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 e application of the neural network method in health monitoring and structural system identi�cation has received extensive
attention. A reasonable neural network structure is very important for its performance.  is paper takes the pedestrian bridge of
the Xingfu intersection in Urumqi, China, as the research object and uses MIDAS/Civil to establish a �nite element analysis
model. Taking the natural vibration frequency obtained from the dynamic test of the actual bridge as the target, two kinds of
neural networks are used to predict the structural material parameters. An appropriate bridge model correctionmethod is selected
by comparing the prediction results of the BP neural network and the GRNN.  e test results show that the pedestrian bridge
model based onMIDAS/Civil has a high accuracy, but it still does not meet the actual needs.  e modi�ed model based on the BP
neural network is close to the actual measured results, and a more accurate �nite element analysis model can be established by this
method, which makes the modi�ed model closer to the real stress state of the structure.

1. Introduction

 e long-term health inspection of steel structure bridge is of
great signi�cance to its safety, and the current measures to
ensure the long-term safety performance of the bridge
mainly focus on the inspection and reinforcement.  e
health monitoring and prediction of bridges are based on
�nite element analysis. Firstly, the measuring points are
arranged at each node of the bridge, and the measured data
(concrete strength, de�ection value, strain value, and low-
order natural frequency of the bridge) are collected.  en,
the �nite element model is established according to the
existing design drawings and combined with external
conditions.  e state of the bridge is judged by the corre-
lation analysis between the measured value and the calcu-
lated value. However, the measured results are often
di�erent from the calculated results of the bridge �nite el-
ement model, and the degree of di�erence often determines
the evaluation results of the bridge.  erefore, the estab-
lishment of a more accurate �nite element model is the basis
of structural analysis. Due to the discreteness degree of the

�nite element model, the setting of modeling parameters,
some simpli�ed assumptions are used in modeling, and the
calculated values of the �nite element model bring errors. In
addition, the initial �nite element model established strictly
in accordance with the design drawings cannot actually
re�ect the mechanical behavior of the structure due to the
in�uence of material performance deviation, structural
degradation or damage, and other factors [1].  erefore, it is
necessary to modify the bridge �nite element model
according to the measured results of bridge detection to
improve the accuracy and reliability of the bridge �nite
element model.  e essence of �nite element model mod-
i�cation is an approximation problem, and one or several
indexes of the �nite element model are in�nitely close to the
real value by modifying various parameters of the �nite
element model.

Using a neural network to modify the �nite element
model can not only reduce the calculation times but also
make the predicted results tend to close the actual value
[2].  is paper mainly adopts BP neural network and
GRNN. BP neural network (backpropagation neural
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network) is a kind of multilayer feedforward neural net-
work. )e error between the actual output and the ex-
pected output of the system is reduced by changing the
connection weights among neurons, and the weights and
thresholds between the hidden layer and the output layer
are adjusted forward and backward according to the
gradient descent method. GRNN (general regression
neural network) is a feedforward neural network model
based on the nonlinear regression principle. GRNN is
improved based on RBF and has a similar structure. )e
difference lies in the addition of a summation layer and the
removal of the weight connection between the hidden
layer and the output layer (the least-square superposition
of the Gaussian weight).

)e core factor of the stability of a building structure is
determined by its own material and structure. It is pre-
dicted by the neural network, which makes the model
reference. Alkayem et al. [3–7] proposed that improving
the accuracy of the intelligent algorithm for computing
model correction is a direction worthy of study and
summarized the model correction methods based on the
neural network comprehensively. In 2004, Fei et al. [8–10]
used RBF neural network to conduct a revision study on the
aircraft model, and the results showed that the design
parameter error was within 2%, and the modal frequency
error was within 1%. In 2012, Wang et al. [11, 12] applied a
neural network to the finite element model modification of
a reinforced concrete bridge and verified that the modified
finite element model could reflect the physical state of the
structure more truly and better reflect the real dynamic
characteristics of the bridge structure. In 2017, Jia et al.
[13, 14] modeled the PC hollow beam that has been in
service for more than 20 years and modified it by using a
neural network intelligent algorithm. )e physical state
between the modified finite element model and the actual
structure is very close. )e elastic modulus of the steel
strand is consistent with the experimental value, and all
errors are controlled within 5%. In 2018, Bao et al. [15–17]
used MIDAS to establish a bridge model and BP neural
network to modify the model based on the deflection. )e
deflection error of the modified bridge finite element model
was less than 10%, and a good correction effect was
obtained.

