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Based on the symplectic structure of the Hamiltonian matrix, the precise integration method (PIM), and the Wittrick–Williams
(W-W) algorithm, a generalized method for computing the dispersion curves of guided waves in multilayered anisotropic
magneto-electro-elastic (MEE) structures for di�erent types of mechanical, electrical, and magnetical boundaries is developed. A
strictly theoretical analysis shows that theW-W algorithm cannot be applied directly to the MEE structure.�is is because a block
of the Hamiltonian matrix is not positive de�nite for MEE structures so that the eigenvalue count of the sublayer is not zero when
the divided sublayer is su�ciently thin. To overcome this di�culty, based on the symplectic structure of the Hamiltonian matrix, a
symplectic transformation is introduced to ensure that theW-W algorithm can be applied conveniently to solve wave propagation
problems in multilayered anisotropic MEE structures. �e application of the PIM based on the mixed energy matrix to solve the
wave equation can ensure the stability and e�ciency of the method, and all eigenfrequencies are found without the possibility of
any being missed using the W-W algorithm. �is research provides the necessary insight to apply the W-W algorithm in wave
propagation and vibration problems of MEE structures.

1. Introduction

Magneto-electro-elastic (MEE) materials, which can achieve
the conversion between electrical and magnetic energy due
to the coupled e�ect between electric and magnetic �elds,
have permeated every aspect of the modern technology. �is
feature promotes the wide application of the MEE in many
�elds of science and engineering [1–3], for example, sensors
[4], smart devices [5], and nondestructive evaluation [6],
which are closely related to the knowledge of wave propa-
gation. Various techniques related to the wave propagation
in MEE structures were developed by numerous scholars.
Pan et al. [7–10] contributed many e�orts to the wave
propagation in MEE structures, and they derived a series of
analytical expressions for various MEE structures. Ezzin
et al. [11] investigated Love waves in a transversely isotropic
piezoelectric layer bonded to an MEE semi-in�nite space
and derived explicit dispersion equations. Li et al. [12]

investigated propagation behavior of the Bleusteine–Gulyaev
waves in a functionally graded transversely isotropic MEE
half-space and derived analytically the dispersion equations
under electromagnetically open and shorted conditions. An
analytical treatment based on the transfer matrix was pre-
sented by Chen et al. [13] for the propagation of harmonic
waves in multilayered MEE plates. An exact solution for
shear horizontal (SH) waves propagating in a transversely
isotropic MEE was derived by Nie et al. [14].

Apart from analytical solutions, abundant numerical
methods were also developed for wave propagation in layered
MEE structures. Wu et al. [15] explored the dispersive be-
havior of the symmetric and antisymmetric Lamb waves in
an in�nite MEE plate. Using the ordinary di�erential
equation and sti�ness matrix method, Ezzin et al. [16] in-
vestigated the propagation behavior of SH waves in lami-
nated MEE plates, and the e�ects of thickness ratio on phase
velocity and group velocity were discussed. Based on
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Hamilton’s principle, Xiao et al. [17, 18] applied Chebyshev
spectral element method to investigate the dispersion
characteristics of guided waves in a functionally graded MEE
plate and in a multilayered MEE curved panel, respectively.
Chen et al. [19] employed the reverberationmatrix method to
compute the dispersion curves of functionally graded ma-
terials. )eir method adopted a homogenous assumption of
material parameters in each thin layer because the graded
layer was divided into a sufficiently large number of thin
layers. Yu et al. [20] employed Legendre orthogonal poly-
nomial series method to study the dispersion behavior of
guided waves in a layered MEE plate. Matar et al. [21] used
the combined Legendre-Laguerre polynomial expansion
method to compute dispersion curves and mode shapes in
layered MEE composites. In addition, the study of periodic
MEE structures has attracted wide attention in the past
decades. Pang et al. [22,23] applied the transfer matrix
method and the stiffness matrix method to investigate SH
bulk/surface waves propagating in periodically layered
infinite/semi-infinite MEE composites. Wang et al. [24]
studied the wave propagation in periodic composites con-
sisting of MEE plates using the plane-wave expansion
method. Liu et al. [25] studied dispersion behavior and
transmission coefficients of SH wave in a periodically layered
piezoelectric structure and discussed the feature of bandgaps
in periodic structures. Chen et al. [26] investigated disper-
sions and band structures of elastic waves in nanoscale pe-
riodic MEE structures based on the nonlocal theory. )e
localization factors and dispersion curves were computed
using the transfer matrix method. Recently, the band
structure and evanescent behavior of Bloch waves in periodic
MEE structures were investigated by applying extended
plane-wave expansion method and Bloch’s theory [1–3].

)ese numerical methods can be broadly classified into
two groups. One group is based on analytical models, such as
the transfer matrix method. In principle, these methods are
exact because mathematical expressions are free from ap-
proximations, but in numerical calculation here exist many
difficulties that are associatedwith thenumerical overflowand
the loss of precision at high frequencies. Meanwhile, a dis-
advantage is that thesemethods involve a challengingproblem
of seeking the roots from transcendental eigenequations,
which means that its solution is usually obtained by the in-
tensive search technique.)e other group is based on discrete
models, suchas thefinite-elementmethod. For thesemethods,
the substructuring technique is usually used to divide each
layer into a largenumberof thin layers, then thedisplacements
are approximate via interpolation polynomials.)ese discrete
methods avoid seeking the roots from the transcendental
eigenequation by solving a quadratic eigenvalue problem. In
spite of this advantage, it should behighlighted that, due to the
need for the discretization, these methods give rise to more
degrees of freedom of system than previous methods.

)e precise integration method (PIM) was proposed by
Zhong [27] to solve accurately the sets of first-order ordinary
differential equations with specified two-point boundary
value conditions for space domain problems, or with
specified initial value conditions for time-domain problems.
)e combination of the PIM and theWittrick–Williams (W-

W) algorithm [28–31] has used extensively to study wave
propagation in layered media [32–36]. Numerous results
shown that the method for solving wave propagation
problem not only can avoid seeking the roots from the
nonlinear transcendental eigenequation directly but also can
guarantee that the calculations have good stability and high
accuracy. Later, numerous researches show that the method
based on themixed energymatrix was more stable compared
to those based on the transfer and stiffness matrices [36]. A
key process for the application of the W-W algorithm is to
determine the eigenvalue count J of the structure, and it is
usually difficult to directly solve J. To this end, a substructure
technique is usually used to divide each layer into sufficient
number of sublayers, so that the eigenvalue count of the
sublayer with both ends clamped is zero. )en, by gradually
condensing sublayers, the eigenvalue count of the whole
structure is obtained. However, for a piezoelectric structure,
the W-W algorithm is no longer suitable because the ei-
genvalue count of sublayer with both ends mechanically
clamped, electrically short and magnetically short is zero
even if each layer is divided into sufficient number of
sublayers. For this reason, a symplectic transformation was
adopted to deal with guided wave propagation in multi-
layered anisotropic piezoelectric structures [37]. After
performing symplectic transformation, the W-W algorithm
combined to the PIM could be applied to compute the
eigenfrequencies of waves in the piezoelectric structure.
Obviously, similar problems exist in MEE structures as well
when the W-W algorithm is applied to compute the wave
dispersion. Compared to piezoelectric cases, solutions to the
wave propagation problem inMEE structure are much more
complicated because of its complex boundary conditions
and high-dimensional governing equations. In this paper,
based on symplectic transformation, a generalized method
for dispersion analysis of waves in multilayered anisotropic
MEE structures is developed. )e performance of the
method is verified by several numerical examples.

2. Statement of the Problem and
Basic Equations

Consider a multilayered MEE structure consisting of l layers
with different material properties and layer thicknesses, as
illustrated in Figure 1.)e origin of the Cartesian coordinate
system O − xyz is set on the surface, where the z-axis is along
the depth direction. )e structure extends infinitely in the x
and y directions. )e kth layer is bounded by the interfaces
zk− 1 and zk. )e thickness for the kth layer is hk � zk+1 − zk

(k� 1, 2,. . ., l), and the total thickness is H � 􏽐
l
k�1 hk.

