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At present, deep learning is widely used to predict the remaining useful life (RUL) of rotation machinery in failure prediction and
health management (PHM). However, in the actual manufacturing process, massive rotating machinery data are not easily
obtained, which will lead to the decline of the prediction accuracy of the data-driven deep learning method. Firstly, a novel
prognostic framework is proposed, which is comprised of conditionalWasserstein distance-based generative adversarial networks
(CWGAN) and adversarial convolution neural networks (AdCNN), which can stably generate high-quality training samples to
augment the bearing degradation dataset and solve the problem of few samples. �en, the bearing RUL prediction method is
realized by inputting the monitoring data into the one-dimensional convolutional neural network (1DCNN) for adversarial
training. Via the bearing degradation dataset of the IEEE 2012 PHM data challenge, the reliability of the proposed method is
veri�ed. Finally, experimental results show that our approach is better than others in RUL prediction on average absolute
deviation and average square root error.

1. Introduction

Bearings play a particularly vital role in modern industry.
�e prediction of bearings life can greatly reduce mainte-
nance costs and optimize resource allocation, which can be
very helpful to improve equipment reliability [1]. In recent
years, with the rapid development of sensor technology and
computer technology, the data collected by industrial ma-
chinery monitoring is more and more abundant, which has
great potential value, and is vital for equipment health
analysis and the prediction of remaining useful life [2, 3].

Bearing remaining useful life prediction mainly includes
data acquisition, feature extraction and selection, and model
establishment [4, 5]. Data acquisition mainly collects
monitoring information of bearing operation through
sensors, such as vibrational signals and acoustical emission
signals. It is one of the most advantageous ways to realize

bearing feature extraction and selection through signal
processing technology [6]. When the bearing is degraded, it
usually manifests in di¡erent degrees in the time �eld,
frequency �eld, and the combination of the two �elds.
�erefore, many scholars try their best to extract features of
rotating machinery through signal processing technology.
Cui et al. [7] proposed an approach to determine whether a
mechanical failure had occurred. If a failure had occurred,
wavelet denoising on the vibration signal was performed,
and features were extracted from the time �eld and fre-
quency �eld to break the limit of utilizing merely a single
�eld. Daviu et al. [8] proposed a diagnosis method for the
state of the damping rod of the synchronous motor by using
the EMD method. By analyzing the motor stator current, it
could track the characteristic transient evolution of speci�c
faults of related components in the time-frequency diagram.
Mba et al. [9] proposed a new fault detection system based

Hindawi
Shock and Vibration
Volume 2022, Article ID 1709071, 17 pages
https://doi.org/10.1155/2022/1709071

mailto:25716332@qq.com
https://orcid.org/0000-0001-6746-342X
https://orcid.org/0000-0002-7980-9755
https://orcid.org/0000-0002-3675-4037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1709071


on the combination of stochastic resonance and the hidden
Markovmodel (HMM). It used stochastic resonance noise to
amplify the weak pulse and used HMMmethod to model the
system observation data into the probability function of the
hidden state of the system. Wang et al. [10] adopted the
KPCA approach to acquire the covariables of the Weibull
proportion hazard model and predicted the RUL of roller
bearings with great precision. Miao et al. [11] proposed an
improved maximum correlated kurtosis deconvolution
(MCKD). -is method estimated the iteration period by
calculating the autocorrelation of the envelope signal, rather
than relying on the given previous period.-is method had a
good effect on bearing analysis under harsh working con-
ditions. Li et al. [12] proposed a new hybrid modeling
method, which used the variational modular decomposition
method to combine time series decomposition, feature se-
lection, and basic prediction model into a synchronous
optimization framework. -e hybrid modeling method had
achieved good results in wind speed prediction. -ese
methods have achieved good results based on signal pro-
cessing technology, but it required experts to deeply un-
derstand the operation mechanism of rotating machinery,
master signal processing technology, and design feature
extraction methods to realize the degradation life prediction
of rotating machinery.

In recent years, deep learning is obviously superior to
the traditional shallow learning methods in adaptive fea-
ture learning ability and multilayer nonlinear mapping
ability [13]. -erefore, the research of applying it to the
prediction of mechanical residual life presents a “blowout”
development. Zhao et al. [14] introduced the application of
various in-depth learning methods in machine health
monitoring and verified them through experiments. All
methods achieved good monitoring results. Li et al. [15]
extracted the time-frequency domain information of
bearing through a multiscale convolution neural network
to realize life prediction, which had high prediction ac-
curacy. Jiang et al. [16] proposed a method for predicting
the remaining useful life of bearings based on the com-
bination of time series multichannel convolutional neural
network (CNN) and attention-based long-term and short-
term memory network (LSTM). -is method divided the
time series into multiple channels and improved the per-
formance by using CNN, LSTM, and the attention-based
mechanism method. Qin et al. [17] proposed a new neural
network method based on a gated dual attention unit for
the prediction of RUL of rolling bearings, which used
rolling bearing life-cycle vibration data to calculate a series
of root mean squares at different times as the health in-
dicator vector, and estimated the remaining life accurately
by predicting the health indicator vector. Verstraete et al.
[18] proposed a depth countermeasure semisupervised
method based on multisensor fusion to predict RUL. -is
method has good prediction ability in turbofan engine and
rolling bearing. Ellefsen et al. [19] used a semisupervised
deep structure to predict the remaining service life of
turbofan engine degradation. In addition, a genetic algo-
rithm (GA) method was applied to adjust a large number of
hyperparameters in the training process. Zhu et al. [20]

combined wavelet transform and CNN to predict bearing
RUL. Firstly, wavelet transform was used to extract time-
frequency features, and then, multiscale CNN was used to
estimate bearing RUL. Compared with signal processing
technology, these methods avoid the complex feature ex-
traction work, directly input the data in the time domain or
frequency domain into various neural networks for bearing
RUL, and have good results. However, these methods need
a large number of samples to train the model; otherwise, it
will lead to the prediction error or overfitting of the depth
model [21].