Previous studies prove that neural network has a good
effect on model modification, but few scholars apply a neural
network to model modification of pedestrian steel bridge. In
this paper, BP neural network and GRNN in radial basis
neural network are used as the correction method. Urumqi
Xingfu Road pedestrian bridge is taken as the model to be
modified. Taking the characteristic quantity as the inde-
pendent variable and the steel design parameters as the
dependent variable, the neural network intelligent algorithm
is used to approximate the nonlinear mapping relationship
between the two [18]. )en, the generalization property of
the neural network is used to solve the target value of design
parameters directly. )rough the reliability comparison and
error analysis of BP neural network and GRNN training test
results, a model modification method suitable for the pe-
destrian bridge was found.

2. Project Overview

Xinjiang Urumqi Xingfu Road pedestrian steel bridge was
built in 2002 and is located at the intersection of the Urumqi
beltway and Xingfu Road in Urumqi, China, as shown in
Figure 1. )e main pedestrian bridge has a net height of 5m
and a span of 23.763m and 25.762m, respectively. )e main
girder adopts a uniform cross-section single-cell box girder
structure, which is 1m high and 4m wide, and the thickness
of the roof is 10mm, the thickness of the bottom plate is
16mm, the thickness of the web is 12mm, and the box girder
internal welding 10mm thick stiffening ribs. )e bridge is
equipped with 4 escalators, which are welded with the main
beam. )e width of the staircase is 2.5m, and the height-
width ratio of the steps is 1 : 3. )e ladder beams are all steel
box girder structure, with a height of 280mm and the plate
thickness of 10mm. )e piers are made of hot-rolled
seamless steel tubes, with a wall thickness of 16mm and a
diameter of 426mm. )e foundation is an expanded con-
crete foundation, the balustrade is a carbon stainless steel
composite steel pipe, and the bridge deck pavement adopts a
15mm thick rubber plate; Q235B killed steel is used for the
pier column and main beam steel plate, and Q235C killed
steel is used for other members. )e main components are
welded in the factory and then transported to the site for
welding and assembly.

3. Model Establishment and Dynamic Test

3.1. Initial Model Establishment. According to the design
drawing size of the pedestrian bridge, the finite element
model of the pedestrian steel bridge is established by using
MIDAS/Civil. Semirigid rubber bearings were set for the
main beam, escalator beam, and column of the pedestrian
bridge, and consolidation boundary conditions were

Figure 1: Urumqi Xingfu Road pedestrian bridge.

Figure 2: Finite element model of the pedestrian bridge.
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selected for the supports and top pillar. Mechanical prop-
erties of materials refer to Q235 steel in the General
Specifications for Design of Highway Bridges and Culverts
[19] (D60-2015). )e finite element model is shown in
Figure 2.

)e dynamic characteristics of the pedestrian bridge
model were analyzed by using the subspace iteration
method. )e first 5-order natural vibration frequencies of
the pedestrian bridge are calculated as shown in Table 1.

According to the study of Fan et al. [20, 21], the walking
frequency of human is 2∼4Hz, and the first 2 vibration
modes of the bridge need only be considered in model
modification and dynamic test of the real bridge for the
pedestrian bridge.