Without the loss of generality, it is assumed to the wave
propagating along the x-y plane and the incident angle θ
measured from the positive x-axis in the clockwise direction.

For an anisotropic MEE solid, the constitutive equation
in linear approximation can be expressed by equation [38].
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where σ and S are the stress and strain tensors; D and B are
electric displacement and magnetic induction tensors; E and
H are the tensors of the electric and magnetic fields; c, e, and
h are the elastic, piezoelectric, and piezomagnetic coefficient
tensors; ε, μ, and α dielectric permittivity, magnetic per-
meability, and magneto-electric coefficient tensors; and the
superscript T represents the transpose. In the absence of the
body force, electric charge, and magnetic charge, the me-
chanical, electric, and magnetic governing equations can be
expressed by

∇ · σ � ρ
z
2u

zt
2 ,∇ · D � 0,∇ · B � 0, (2)

where u is the displacement vector, t denotes time, ρ is the
density, and ∇ is the nabla operator. )e generalized geo-
metric equations are described by

S �
1
2
∇u + ∇uT

􏼐 􏼑,E � − ∇φ,H � − ∇ψ, (3)

where φ and ψ are the electric and magnetic potentials. Note
that the detailed forms of the physical quantities and ma-
terial constants for elastic, electric, and magnetic fields are
presented in Appendix A. To ensure stability of the system,
the total internal energy is more than zero [39], such that the
magneto-electric matrix

Ω �
ε α

αT μ
􏼢 􏼣, (4)

and elastic coefficient matrix c are both positive definite, as
shown in Appendix A.

)e plane-wave solution is considered as

q(x, y, z, t) � 􏽢q κx, κy, z,ω􏼐 􏼑exp i κxx + κyy − ωt􏼐 􏼑􏽨 􏽩, (5)

where i �
���
− 1

√
; q � u, v, w,φ,ψ􏼈 􏼉

T and 􏽢q � u, v, w, φ,ψ􏼈 􏼉
T

are the generalized displacement vectors in the time-space
and frequency-wavenumber fields, respectively; ω represents
the wave circular frequency; κx and κy are the two com-
ponents of the wave vector in the x and y directions, de-
scribed separately as κx � κ cos θ and κy � κ sin θ; and κ is
the magnitude of the wave vector along the propagation
direction. Substituting equations (1) and (3) into equation
(2) and then using equation (5), we obtain

K22q″ + K21 − K12( 􏼁 􏽢q′ − K11 − ρω2Λ􏼐 􏼑􏽢q � 0, (6)

where 􏽢q′ and 􏽢q″ denote the first and second derivatives of 􏽢q
with respect to z; and

K22 �

c55 c45 c35 e35 h35
c45 c44 c34 e34 h34
c35 c34 c33 e33 h33
e35 e34 e33 − ε33 − α33
h35 h34 h33 − α33 − μ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,Λ �

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
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, (7)

K21 � KH
12 � ikx

c15 c56 c55 e15 h15
c14 c46 c45 e14 h14
c13 c36 c35 e13 h13
e31 e36 e35 − ε13 − α31
h31 h36 h35 − α13 − μ13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ iky

c56 c25 c45 e25 h25
c46 c24 c44 e24 h24
c36 c23 c34 e23 h23
e36 e32 e34 − ε23 − α32
h36 h32 h34 − α23 − μ23

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (8)
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2
x

c11 c16 c15 e11 h11
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Figure 1: Schematic diagram for a multilayered MEE structure.
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Here, the superscript H denotes a Hermitian transpose.
It can be seen that K22 and K11 are both real symmetric
matrices, andK12 andK21 are both pure imaginary matrices.

3. State-Space Formulation and
Symplectic Transformation

3.1. State-Space Formulation. Introducing a dual vector 􏽢p �

τxz, τyz, σz, Dz, Bz􏽮 􏽯
T
satisfied by 􏽢p � K22

􏽢q′ + K21􏽢q and de-

fining the state vector 􏽢v � 􏽢qT, 􏽢pT􏽮 􏽯
T
, from equation (6) the

following equation of state can be given as

􏽢v′ � 􏽢H􏽢v, 􏽢H �
􏽢A 􏽢D
􏽢B − 􏽢A

H
⎡⎣ ⎤⎦, (10)

where
􏽢A� − K− 1

22K21,
􏽢B�K11 − K12K

− 1
22K21 − ρω2Λ, 􏽢D�K− 1

22 . (11)

It is easy to verify that 􏽢H is a Hamiltonian matrix,
satisfied by 􏽢HH

� J 􏽢HJ, where J is a unit symplectic matrix
defined by

J �
0 I5

− I5 0
􏼢 􏼣. (12)

and In denotes a n × n identify matrix.
In the aforementioned paragraph, the governing equa-

tion of the wave motion was converted into a first-order
ordinary differential equations, which can be accurately
solved using the PIM [27]. )en, combined to the W-W
algorithm, all eigenfrequencies of waves in layered elastic
media can be calculated [33, 34]. )e PIM is used to ensure
the precision and stability of computation, and the W-W
algorithm is used to ensure that all eigenfrequencies are
found without the possibility of any being missed. However,
the method could not be applied directly to wave propa-
gation problems in MEE structures. )is is due primarily to
the fact that a block matrix 􏽢D of the Hamiltonian matrix in
equation (10) is not positive definite.

For purely elastic structures, according to the positive
definiteness of the elastic coefficient matrix c, from the form
of K22 in equation (7) and the relation of 􏽢D � K− 1

22 in
equation (11), we conclude that 􏽢D is positive definite.
However, for MEE structures, matrices c and Ω are both
positive definite (see Appendix A), so K22 defined in
equation (7) is not positive definite. )en, according to the
relation of 􏽢D � K− 1

22 , it is evident that 􏽢D is not positive
definite. )e computational formulas of the W-W algorithm
require that 􏽢D must be a positive definite matrix. In the
following section, a symplectic transformation is introduced
to overcome this difficulty.

3.2. Symplectic Transformation. Introducing the following
mathematical transformation,

􏽢v � Tv, (13)

in which T and v can be expressed as

T �

I3 03,2 03,3 03,2

02,3 02,2 02,3 − I2
03,3 03,2 I3 03,2

02,3 I2 02,3 02,2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v �
q

p
􏼨 􏼩,

q � u, v, w, Dz, Bz􏼈 􏼉
T
, p � τxz, τyz, σz, − φ, − ψ􏽮 􏽯

T
.

(14)

It can be easily confirmed that T is satisfied by TTJT � J,
so it is a symplectic matrix [40]. Substituting equation (13)
into equation (10) gives

v′ � Hv,H � T− 1 􏽢HT. (15)

According to the properties of the Hamiltonian matrix
and symplectic theory [40], if T is a symplectic matrix, H is
also a Hamiltonian matrix, which can be written in the
following form:

H �
A D

B − AH
􏼢 􏼣. (16)

After performing the aforementioned symplectic
transformation, the new matrix D will be positive definite.
)e proof of positive definitiveness of matrix D is given in
Appendix B.

4. PIM and W-W Algorithm for Multilayered
MEE Structures

After performing the symplectic transformation, this section
will be devoted to the derivation of formulas for calculating
wave propagation problems in multilayered MEE structures
based on the PIM and the W-W algorithm. )ose formulas
may be considered as an extension of the purely elastic
structure, and they can be found in previously published
literature [33, 34, 36].

