses, we find that
multiple amplitudes and jump phenomena have
appeared in amplitude-frequency curves. By de-
creasing the external excitation or increasing the
magnetic intensity, the unstable regions of stiffened
cylindrical shells can be narrowed and the test ac-
curacy of armature structures can be guaranteed
effectively.

(2) With the numerical simulation of periodic and
chaotic motions, the bifurcation diagrams, phase
portraits, waveforms, and Poincare maps are ac-
quired. From the simulation results, we discover that
the periodic motions are translated to chaotic mo-
tions as the increase of in-plane excitation. /ere-
fore, the working frequency range of armature
structures can be expanded by reducing the in-plane
excitation.

(3) With the influence investigations of geometric
configurations on nonlinear dynamics, we notice
that, with the increase of stiffener number, stiffener
size, and aspect ratio, the chaotic phenomenon can
be suppressed effectively and the high-accuracy vi-
bration waveform can be produced successfully.
/us, the efforts are of great significance.

Since unstable nonlinear dynamic behaviors impose huge
waveform deviations of armature structures, we can control
multiple excitations (i.e., external excitation and magnetic
intensity) and geometric configurations (i.e., stiffener num-
ber, stiffener size, and aspect ratio) in order to enhance the test
accuracy of armature structures. /e presented approach in
this paper can provide an efficient analytical framework for
nonlinear dynamics theories of stiffened cylindrical shells and
will supply important technique guidance for armature
structure design in vibration test engineering. Note that the
analysis results of this paper are calculated by strict mathe-
matical reasoning, which can effectively ensure its correctness.
Other methods will be used to solve partial differential
equations of dynamics equation (16), to further verify the
proposed numerical model and its solutions.
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