3.2. Self-Vibration Characteristics Test. )e test was con-
ducted in the early morning in order to minimize the in-
fluence of external factors such as the stream of people and
vehicles on the dynamic test results. JMC2-2091 accelera-
tion-type vibration pickup and JMYD-1016 dynamic in-
formation acquisition instrument from Jinma High-tech
Institute Changsha China were used. )e acceleration-type
vibration pickup is fixed at each measuring point to record
the acceleration waveform when the pedestrian bridge vi-
brates. It is connected to the dynamic information acqui-
sition instrument through the cable, and the acceleration
signal is amplified, recorded, and analyzed. Finally, the
acceleration signal is connected to a laptop computer and
stored on a disk for spectrum analysis (Figure 3).

11 measuring points are selected in this dynamic test,
and the layout is shown in Figure 4. Cylindrical semirigid
rubber bearing is set on the top of the column, it is con-
sidered that no displacement occurs at this point, so no
measuring point is set on the top of the column.)e test was
divided into two groups, and the first group was the mea-
suring points 1-1 to 1-7 (Figure 4). In order to connect the
test data of the two groups, position 1-7 of the first group was

kept unchanged as the position 2-7 of the second group. )e
test system is shown in Figure 5.

DASP software was used to analyze the measured data
after the test [22, 23]. DASP software shows that the first-
order vertical natural vibration frequency obtained from the
dynamic test of the pedestrian bridge is 4.9804Hz, and the
second-order vertical natural vibration frequency is
5.9765Hz. )ere is some error between the test results and
the finite element calculation results.

It can be seen from Table 2 that the maximum error of
the initial model of the pedestrian bridge established by
MIDAS/Civil is only 10% in strict accordance with the
design drawings, which has high accuracy. )e initial model
error is small, the degradation of material properties causes
the error, and the parameters of materials in the structure
can be predicted using neural networks [24, 25].

4. Determine the Correction Parameters

4.1. Factors Affecting Natural Vibration Frequency.
According to equations (1) and (2) for the approximate
solution of the natural vibration frequency of the structure
by the energy method given in the study of Ye et al. [26–28],
the influencing factors of the natural vibration frequency of
the structure can be determined.
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where f is the frequency; ω is the circular frequency; E is the
elastic modulus of material; I is the section moment of
inertia; Y(x) is the sectional shape function; Yi is the am-
plitude of the particle mi; m is the weight; l is the structural
span.

Table 1: Calculation table of the first five natural vibration frequencies of the pedestrian bridge.

Order First order Second order )ird order Fourth order Fifth order
Frequency (Hz) 4.4668 5.5481 6.2427 8.1857 10.4471

(a) (b)

Figure 3: Dynamic test instrument. (a) Acceleration vibration pickup. (b) Dynamic information acquisition instrument.
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 enatural vibration frequency of the structure is related
to the elastic modulus of the material, sectional structure,
material density, and the structural form of the bridge
according to (1) and (2). According to the size, shape, weight,
and allowable deviation of hot-rolled steel plate and strip
[29, 30], a certain size deviation is allowed in the actual
production process of components.  e elastic modulus and
density of components are the same, and the speci�c range is
shown in Table 3.

4.2. SensitivityAnalysis of In�uencing Factors.  e sensitivity
of candidate parameters should be identi�ed �rst, and in-
sensitive factors should be eliminated when selecting

correction parameters. Because the nonsensitive coe£cient
has no obvious correction result to the model during the
correction, the correction has little signi�cance.  erefore,
the model should be modi�ed by modifying the sensitivity
coe£cient.

Figure 6 shows that the elastic modulus and density of
materials are the main factors a�ecting the natural vibration
frequency of structures.  e sensitivity of the same pa-
rameter is not the same under di�erent vibration modes. If
only one mode is used as the correction target, the model
modi�cation will cause a certain deviation from the rest
modes.  erefore, di�erent vibration modes of the model to
be modi�ed should be taken as the correction target at the
same time. In the �rst- and second-order cases, the elastic

Test module
Processing module

DASP software

Dynamic information acquisition instrument

Acceleration vibration pickup
Acquisition module

Pedestrian bridge

Figure 5: Self-vibration test system.

Table 2: Comparison table of test results and calculation results.