)e PIM [27] is first used to divide the kth layer into 2Nk

sublayers with equal thickness ck � hk/2Nk , from which two
arbitrary adjacent sublayers [za, zb] and [zb, zc] are selected.
)en, the solution of equation (10) based on the mixed
energy matrix form gives the following equations:

qb

pa

􏼨 􏼩 �
Fa,b Ga,b

− Qa,b FH
a,b

⎡⎢⎣ ⎤⎥⎦
qa

pb

􏼨 􏼩, (17)

qc

pb

􏼨 􏼩 �
Fb,c Gb,c

− Qb,c FH
b,c

⎡⎣ ⎤⎦
qb

pc

􏼨 􏼩, (18)

in which Fa,b, Ga,b, Qa,b and Fb,c, Gb,c, Qb,c are mixed energy
matrices for the sublayer [za, zb] and [zb, zc]; qa, qb, qc and
pa, pb, pc are the displacement and dual vectors at the in-
terfaces za, zb and zc. Using equations (17) and (18) and
eliminating qb and pb, the following equation for the sub-
layer [za, zc] is obtained as follows:

qc

pa

􏼨 􏼩 �
Fa,c Ga,c

− Qa,c FH
a,c

⎡⎢⎣ ⎤⎥⎦
qa

pc

􏼨 􏼩, (19)
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where

Fa,c � Fb,c I + Ga,bQb,c􏼐 􏼑
− 1
Fa,b,

Ga,c � Gb,c + Fb,c G− 1
a,b + Qb,c􏼐 􏼑FH

b,c,

Qa,c � Qa,b + FH
a,b Q− 1

b,c + Ga,b􏼐 􏼑
− 1
Fa,b.

(20)

For the sake of brevity, assuming that F and C represent
the boundary conditions of mechanically free and clamped,
and that O and S represent the boundary conditions of
electrically or magnetically open and short. )en, a symbol
composed of three letters is used to describe the boundary
condition, for example, COO denotes the boundary con-
dition of mechanically clamped, electrically open, and
magnetically open. Assume that JCOO− COO

a,b and JCOO− COO
b,c are

the eigenvalue counts for the sublayers [za, zb] and [zb, zc]

with both ends mechanically clamped, electrically open, and
magnetically open (COO-COO). )en, according to the
W-W algorithm [28], the eigenvalue count for sublayer
[za, zc] with both ends mechanically clamped, electrically
open and magnetically open can be calculated by [29]

J
COO− COO
a,c � J

COO− COO
a,b + J

COO− COO
b,c

+ s G− 1
a,b + Qb,c + FH

b,cG
− 1
b,cFb,c􏽮 􏽯,

(21)

where s #{ } is the sign count of the matrix #, which is defined
as the number of the negative eigenvalues of the matrix # and
is equal to the number of changes in sign of the Sturm
sequence [41].

Repeated application of equations (20) and (21) Nk

times, the eigenvalue count JCOO− COO
k− 1,k and mixed energy

matrices Fk− 1,k, Gk− 1,k and Qk− 1,k for the kth layer can be
obtained. )en, again repeated application of equations (20)
and (21) l − 1 times, the eigenvalue count JCOO− COO

0,l and
global mixed energy matrices F0,l,G0,l andQ0,l for all l layers
can be obtained.

Note that the mixed energy matrices for a sublayer with
thickness ck can be calculated using the Taylor series, and the
computational formula can be found from literature [33,36].
Moreover, since the matrixD is positive definite, sufficiently

large Nk can guarantee JCOO− COO
ck

� 0 for a sublayer with
thickness ck.

5. Computing Eigenfrequencies for Different
Boundary Conditions

In the aforementioned section, the procedure for computing
the eigenvalue count for a multilayered structure with both
ends mechanically clamped, electrically open, and mag-
netically open has been given. In this section, five types of
mechanical, electrical, and magnetical boundary conditions
are considered (see Figure 2) and under these boundary
conditions, the computational formulas of the eigenvalue
count of the multilayered structure are also given. Finally, all
eigenfrequencies can be calculated based on the concept of
the eigenvalue count.

On the boundary surfaces z � z0 and z � zl, commonly
encountered mechanical, electrical, and magnetical
boundary conditions are considered as follows:

Case I: )e boundaries at both surfaces are mechan-
ically clamped, electrically open, and magnetically open
(COO-COO), that is,

u z0( 􏼁 � v z0( 􏼁 � w z0( 􏼁 � Dz z0( 􏼁 � Bz z0( 􏼁 � 0,

u zl( 􏼁 � v zl( 􏼁 � w zl( 􏼁 � Dz zl( 􏼁 � Bz zl( 􏼁 � 0.
􏼨

(22)

)e eigenvalue count for this case has been given in
Section 4, that is, JCOO− COO.
Case II: )e boundaries at both surfaces are mechan-
ically free, electrically open, and magnetically open
(FOO-FOO), that is,

τzx z0( 􏼁 � τzy z0( 􏼁 � σz z0( 􏼁 � Dz z0( 􏼁 � Bz z0( 􏼁 � 0,

τzx zl( 􏼁 � τzy zl( 􏼁 � σz zl( 􏼁 � Dz zl( 􏼁 � Bz zl( 􏼁 � 0.

⎧⎨

⎩

(23)

According to theW-W algorithm, the eigenvalue count
for this case is

Open Open

Clamped Clamped
(a)

Open Open

Free Free
(b)

Open

Clamped

Short

Free

(c)

Clamped

Short Short

Free
(d)

Unit cell

(e)

Figure 2: Schematic diagram of the structure for five types of typical boundary conditions, where (a) Case (I) COO-COO, (b) Case II: FOO-
FOO, (c) Case III: CSS-FOO, (d) Case IV: CSS-FSS, and (e) Case V: periodical structure.
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J
FOO− FOO
0,l � J

COO− COO
0,l + s GMM

0,l − GME
0,l GEE

0,l􏼐 􏼑
− 1
GEM

0,l􏼔 􏼕
− 1

􏼨 􏼩

+ s QMM
0,l + FEM0,l􏼐 􏼑

H
GEE

0,l􏼐 􏼑
− 1
FEM0,l􏼚 􏼛.

(24)

Case III: )e boundary at the surface z � z0 is
mechanically clamped, electrically short and magnet-
ically short, and the boundary at the surface z � zl is
mechanically free, electrically open, and magnetically
open (CSS-FOO), that is,

u z0( 􏼁 � v z0( 􏼁 � w z0( 􏼁 � φ z0( 􏼁 � ψ z0( 􏼁 � 0,

τzx zl( 􏼁 � τzy zl( 􏼁 � σz zl( 􏼁 � Dz zl( 􏼁 � Bz zl( 􏼁 � 0.

⎧⎨

⎩

(25)

According to theW-W algorithm, the eigenvalue count
for this case is

J
CSS− FOO
0,l � J

COO− COO
0,l + s GMM

0,l − GME
0,l GEE

0,l􏼐 􏼑
− 1
GEM

0,l􏼔 􏼕
− 1

􏼨 􏼩

+ s QEE
0,l + FEE0,l􏼐 􏼑

H
GEE

0,l􏼐 􏼑
− 1
FEE0,l􏼚 􏼛.

(26)

Case IV: )e boundary at the surface z � z0 is
mechanically clamped, electrically short and magnet-
ically short, and the boundary at the surface z � zl is
mechanically free, electrically short, and magnetically
short (CSS-FSS), that is,

u z0( 􏼁 � v z0( 􏼁 � w z0( 􏼁 �φ z0( 􏼁 �ψ z0( 􏼁 � 0,

τzx zl( 􏼁 � τzy zl( 􏼁 � σz zl( 􏼁 �φ zl( 􏼁 �ψ zl( 􏼁 � 0.

⎧⎨

⎩ (27)

According to theW-W algorithm, the eigenvalue count
for this case is

Table 1: Material properties used in the examples: c (109GPa), e
(C/m2), h (N/Am), ε (10− 9 C2/Nm2), μ (10− 6 Ns2/C2), α (Ns2/C2),
and ρ (kg/m3).

BaTiO3 CoFe2O4
Bimaterial

A B
c11 166 286 217.64 86.74
c12 77 173 125.3 − 8.25
c13 78 170.5 127.31 27.15
c14 0 0 1.34 − 3.66
c15 0 0 − 2.87 0
c16 0 0 − 1.43 0
c22 166 286 222.02 129.77
c23 78 170.5 125.44 − 7.42
c24 0 0 − 2.72 5.7
c25 0 0 0.49 0
c26 0 0 − 2.35 0
c33 162 269.5 216.25 102.83
c34 0 0 − 1.13 9.92
c35 0 0 − 1.95 0
c36 0 0 1.62 0
c44 43 45.3 47.31 38.81
c45 0 0 0.54 0
c46 0 0 − 1.68 0
c55 43 45.3 47.94 68.81
c56 0 0 0.09 2.53
c66 44.5 56.5 47.8 29.01
e11 0 0 5.73 0.171
e12 0 0 − 1.35 − 0.152
e13 0 0 − 1.38 − 0.019
e14 0 0 − 0.02 0.067
e15 11.6 0 4.07 0
e16 0 0 2.04 0
e21 0 0 − 0.79 0
e22 0 0 3.32 0
e23 0 0 − 0.8 0
e24 11.6 0 4.09 0
e25 0 0 − 0.02 0.108
e26 0 0 3.54 − 0.095
e31 − 4.4 0 − 1.58 0
e32 − 4.4 0 − 1.56 0
e33 18.6 0 6.61 0
e34 0 0 2.03 0
e35 0 0 3.52 − 0.076
e36 0 0 − 0.02 0.067
h11 0 0 401.95 0
h12 0 0 140.19 0
h13 0 0 27.62 0
h14 0 0 − 75.05 0
h15 0 550 64.47 550
h16 0 0 32.24 0
h21 0 0 37.61 0
h22 0 0 275.39 0
h23 0 0 15.95 0
h24 0 550 151.13 550
h25 0 0 − 75 0
h26 0 0 130.88 0
h31 0 580.3 75.22 580.3
h32 0 580.3 161.87 580.3
h33 0 699.7 420.8 699.7
h34 0 0 10.57 0
h35 0 0 18.31 0
h36 0 0 − 75.05 0
ε11 11.2 0.08 6 0.392

Table 1: Continued.

BaTiO3 CoFe2O4
Bimaterial

A B
ε12ε12ε12 0 0 0 0
ε13 0 0 0.35 0
ε22 11.2 0.08 5.64 0.398
ε23 0 0 0 0.86
ε33 12.6 0.093 6 0.404
μ11 5 590 190.25 5
μ12 0 0 0 0
μ13 0 0 − 106.8 0
μ22 5 590 297 5
μ23 0 0 0 0
μ33 10 157 190.25 10
α11 0 0 0.05 0
α12 0 0 0 0
α13 0 0 0 0
α22 0 0 0.05 0
α23 0 0 0 0
α33 0 0 0.03 0
ρ 5800 5300 5550 4900
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J
CSS− FSS
0,l � J

COO− COO
0,l + s G− 1

0,l􏽮 􏽯 + s QEE
0,l􏽮 􏽯. (28)

Case V: For a periodically infinite multilayered struc-
ture, the state vectors v0 and vl at both ends of a unit cell
satisfy the Bloch’s theorem [42], that is,

vl � exp(iξH)v0, (29)

where ξ is the Bloch wavenumber in periodically
infinite multilayered structures. According to theW-W
algorithm, the eigenvalue count for this case is

J
period
∞,∞ � J

COO− COO
0,l + s G− 1

0,l I5 − e
− iξHF0,l􏼐 􏼑􏽮

+ I5 − e
iξHFH

0,l􏼐 􏼑
− 1
Q0,l􏼛.

(30)

So far, the eigenvalue count for the whole structure with
a certain boundary condition has been obtained for a given
wavenumber κ and trial frequency ω#. )en, based on the
concept of the eigenvalue count, all eigenfrequencies can be
computed using the bisection method [28,36]. Note that the
general anisotropic case are derived in this paper, but the
other special cases (e.g., antiplane and in-plane wave
problems) can be easily recovered by removing some items
of wave equation and reducing the size of matrices.

6. Numerical Results and Discussion

)ree numerical examples are considered in this section.)e
focus is on examining the numerical performance of the
method. In Section 6.1, an example for a three-layered MEE
plate is first presented to verify the correctness of this
method, which involves the comparison with previously
published results. In Section 6.2, this method is used to
compute the dispersion curves for a strongly anisotropic
four-layered MEE plate. In Section 6.3, an example is pre-
sented to compute the dispersion curves of a periodically
multilayered finite MEE structure and bandgaps of a peri-
odically infinite multilayeredMEE structure.)e parameters
of materials BaTiO3, CoFe2O4, Bimaterial A, and Bimaterial
B used in examples are listed in Table 1 [8,13,43].

6.1. A Multilayered Transversely Isotropic MEE Structure.
A three-layered Sandwich plate with BaTiO3/CoFe2O4/
BaTiO3 (B/F/B) configuration is considered in this example,
and all three layers have equal thickness.)e objective of this
example is to verify the correctness of this method compared
to the published results, and then to examine the effects of
varying boundary condition and stacking sequence to the
plate on dispersion curves. )e wave propagation direction
is assumed to be along the x-axis, that is, θ � 0o. To facilitate
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Figure 3: Dispersion curves of guided waves in the B/F/B plate with the boundaries of (a) FOO-FOO, (b) COO-COO, (c) CSS-FOO, and (d)
CSS-FSS.
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the comparison, the dimensionless wavenumber and di-
mensionless phase velocity are defined as κH and
cp � ω/κ

��������
cmax/ρmax

􏽰
; and cmax and ρmax are the maximum

elastic constant and maximum density in the system.
)e dispersion curves for the B/F/B plate for four dif-

ferent types of boundary conditions are shown in Figure 3,
where subfigures (a), (b), (c), and (d) represent the results for
the boundary conditions of FOO-FOO, COO-COO, CSS-
FOO, and CSS-FSS. Generally, in the case of anisotropic
MEE material [44,45], all waves with respect to the me-
chanical, electrical and magnetical components are coupled
and in order to identify them one needs to solve a tenth order
polynomial characteristic equation. For special material
symmetry directions, such as isotropic or transversely iso-
tropic materials, the wave motion can be decoupled into two
sets of independent equations. One of the equations is a
second-order polynomial equation corresponding to the
antiplane wave with respect to the component v. Another
equation is an eighth-order polynomial equation corre-
sponding to the in-plane wave with respect to the compo-
nent u, w, φ, and ψ. Since BaTiO3 and CoFe2O4 are both
transversely isotropic materials, the wave motion can be
decoupled into two sets of independent equations, corre-
sponding to antiplane wave with respect to the component v

and in-plane wave with respect to the components u, w, φ,
and ψ. Figure 3(a) is in good agreement with the results
given in Figures 4(c) of Ref. [13], which confirms the

correctness of this method. From Figures 3(a) and 3(b), it
can be seen that the dispersion curves have significant
changes when the boundary condition changes from FOO-
FOO to COO-COO. However, compared Figures 3(c) and
3(d), it can be observed that the dispersion curves are only
slight variations when the boundary condition changes from
CSS-FOO to CSS-FSS. )is indicates that the effects of the
mechanical boundary on dispersion curves are more pro-
nounced than that of electrical and magnetical boundaries.

Next, the effects of varying stacking sequence to plate on
dispersion curves are examined.)e boundary conditions of
the top and bottom surfaces are specified to FOO-FOO. )e
plates with stacking sequences B/B/B, B/F/B, F/B/F, and F/F/
F are considered, respectively. )e dispersion curves for the
first four modes are shown in Figures 4(a)–4(d), respectively,
where the solid, dotted, dash-dotted, and dashed curves
denotes the dispersion curves for stacking sequences B/B/B,
B/F/B, F/B/F, and F/F/F, respectively. Figure 4(a) shows that
for the first mode, the dispersion curves for the four different
stacking sequences are close to each other. However, from
Figures 4(b)–4(d), it is clear that for the second, third, and
fourth modes, the dispersion curves are quite different for
the four different stacking sequences.