Order Test results (Hz) Calculation result (Hz) Error (Hz) Relative error (%)
First order 4.9804 4.4668 0.5136 10.3
Second order 5.9765 5.5481 0.4284 7.16

25m
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1-6 1-5 1-4

(1/2)-7

Sidewalk Lane number Isolation belt Pier column

4 3 2 1

5 6 7 8
1-3 1-2

2-2 2-1

1-1

2-(4/5/6) 2-3

4.5m 4.5m 3.5m × 4 8.9m

27.5m

Figure 4: Layout of pedestrian bridge dynamic test points.
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modulus and density of the material are still the main factors
a�ecting the natural vibration frequency of the structure.
Hence, the elastic modulus and density of thematerial can be
used as the variables of model modi�cation to modify the
�rst- and second-order modes simultaneously.

5. Construct Neural Network

5.1. Sample Selection. A neural network algorithm mainly
simulates the neural structure and working principle of
biology to carry out mathematical modeling of the complex
mapping relationship between input and output values [31].
Using a neural network to modify the computational model
can not only avoid the iterative solution based on inverse
problem model modi�cation but also avoid the uncertainty
and complexity of nonlinear optimization.  e input layer,
hidden layer, and output layer together constitute the basic
structure of the neural network, and its working principle is
shown in Figure 7.

It is the set of right samples that are needed to provide for
network optimization when you are building a neural
network.  e optimization process is to compare the cal-
culated output value with the input sample value and then
adjust the weight and threshold value under the training of
learning rules to make the model output close to the sample
value [32–34]. Sample selection was carried out in combi-
nation with the modi�ed parameters selected in Section 3.2
and the material performance interval in Table 3. 10 equal
parts are divided according to the di�erence between upper
and lower limits of parameters; that is, each sample value

increases the di�erence by 10% compared with the last
sample.  is gives 11 values for each correction parameter;
the 2 parameters of the model and 11 values of each pa-
rameter can be regarded as a common combination of all
parameters of a test (112 times). Sample selection is shown in
Table 4.

 e 121 training samples were divided into two parts,
111 training sets and 10 test sets, respectively. All samples
were selected according to the principle of randomness in
order to ensure the reliability of network training.

5.2.BPNeuralNetwork. As a basic multilayer forward neural
network, BP neural network has one input layer and one
output layer.  ere are several hidden layers between the
input and output layers, each adopts full connection mode,
and the neurons of the same layer are independent [35, 36].
 e neurons of the hidden layer adopt the S-type function
and linear transfer function in the output layer. A three-layer
neural network with a hidden layer can approximate any

Table 3: Allowable range of material ex-factory performance.

Speci�cation range  ickness of steel plate H (mm) Elastic modulus E (Pa) Material densityρ (kg/m3)
Upper limit H+ 1 1.9×1011 7800
Lower limit H− 1 2.1× 1011 8000
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0.0

0.1

0.2

0.3

Se
ns

iti
vi

ty

0.4

0.5

0.6

Second order

0.025

0.263

0.370

0.495 0.4950.505

�ickness
Elasticity modulus
Density

Figure 6: Sensitivity analysis of candidate parameters.

Input layer Hidden layer

xi

Output layer

ei

yi

Figure 7: Working principle of the neural network.

Table 4: Sample selection table.

Order Elasticity modulus E (Pa) Material density ρ (kg/m3)
1 1.9×1011 7800
2 1.92×1011 7820
3 1.94×1011 7840
4 1.96×1011 7860
5 1.98×1011 7880
6 2.0×1011 7900
7 2.02×1011 7920
8 2.04×1011 7940
9 2.06×1011 7960
10 2.08×1011 7980
11 2.1× 1011 8000
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nonlinear function theoretically [37, 38]. BP neural network
correction adopts an error backpropagation algorithm,
which takes the weight and threshold as the cause of the
error and apportions the error to the weight and threshold of

each neuron through backpropagation algorithm, as shown
in Figure 8. ere arem neurons in the input layer, l neurons
in the hidden layer, and n neurons in the output layer.  e
hidden layer adopts the S-type transfer function tansig, and

a2=y
n×1n×1

n × 1

n×1

LW2,1IW1,1

a1 = tan sig(IW1,1 p1+ b1) a1 = purelin(LW2,1 a1+ b2)

l×1

l × m
l × 1

l×1

m

Input layer Hidden layer Output layer

l n

b1 b2

n1 n2

m×1
p1 a1

Figure 8: Structure of BP neural network.