To further demonstrate the performance of the proposed
methods, the results obtained from the proposed methods
are compared with those obtained from the semianalytical
finite-element (SAFE) method [46]. Using the linear element
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Figure 4: Dispersion curves of guided waves in the three-layered plates with different stacking sequences for (a) the first mode, (b) the
second mode, (c) the third mode, and (d) the fourth mode.

8 Shock and Vibration



along the z-axis direction, the semidiscretized equation can
be obtained by

KΦ � ω2MΦ, (31)

in which stiffness matrix K and mass matrix M can be
obtained by assembling the element counterparts. )en,
equation (29) can be solved by using the eigs function in
MATLAB for a given wavenumber κ. At κH � 2, the di-
mensionless frequenciesΩ � ωH/

��������
cmax/ρmax

􏽰
obtained from

this method and the SAFE method discretized each layer
with 0.001 m thickness sublayer are listed in Table 2. )e
results show very good agreement between the results ob-
tained from the proposed method and the SAFE method.

6.2. A Multilayered Strongly Anisotropic MEE Structure.
)e aforementioned example focuses on the transversely
isotropic material. To confirm the feasibility of this method

for the application of more generally anisotropic problem, a
strongly anisotropic multilayered MEE structure is further
considered in this section. )e structure consists of four
layers with stacking sequences of materials BaTiO3,
CoFe2O4, Bimaterial A, and Bimaterial B. Dispersion curves
of the first 10 modes for θ � 30o are shown in Figure 5,
where (a), (b), (c), and (d) denote the results for the
boundary conditions of FOO-FOO, COO-COO, CSS-FOO,
and CSS-FSS, respectively. Comparing Figure 5(a) with
Figure 5(b), we observe that the dispersion curves are
significantly different when the boundary condition
changes from FOO-FOO to COO-COO. However, com-
paring Figure 5(c) with Figure 5(d), we observe that the
dispersion curves have only slight variations when the
boundary condition changes from CSS-FOO to CSS-FSS.
)erefore, this example obtains similar conclusion to
Section 6.1, that is, the effects of mechanical boundary are
more significant than that of electrical and magnetical on
dispersion curves.

Table 2: At κH � 2, the first five dimensionless frequenciesΩ of the three-layered plate with different stacking sequence for this method and
SAFE method.

Order
B/B/B B/F/B F/B/F F/F/F

Present SAFE Present SAFE Present SAFE Present SAFE
1 0.7223300 0.7223300 0.5470503 0.5470503 0.5957187 0.5957187 0.5643371 0.5643372
2 1.0355139 1.0355139 0.8348424 0.8348424 0.8817477 0.8817477 0.8889375 0.8889374
3 1.7470641 1.7470641 1.4104687 1.4104687 1.4564148 1.4564147 1.4462500 1.4462500
4 1.9049602 1.9049602 1.4740482 1.4740482 1.5798077 1.5798078 1.5341031 1.5341031
5 2.5497240 2.5497241 1.9242758 1.9242759 2.1226511 2.1226512 1.9892371 1.9892372
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Figure 5: Dispersion curves of guided waves in the four-layered plate with the boundaries of (a) FOO-FOO, (b) COO-COO, (c) CSS-FOO,
and (d) CSS-FSS.
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ForthedispersiondiagramshowninFigure5(a),atκH � 1,
the first three eigenfrequencies are ω1 � 0.295266 rad·μs− 1,
ω2 � 0.754935 rad·μs− 1 and ω2 � 1.258329 rad·μs− 1, and their
corresponding eigenfunctions are shown in Figures 6 and 7. It
can be seen from Figures 6 and 7 that all of mechanical,
electrical, andmagnetical components are complex functions,
and their real and imaginary parts are separately plotted in
(a)–(e) and in (f)–(g). FromFigures 6 and7,weobserve that all
these components u, v, w, φ, and ψ are not identically zero,
which indicates that thewavemotion is coupledwith regard to
all components. Furthermore, at κH � 0.1, 1, 5, and 10, the
eigenfrequencies in the first five modes for four types of
boundary conditions are listed in Table 3, which are provided
for examination and reference by other researchers. In addi-
tion, to confirm the accuracy of this method, at κH � 0.1, 1, 5,
and 10, the first five frequencies of this method and the SAFE
method discretized each layer with 0.001m thickness sublayer
for four types of boundary conditions are listed in Table 3.

6.3. A Periodically Multilayered Anisotropic MEE Structure.
In this example, the results for both periodically multilay-
ered finite and infinite MEE structures obtained from the
presented method are presented. )e unit cell consists of
four layers with materials BaTiO3, CoFe2O4, Bimaterial A

and Bimaterial B, and their thicknesses are the same. )e
incident angle θ is assumed to be 30o.

)e dispersion curves of the first 10 modes for the pe-
riodically finite MEE structure for different types of
boundary conditions and different number of unit cells are
shown in Figure 8, where the dashed, solid, and dotted
curves denote the phase velocities for the periodic multi-
layered plate composed of 1, 10, and 100 unit cells, re-
spectively. )e subfigures (a)–(d) represent the dispersion
curves for the boundary conditions of FOO-FOO, COO-
COO, CSS-FOO, and CSS-FSS. From Figure 8, we observe
that the phase velocities for the structure consisting of 1 unit
cell are significantly different from that consisting of 10 unit
cells. However, the phase velocities for the structure con-
sisting of 10 and 100 unit cells have small changes.

Finally, we investigate a periodic multilayered structure
arranged by an infinite sequence of unit cell, and the unit cell
is identified to that given in the finite periodic structure.
Wave propagation in a periodical structure can exhibit a
characteristic feature of band structure, known as passbands
or Bragg bandgaps, within which the waves can propagate to
infinity. In complementary frequency bands, known as
stopbands or locally resonant bandgaps, the waves are ef-
fectively attenuated. Figure 9 shows the dispersion curves
and band structures of the periodically infinite multilayered

0

1

2

3

4
-0.5 0 0.5

z (
m

)

real (u)

First Mode
Second Mode
�ird Mode

(a)

0

1

2

3

4
z (

m
)

real (v)
-130 0 130

First Mode
Second Mode
�ird Mode

(b)

0

1

2

3

4

z (
m

)

real (w)
1 4 7

First Mode
Second Mode
�ird Mode

(c)

0

1

2

3

4

z (
m

)

real (φ)
0 0.6 1.3

First Mode
Second Mode
�ird Mode

(d)

0

1

2

3

4

z (
m

)

real ()
-2 4 10

First Mode
Second Mode
�ird Mode

(e)

0

1

2

3

4

z (
m

)

-3 0 3
image (u)

First Mode
Second Mode
�ird Mode

(f )

0

1

2

3

4

z (
m

)

image (v)
-0.1 0 0.1

First Mode
Second Mode
�ird Mode

(g)

0

1

2

3

4

z (
m

)

image (w)
-0.1 0.3 0.7

First Mode
Second Mode
�ird Mode

(h)

0

1

2

3

4
z (

m
)

image (φ)
-0.6 0 0.6

First Mode
Second Mode
�ird Mode

(i)

0

1

2

3

4

z (
m

)

image ()
0 3 6

First Mode
Second Mode
�ird Mode

(j)

Figure 6:)emechanical displacements, electric and magnetic potentials of guided waves in the four-layered plate for the first three modes.
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Figure 7:)e stress components, electrical and magnetical displacements of guided waves in the four-layered plate for the first three modes.

Table 3: At κH � 2, the first five frequencies ω(rad·μs− 1) of this method and the SAFE method for four types of boundary conditions.