Table 5: Test results of BP neural network.

Order
 eoretical value Predicted value

Density ρ (N/m3) Elastic modulus E (Pa) Density ρ (N/m3) Elastic modulus E (Pa)
1 7.800×104 1.940×1011 7.807×104 1.943×1011
2 7.860×104 2.000×1011 7.867×104 2.002×1011
3 7.940×104 2.060×1011 7.938×104 2.059×1011
4 7.880×104 1.960×1011 7.879×104 1.962×1011
5 7.900×104 2.100×1011 7.895×104 2.099×1011
6 7.840×104 1.980×1011 7.848×104 1.982×1011
7 7.960×104 1.960×1011 7.974×104 1.963×1011
8 7.860×104 2.020×1011 7.867×104 2.023×1011
9 7.940×104 2.100×1011 7.939×104 2.100×1011
10 7.920×104 1.980×1011 7.919×104 1.983×1011

a1 = radbas(||IW1,1-p|| b1)

b1

n1 n2 a2=ya1

Q×1

2 × Q

R

R×1
P1

Q×1

Q×R

Input layer Hidden layer Output layer

Q S

1×m

Qx1

∗

Q×1 S×1 nx1
n×1
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||dist||

n2 = normp rod(LW2,1-a1)
a2 = purelin(n2)

IW1,1 LW2,1

Figure 9: Structure of GRNN.
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the output layer adopts the linear function purelin.
According to statistics, about 75% of neural networks are
derived from BP neural network [39, 40], and BP neural
network is considered to be a relatively reliable neural
network.

BP neural network can be created by calling the new�
function in MATLAB neural network toolbox.  e test
results after training are shown in Table 5.

5.3. GRNN. GRNN, also known as a generalized neural
network, is a feedforward neural network model based on
the nonlinear regression principle.  e structure of the
GRNN is shown in Figure 9 [41, 42].  e input layer of the
GRNN only sends samples into the hidden layer, and the
number of neurons in the hidden layer is the same as the
number of samples in the training set [43, 44]. In the hidden
layer, the weight can be expressed by the Euclidean distance

function IIdistII, and the radial basis function can be
expressed by the Gaussian function.  e output layer adopts
linear output, and its weight function adopts normalized dot
product weight function nprod. At last, the calculation
network vector n2 is provided to the line transfer function
purlin to obtain the calculation result [45, 46]. GRNN has the
advantages of simple structure, simple training, and fast
learning convergence.

GRNNs can be created by calling the MATLAB neural
network toolbox newgrnn function.  e test results after
training are shown in Table 6.

5.4. Reliability Evaluation.  e test results of the two neural
networks are all good through the preliminary judgment
[47, 48].  e relative error Ei, relative error variance S2, and
determination coe£cient R2 of test samples were selected to
evaluate the reliability and error analysis of the two neural

Table 6: Test results of GRNN.

Order
 eoretical value Predicted value

Density ρ (N/m3) Elastic modulus E (Pa) Density ρ (N/m3) Elastic modulus E (Pa)
1 7.800×104 1.940×1011 7.801× 104 1.937×1011
2 7.860×104 2.000×1011 7.861× 104 1.999×1011
3 7.940×104 2.060×1011 7.941× 104 2.071× 1011
4 7.880×104 1.960×1011 7.890×104 1.959×1011
5 7.900×104 2.100×1011 7.901× 104 2.101× 1011
6 7.840×104 1.980×1011 7.839×104 1.979×1011
7 7.960×104 1.960×1011 7.951× 104 1.958×1011
8 7.860×104 2.020×1011 7.871× 104 2.020×1011
9 7.940×104 2.100×1011 7.921× 104 2.080×1011
10 7.920×104 1.980×1011 7.891× 104 1.999×1011
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Figure 10: Reliability of neural network. (a) Density prediction reliability. (b) Reliability of elastic modulus prediction.
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networks [49, 50].  e calculation methods of each coe£-
cient are shown in equations (3)–(5), respectively.