Order κH
COO-COO FOO-FOO CSS-FOO CSS-FSS

Present SAFE Present SAFE Present SAFE Present SAFE

1

0.1 2.1903917 2.1903918 0.0033443 0.0033449 1.1476403 1.1476404 1.1475982 1.1475982
1 2.2358191 2.2358192 0.0808296 0.0808296 1.2082122 1.2082122 1.2079061 1.2079061
5 2.3486511 2.3486511 0.2952657 0.2952657 1.3792981 1.3792981 1.3779587 1.3779587
10 7.9261897 7.9261898 6.9130532 6.9130540 7.3391532 7.3391539 6.8291233 6.8291240

2

0.1 2.5026132 2.5026133 0.0755095 0.0755094 1.1625765 1.1625765 1.1625267 1.1625267
1 2.6185597 2.6185598 0.3775293 0.3775293 1.3161216 1.3161216 1.3143270 1.3143270
5 2.9169772 2.9169772 0.7549353 0.7549353 1.6973168 1.6973168 1.6893442 1.6893442
10 8.0977034 8.0977037 7.3270113 7.3270116 7.7212133 7.7212134 7.7085842 7.7085843

3

0.1 4.4174689 4.4174692 0.1266132 0.1266132 2.5241962 2.5241963 2.5153521 2.5153521
1 4.3670899 4.3670901 0.6331044 0.6331044 2.4874638 2.4874639 2.4757853 2.4757854
5 4.2709468 4.2709470 1.2583286 1.2583286 2.4250517 2.4250518 2.4041821 2.4041822
10 8.7332388 8.7332391 7.3972608 7.3972613 8.1518001 8.1518008 8.1316476 8.1316481

4

0.1 4.5866867 4.5866869 2.2857619 2.2857620 3.4102131 3.4102133 3.4091857 3.4091859
1 4.5813403 4.5813407 2.3159188 2.3159188 3.4412658 3.4412660 3.4396404 3.4396406
5 4.6159844 4.6159848 2.4050855 2.4050855 3.5146737 3.5146739 3.5127381 3.5127383
10 9.4650756 9.4650772 7.8231315 7.8231316 8.4819803 8.4819805 8.4773996 8.4773999

5

0.1 4.8508575 4.8508580 2.4054818 2.4054818 3.6030122 3.6030124 3.6024039 3.6024041
1 5.0008920 5.0008924 2.4887922 2.4887923 3.7129826 3.7129828 3.7075136 3.7075139
5 5.2797764 5.2797768 2.7227625 2.7227626 3.9809228 3.9809230 3.9750832 3.9750834
10 10.236278 10.236279 8.4565224 8.4565236 9.2465863 9.2465875 9.2369085 9.2369096
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Figure 8: Dispersion curves of guided waves in the periodic plates with 1 unit cell (dashed curves), 10 unit cells (solid curves), and 100 unit
cells (dotted curves) under the four types of boundaries: (a) FOO-FOO, (b) COO-COO, (c) CSS-FOO, and (d) CSS-FSS.
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Figure 9: Dispersion curves (red solid lines) and bandgaps (shaded segments) for a periodically infinite multilayered structure, where (a)
κH � 0.1, (b) κH � 1, (c) κH � 5, and (d) κH � 10.
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structure in the first 10 modes, where (a), (b), (c), and (d)
denote the results for κH � 0.1, 1, 5 and 10, respectively. )e
bandgaps are closely related to κH. When κH≠ 0, the first
bandgap starts from zero frequency. Only when κH � 0, the
first bandgap does not start from zero frequency. From
Figure 9, it can be observed that as κH increases, the width of
the first stopband becomes large and the number of stop-
bands exhibits an increasing trend.

7. Conclusions

By combining the PIMwith theW-Walgorithm, based on the
symplectic structure of the Hamiltonianmatrix, a generalized
method for calculating dispersion curves of waves in multi-
layeredanisotropicMEEstructureswasproposed.To facilitate
the application of the W-W algorithm in MEE structures,
basedon the symplectic structureof theHamiltonianmatrix, a
symplectic transformation is introduced.)e feasibility of the
W-W algorithm after performing the symplectic transfor-
mation is demonstrated by a strictly theoretical analysis. )e
method combines the advantages of the PIMwith those of the
W-W algorithm so that the computation is accurate and
stable, and no eigenfrequency is missed. Several typical ex-
amples are presented to verify the numerical performance of
this method. In examples, the dispersion curves of waves in
multilayered anisotropic MEE structures are calculated by
using this method. It was shown that this method is highly
accurate by comparing with the SAFE method.

)e proposed method can provide the basis of theory for
the applicationof thePIMand theW-Walgorithm to solve the
wave propagation and dynamic problems of MEE structure.
)emethod isnot restricted to the specificmaterial properties,
the layer number of unit cells, and the complexity of the unit
cell. Based on the idea of the proposedmethod, it can be easily
applied to more complex problems. For example, by com-
bining with the finite-element method, the proposed method
can be extended to solve dispersions or bandgaps of finite,
infinite, and semi-infinite anisotropicMEEphononic crystals.

Appendix

A. The Physical Quantities and Material
Constants For Elastic, Electric, and
Magnetic Fields

)e physical quantities for elastic, electric, and magnetic
fields are

u � u, v, w{ }
T
,

σ � σx, σy, σz, τyz, τxz, τxy􏽮 􏽯
T

,

S � Sx, Sy, Sz, Syz, Sxz, Sxy􏽮 􏽯
T
,

D � Dx, Dy, Dz􏽮 􏽯
T
,

E � Ex, Ey, Ez􏽮 􏽯
T
,

B � Bx, By, Bz􏽮 􏽯
T
,

H � Hx, Hy, Hz􏽮 􏽯
T
.

(A.1)

)e coefficient matrices for elastic, electric and magnetic
fields are

c �

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

e �

e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

h �

h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

h31 h32 h33 h34 h35 h36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

ε �

ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

μ �

μ11 μ12 μ13
μ12 μ22 μ23
μ13 μ23 μ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

α �

α11 α12 α13
α21 α22 α23
α31 α32 α33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(A.2)

For an MEE solid, the coupled potential energy is

H �
1
2
STcS − ETeS −

1
2
ETεE − HThS −

1
2
HTμH − ETαH. (A.3)

)e total internal energy function U can be given by

U � H +ETD+HTB�
1
2
STcS − ETeS −

1
2
ETεE − HThS

−
1
2
HTμH − ETαH,

+ET
(eS+ εE+αH) +HT hS+αTE+μH􏼐 􏼑

�
1
2
STcS+

1
2
ETεE+

1
2
HTμH+HTαTE

�
1
2
STcS+

1
2 ET HT

􏽨 􏽩Ω ET HT
􏽨 􏽩

T
.

(A.4)

in which

Ω �
ε α

αT μ
􏼢 􏼣. (A.5)

To ensure the stability of the system, it requires U> 0.
)erefore, the elastic coefficient matrix c and magneto-
electric coupled matrix Ω are both positive definite.
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B. Proof for the Positive Definitiveness of D

For the convenience of the proof, a 5×5 matrix X repre-
senting 􏽢A, 􏽢B, 􏽢D, K11, K12, K21, or K22, etc. is partitioned with
regard to mechanics and coupled electricity magnetism
parts, which are represented by the superscripts M and E,
that is,

X �
XMM XME

XEM XEE
⎡⎣ ⎤⎦, (B.1)

where the sizes of the block matrices XMM, XME, XEM, and
XEE are 3×3, 3×2, 2×3, and 2×2, respectively.

Using equations (10), (14), (15), (16), and (B.1), the
matrix D can be given by

D �

􏽢DMM
− 􏽢AME

− 􏽢AME
􏼒 􏼓

H

− 􏽢BEE
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (B.2)

where

􏽢AME
� − 􏽢DMMKME

21 + 􏽢DMEKEE
21􏼒 􏼓, 􏽢DMM

� KMM
22 − KME

22 KEE
22􏼐 􏼑

− 1
KME

22􏼐 􏼑
H

􏼔 􏼕
− 1

,

􏽢BEE
� KEE

11 − KME
21􏼐 􏼑

H 􏽢DMMKME
21 + 􏽢DMEKEE

21􏼒 􏼓

− KEE
21􏼐 􏼑

H 􏽢DME
􏼒 􏼓

H

KME
21 + 􏽢DEEKEE

21􏼢 􏼣.

(B.3)

)e matrix D defined in equation (B.2) can also be
written in the following form:

D �

I3 0

− 􏽢AME
􏼒 􏼓

H
􏽢DMM

􏼒 􏼓
− 1

I2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

􏽢D
MM 0

0 − 􏽢B
EE

− 􏽢AME
􏼒 􏼓

H
􏽢DMM

􏼒 􏼓
− 1

􏽢AME
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

I3 − 􏽢DMM
􏼒 􏼓

− 1
􏽢AME

􏼒 􏼓

0 I2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(B.4)

Obviously, the positive definitiveness of D is equivalent
to that 􏽢DMM and − 􏽢BEE

− (􏽢AME
)H( 􏽢DMM

)− 1 􏽢AME are both
positive definite. According to equation (B.1) and the ex-
pression of K22 given in equation (7), KMM

22 and KEE
22 are

positive and negative definite, then from equation (B.3), we
can obtain that 􏽢DMM is positive definite. )erefore, to prove
the positive definitiveness of D, we only need to prove that
− 􏽢BEE

− (􏽢AME
)H( 􏽢DMM

)− 1 􏽢AME is positive definite.
Let

Γ � − 􏽢BEE
− 􏽢AME

􏼒 􏼓
H

􏽢DMM
􏼒 􏼓

− 1
􏽢AME

. (B.5)

Substituting 􏽢AME and 􏽢BEE given in equation (B.3) into
equation (B.5) and simplifying the obtained results gives

Γ � KEE
21􏼐 􏼑

H 􏽢DEE
− 􏽢DME

􏼒 􏼓
H

􏽢DMM
􏼒 􏼓

− 1
􏽢DME

􏼢 􏼣KEE
21 − KEE

11 .

(B.6)

)en, by using the relation of 􏽢D � K− 1
22 defined in

equation (11) and the inverse of block matrix [47], we have

KEE
22􏼐 􏼑

− 1
� 􏽢D

EE
− 􏽢D

ME
􏼒 􏼓

H
􏽢D
MM

􏼒 􏼓
− 1

􏽢D
ME

. (B.7)

So, equation (B.6) can be further expressed as

Γ � KEE
21􏼐 􏼑

H
KEE
22􏼐 􏼑

− 1
KEE
21 − KEE

11 . (B.8)

According to equation (7)–(9) and (B.1), we have

KEE
22 � − Q,KEE

21 � − ikxF − ikyS,

KEE
11 � − k

2
xP − k

2
yR − kxky E + ET

􏼐 􏼑.
(B.9)

with

P �
ε11 α11
α11 μ11

􏼢 􏼣,Q �
ε33 α33
α33 μ33

􏼢 􏼣,R �
ε22 α22
α22 μ22

􏼢 􏼣,

E �
ε12 α21
α12 μ12

􏼢 􏼣, F �
ε13 α31
α13 μ13

􏼢 􏼣, S �
ε23 α32
α23 μ23

􏼢 􏼣.

(B.10)

Substituting equation (B.9) into (B.8) gives

Γ � k
2
x P − FTQ− 1F􏼐 􏼑 + k

2
y R − STQ− 1S􏼐 􏼑

+ kxky ET
+ E − FTQ− 1S − STQ− 1F􏼐 􏼑,

� kxI2kyI2􏽨 􏽩
P E

ET R
􏼢 􏼣 − [FS]

TQ− 1
[FS]􏼠 􏼡

kxI2
kyI2

⎡⎣ ⎤⎦.

(B.11)

Defining a 6× 6 matrix Θ

Θ �
Θ11 Θ12

Θ21 Θ22
􏼢 􏼣 �

P ET FT

E R ST

F S Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

�

ε11 α11 ε12 α12 ε13 α13
α11 μ11 α21 μ12 α31 μ13
ε12 α21 ε22 α22 ε23 α23
α12 μ12 α22 μ22 α32 μ23
ε13 α31 ε23 α32 ε33 α33
α13 μ13 α23 μ23 α33 μ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

,

(B.12)

where the sizes of submatricesΘ11,Θ12, andΘ21 andΘ22 are
4× 4, 4× 2, 2× 4, and 2× 2, respectively, and using the in-
verse of block matrix [47], from equation (B.12) we have

Θ− 1
11 �

P E

ET R
􏼢 􏼣 − F S􏼂 􏼃

TQ− 1 F S􏼂 􏼃. (B.13)

And thus, equation (B.11) can be written as

Γ � kxI2 kyI2􏽨 􏽩Θ− 1
11

kxI2
kyI2

⎡⎣ ⎤⎦. (B.14)
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By exchanging columns and rows of the matrix Θ− 1

defined in equation (B.12), Θ− 1 can be changed as the
magneto-electric coupled matrix Ω, that is,

Ω �
ε α

αT μ
􏼢 􏼣 �

ε11 ε12 ε13 α11 α12 α13
ε12 ε22 ε23 α21 α22 α23
ε13 ε23 ε33 α31 α32 α33
α11 α21 α31 μ11 μ12 μ13
α12 α22 α32 μ12 μ22 μ23
α13 α23 α33 μ13 μ23 μ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.15)

In Appendix A, it has been demonstrated that Ω is
positive definite, so Θ is also positive definite, such that Θ− 1

11
defined in equation (B.13) is positive definite. Furthermore,
from equation (B.11) we conclude that the matrix Γ defined
in equation (B.11) is positive definite. Finally, by combining
with the positive definiteness of 􏽢DMM, it can conclude thatD
is positive definite.
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plane wave expansion,” Crystals, vol. 10, no. 7, p. 586, 2020.

[3] G. Y. Zhang, W. Shen, S. T. Gu, X. L. Gao, and Z. Q. Xin,
“Band gaps for elastic flexural wave propagation in periodic
composite plate structures with star-shaped, transversely
isotropic, magneto-electro-elastic inclusions,” Acta Mechan-
ica, vol. 232, no. 11, pp. 4325–4346, 2021.

[4] N. Tiercelin, Y. Dusch, V. Preobrazhensky, and P. Pernod,
“Magnetoelectric memory using orthogonal magnetization
states and magnetoelastic switching,” Journal of Applied
Physics, vol. 109, no. 7, Article ID 07D726, 2011.

[5] M. Fiebig, “Revival of the magnetoelectric effect,” ChemIn-
form, vol. 36, no. 33, p. R123, 2005.

[6] J. D. Achenbach, “Quantitative nondestructive evaluation,”
International Journal of Solids and Structures, vol. 37, no. 1-2,
pp. 13–27, 2000.

[7] E. Pan, “Exact solution for simply supported and multilayered
magneto-electro-elastic plates,” Journal of Applied Mechanics,
vol. 68, no. 4, pp. 608–618, 2001.

[8] E. Pan, “)ree-dimensional Green’s functions in anisotropic
magneto-electro-elastic bimaterials,” Zeitschrift für Ange-
wandte Mathematik und Physik, vol. 53, no. 5, pp. 815–838,
2002.

[9] J. Chen, J. Guo, and E. Pan, “Wave propagation in magneto-
electro-elastic multilayered plates with nonlocal effect,”
Journal of Sound and Vibration, vol. 400, pp. 550–563, 2017.

[10] W. J. Feng, E. Pan, X. Wang, and J. Jin, “Rayleigh waves in
magneto-electro-elastic half planes,” Acta Mechanica,
vol. 202, no. 1-4, pp. 127–134, 2009.

[11] H. Ezzin, “Love waves propagation in a transversely isotropic
piezoelectric layer on a piezomagnetic half-space,” Ultra-
sonics, vol. 69, pp. 83–89, 2016.

[12] P. Li, F. Jin, and Z. Qian, “Propagation of the Bleustein-
Gulyaev waves in a functionally graded transversely isotropic
electro-magneto-elastic half-space,” European Journal of
Mechanics - A: Solids, vol. 37, pp. 17–23, 2013.

[13] J. Chen, E. Pan, and H. Chen, “Wave propagation inmagneto-
electro-elastic multilayered plates,” International Journal of
Solids and Structures, vol. 44, no. 3-4, pp. 1073–1085, 2007.