Ei �
Yi − yi
∣∣∣∣

∣∣∣∣
yi

, (3)

S2 �
∑ni�1 Ei − E

�
i( )
2

n − 1
,

(4)

R2 �
n∑ni�1 Yiyi −∑

n
i�1 Yi∑

n
i�1 yi( )

n∑ni�1 Y
2
i − ∑

n
i�1 YI( )2 n∑ni�1 y

2
i( ) − ∑ni�1 y

2
i( )( )
, (5)

where Yi (i� 1, 2, ···, n) is the predicted value of the sample i;
Yi (i� 1, 2, ···, n) is the theoretical value of the sample i; n is
the total number of samples.

 e prediction of density and elastic modulus by the
neural network is shown in Figure 10, where the abscissa is
the sample ordinal number, and the ordinate is density and
elastic modulus, respectively [51, 52].

Figure 10 shows that the prediction curves of the two
neural networks have a good coincidence with the real value
curves.  is indicates that the predicted value is very close to
the real value, which proves that BP neural network and

GRNN achieve good prediction results in density and elastic
modulus. In terms of reliability, the R2 values of the BP
neural network in density and elastic modulus prediction are
0.99, and the GRNN is 0.92 and 0.97, respectively, which
indicates the reliability of the BP neural network is better
than GRNN in model modi�cation [53, 54].

Relative error and relative error value variance are
calculated from (3) and (4), as shown in Figure 11.

As can be seen from Figure 11, in terms of model
modi�cation and prediction, BP neural network has better
stability than GRNN, and the amplitude and incidence of
mutation are also smaller.

 e reliability and error �uctuation of the BP neural
network in the model modi�cation are better than that of the
GRNN after comparison, which BP neural network model is
better used to modify the pedestrian bridge. Using BP neural
network, the predicted material density and elastic modulus
are ρ� 7.84×104N/m3 and E� 2.15×1011Pa, respectively.
 e results are shown in Table 7.

6. Conclusion

In this paper, the dynamic characteristics of the pedestrian
bridge in Urumqi China were tested to obtain the dynamic
parameters of the bridge, and the neural network was used to
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Figure 11: Relative error analysis. (a) Density relative error. (b) Relative error of elastic modulus.

Table 7: Comparison of corrected errors.

Order Test result (Hz) Calculation result
(Hz)

Relative error
(%)

Correction results
(Hz)

Relative error
(%)

Correction value
(%)

First order 4.9804 4.4668 10.3 4.6317 7.5 2.8
Second order 5.9765 5.5481 7.16 5.7716 3.6 3.56
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modify the pedestrian bridge model established by MIDAS/
Civil. )e following conclusions are drawn.

(1) )e pedestrian bridge model established by MIDAS/
Civil has high accuracy, which is found by com-
paring the dynamic test results with the calculation
results of the initial finite element model. )e de-
graded material parameters can be simulated by the
neural network, so that the simulation results can
more truly reflect the actual stress state of the
structure.

(2) )rough the calculation formula of natural vibration
frequency, the factors affecting the natural vibration
frequency of the structure are as follows: the di-
mensions, elastic modulus, and density of the ma-
terial. )e sensitivity analysis shows that the elastic
modulus and material density have the greatest in-
fluence on the natural vibration frequency of the
structure. )e sensitivity of the same material is
different in each order natural frequency.

(3) Based on reliability analysis and error analysis of cal-
culation results of the BP neural network andGRNN, it
can be seen that the two neural networks have a good
effect on model modification, but the BP neural net-
work has better reliability and smaller error fluctuation
in model modification. BP neural network can be used
tomodify the structure model, and themodifiedmodel
is closer to the real stress state of the structure.
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