[14] G. Nie, Z. An, and J. Liu, “SH-guided waves in layered pie-
zoelectric/piezomagnetic plates,” Progress in Natural Science,
vol. 19, no. 7, pp. 811–816, 2009.

[15] X.-H. Wu, Y.-P. Shen, and Q. Sun, “Lamb wave propagation
in magnetoelectroelastic plates,” Applied Acoustics, vol. 68,
no. 10, pp. 1224–1240, 2007.

[16] H. Ezzin, M. B. Amor, and M. H. B. Ghozlen, “Propagation
behavior of SH waves in layered piezoelectric/piezomagnetic
plates,” Acta Mechanica, vol. 228, no. 3, pp. 1071–1081, 2016.

[17] D. Xiao, Q. Han, Y. Liu, and C. Li, “Guided wave propagation
in an infinite functionally graded magneto-electro-elastic
plate by the Chebyshev spectral element method,” Composite
Structures, vol. 153, pp. 704–711, 2016.

[18] D. Xiao, Q. Han, and T. Jiang, “Guided wave propagation in a
multilayered magneto-electro-elastic curved panel by Che-
byshev spectral elements method,” Composite Structures,
vol. 207, pp. 701–710, 2019.

[19] W. Q. Chen, H. M. Wang, and R. H. Bao, “On calculating
dispersion curves of waves in a functionally graded elastic
plate,” Composite Structures, vol. 81, no. 2, pp. 233–242, 2007.

[20] Y. Jiangong, D. Juncai, and M. Zhijuan, “On dispersion re-
lations of waves in multilayered magneto-electro-elastic
plates,” Applied Mathematical Modelling, vol. 36, no. 12,
pp. 5780–5791, 2012.

[21] O. BouMatar, N. Gasmi, H. Zhou,M. Goueygou, and A. Talbi,
“Legendre and Laguerre polynomial approach for modeling of
wave propagation in layered magneto-electro-elastic media,”
Journal of the Acoustical Society of America, vol. 133, no. 3,
pp. 1415–1424, 2013.

[22] Y. Pang, J.-S. Gao, and J. Liu, “SH wave propagation in
magnetic-electric periodically layered plates,” Ultrasonics,
vol. 54, no. 5, pp. 1341–1349, 2014.

[23] Y. Pang, Y. Liu, J. Liu, andW. Feng, “Propagation of SH waves
in an infinite/semi-infinite piezoelectric/piezomagnetic peri-
odically layered structure,” Ultrasonics, vol. 67, pp. 120–128,
2016.

[24] Y. Wang, F. Li, W. Huang, X. Jiang, Y. Wang, and
K. Kishimoto, “Wave band gaps in two-dimensional piezo-
electric/piezomagnetic phononic crystals,” International
Journal of Solids and Structures, vol. 45, no. 14-15,
pp. 4203–4210, 2008.

Shock and Vibration 15



[25] L. Liu, J. Zhao, Y. Pan, B. Bonello, and Z. Zhong, “)eoretical
study of SH-wave propagation in periodically-layered pie-
zomagnetic structure,” International Journal of Mechanical
Sciences, vol. 85, pp. 45–54, 2014.

[26] A.-L. Chen, D. Yan, Y. Wang, and C. Zhang, “In-plane elastic
wave propagation in nanoscale periodic piezoelectric/piezo-
magnetic laminates,” International Journal of Mechanical
Sciences, vol. 153-154, pp. 416–429, 2019.

[27] “On precise integration method,” Journal of Computational
and Applied Mathematics, vol. 163, no. 1, pp. 59–78, 2004.

[28] W. H. Wittrick and F. W. Williams, “A general algorithm for
computing natural frequencies of elastic structures,” Quar-
terly Journal of Mechanics & Applied Mathematics, vol. 24,
no. 3, pp. 263–284, 1971.

[29] Z. Wanxie, F. W. Williams, and P. N. Bennett, “Extension of
the Wittrick-Williams algorithm to mixed variable systems,”
Journal of Vibration and Acoustics, vol. 119, no. 3, pp. 334–
340, 1997.

[30] S. Ilanko and F. W. Williams, “Wittrick-Williams algorithm
proof of bracketing and convergence theorems for eigenvalues
of constrained structures with positive and negative penalty
parameters,” International Journal for Numerical Methods in
Engineering, vol. 75, no. 1, pp. 83–102, 2008.

[31] N. E. Kaabazi and D. Kennedy, “Calculation of natural fre-
quencies and vibration modes of variable thickness cylindrical
shells using the Wittrick-Williams algorithm,” Computers &
Structures, vol. 104-105, pp. 4–12, 2012.

[32] W. Zhong, J. H. Lin, andQ. Gao, “)e precise computation for
wave propagation in stratified materials,” International
Journal for Numerical Methods in Engineering, vol. 60, no. 1,
pp. 11–25, 2004.

[33] Q. Gao, J. H. Lin, W. X. Zhong, W. P. Howson, and
F. W. Williams, “A precise numerical method for Rayleigh
waves in a stratified half space,” International Journal for
Numerical Methods in Engineering, vol. 67, no. 6, pp. 771–786,
2006.

[34] G. Qiang, Z. Wanxie, and W. P. Howson, “A precise method
for solving wave propagation problems in layered anisotropic
media,” Wave Motion, vol. 40, no. 3, pp. 191–207, 2004.

[35] Q. Gao and Y. H. Zhang, “A novel method for shear hori-
zontal surface waves in periodically layered semi-infinite
structures with coating layers,” Journal of Sound and Vi-
bration, vol. 450, pp. 61–77, 2019.

[36] Q. Gao and Y. H. Zhang, “Stable and accurate computation of
dispersion relations for layered waveguides, semi-infinite
spaces and infinite spaces,” Journal of Vibration and Acoustics,
vol. 141, no. 3, Article ID 031012, 2019.

[37] Q. Gao and Y. Zhang, “An accurate method for guided wave
propagation in multilayered anisotropic piezoelectric struc-
tures,” Acta Mechanica, vol. 231, no. 5, pp. 1783–1804, 2020.

[38] V. I. Alshits, A. N. Darinskii, and J. Lothe, “On the existence of
surface waves in half-infinite anisotropic elastic media with
piezoelectric and piezomagnetic properties,” Wave Motion,
vol. 16, no. 3, pp. 265–283, 1992.

[39] J. S. Yang, Special Topics in the Feory of Piezoelectricity ||
Green’s Functions, Springer, New York, NY, U.S.A, 2010.

[40] W. Yao, W. Zhong, and C. W. Lim, Symplectic Elasticity,
World Scientific Publishing, Singapore, 2009.

[41] A. Jennings,Matrix Computation for Engineers and Scientists,
John Wiley & Sons, New York, NY, U.S.A, 1977.

[42] E. Andreassen and J. S. Jensen, “Analysis of phononic
bandgap structures with dissipation,” Journal of Vibration and
Acoustics, vol. 135, no. 4, 2013.

[43] H. M. Wang, E. Pan, A. Sangghaleh, R. Wang, and X. Han,
“Circular loadings on the surface of an anisotropic and
magnetoelectroelastic half-space,” Smart Materials and
Structures, vol. 21, no. 7, Article ID 075003, 2012.

[44] S.-C. S. Lin and T. J. Huang, “Tunable phononic crystals with
anisotropic inclusions,” Physical Review B, vol. 83, no. 17,
Article ID 174303, 2011.

[45] E. Miranda, C. Aranas, S. Rodrigues et al., “Dispersion dia-
gram of trigonal piezoelectric phononic structures with
langasite inclusions,” Crystals, vol. 11, no. 5, p. 491, 2021.

[46] M. K. Kalkowski, E. Rustighi, and T. P. Waters, “Modelling
piezoelectric excitation in waveguides using the semi-ana-
lytical finite element method,” Computers & Structures,
vol. 173, pp. 174–186, 2016.

[47] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes in C, Cambridge University
Press, Cambridge, U.K, 1982.

16 Shock and Vibration