In the actual manufacturing process, the bearing is in
normal operation in most cases, so many bearing degra-
dation sample data are not easy to obtain. For the study of
bearing degradation under limited samples, on the one hand,
the model can be improved. Such as Xiang et al. [22]
combined the time domain and frequency domain features
of gear vibration signals to generate gear health indicators
and proposed a new type of LSTM neural network with
weight amplification (LSTMP-A) predicting gear remaining
useful life. -is method can be weighted according to the
contribution degree of input data, so as to make better use of
a few samples to predict RUL. Xiang et al. [23] also proposed
a multicellular LSTM-based deep learning model, which
used hierarchical division units to determine the importance
of input data, centrally retain the global trend, timely update
the local trend, and more effectively mined the degradation
trend of different degrees in limited samples. -e above
methods train models from a few samples through the
design of complex architecture and loss function, which has
the problem of overfitting the data that it can reduce the
generalization ability and application scope of the model. On
the other hand, the data can be enhanced by using methods
of data generation. Such as the field of image recognition,
many scholars improve the recognition capability of the
model by augmenting the information set through the
generative adversarial networks (GAN) [24]. For example,
Zhong et al. [25] transferred the labeled training image style
to each camera by using CycleGAN and formed an enhanced
training set together with the original training samples. -e
model trained by the enhanced training set had a good effect.
Oliveira et al. [26] used GAN to generate high-quality data to
increase the classification accuracy of viseme. Huang et al.
[27] used GAN to achieve crossdomain adaptive data
augmentation methods. Inspired by the above methods,
when bearing data are not easy to obtain, we can use GAN to
produce bearing degeneration information to augment the
data set.

However, GAN still has many drawbacks, such as
training instability, training failure, gradient disappearance,
and mode collapse. To overcome these shortcomings, re-
searchers have designed some GAN variants. CGAN [28] is
an improved architecture with conditional labels, which
enables GAN to achieve better model convergence and the
ability to avoid model collapse than traditional GANs.
WGAN [29] and WGAN-GP [30], which added gradient
penalty term, used Wasserstein distance to replace Jensen-
Shannon divergence of original GAN, greatly improved the
stability of model training. Furthermore, to tackle the
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problems of bearing remaining useful life prediction and the
difficulty of obtaining training data samples, a new frame-
work is proposed in this paper, including a data enhance-
ment method combining CGAN and WGAN (CWGAN)
and a bearing RUL prediction model based on deep
adversarial convolutional neural network (AdCNN). In the
data augmentation method (CWGAN), the obtained partial
degraded bearing samples are input into the CWGAN
network for antagonistic training. When the network rea-
ches Nash equilibrium, a large number of bearing degra-
dation samples are generated from the generator and then
mixed into the existing samples to train the AdCNN pre-
diction model. In the prediction model (AdCNN), the ob-
tained original vibration signal is first subjected to fast
Fourier transformation to get the frequency domain signal,
and then, it is input into the AdCNN model for adversarial
training. After adaptively extracting bearing degradation
features layer by layer through 1DCNN, the bearing RUL is
predicted. -en, the prediction results use exponential
smoothing [31] to reduce the problem of their local vola-
tility. -e experiment results show that the AdCNN model
for bearing RUL prediction exhibits high prediction accu-
racy, and the generated sample data based on CWGAN has
significant data augmentation capabilities. -erefore, the
bearing RUL prediction method combined with CWGAN
and AdCNN can achieve effective RUL prediction under few
samples through high-quality CWGAN-generated data. -e
main work of our paper is

(i) Combine the one-dimensional CNN and the
adversarial neural network, use adversarial training
to realize the prediction of bearing RUL, carefully
adjust the framework of the convolution layer and
pool layer in the network, and improve the RUL
prediction precision of AdCNN for the bearing.
Batch normalization and dropout techniques are
applied in the predictor to accelerate adversarial
model training, solve the vanishing gradient
problem, and avoid overfitting.

(ii) Under the condition of few samples, the CWGAN
combining WGAN and CGAN has better stability,
model convergence, and prediction ability to avoid
mode collapse. It can generate a lot of high-quality
data to augment the dataset to improve the preci-
sion and adaptability of the bearing RUL prediction
pattern.

(iii) -e index smooth approach is adopted to process
the prediction results of the bearing, which re-
markably reduces the volatility of the prediction
results and further improves the global prediction
accuracy.

-e other parts of our research are arranged as dem-
onstrated. Section 2 introduces the basic theory of the ap-
proach adopted in this paper. Section 3 mainly introduces
the details of the approach that we propose. Section 4 verifies
the approach by experiments and gives performance eval-
uation and comparison outcomes. Eventually, Section 5 is
the conclusion.

2. Basic Theory

2.1. Generative Adversarial Networks and Its Variants.
GAN mainly consisted of two parts, including the generator
and the discriminator [24]. -e generator mainly makes the
data generated by itself more real by learning the distri-
bution of real sample data, while the discriminator is used to
distinguish the authenticity of the received data. In the
training process, the generator tries to generate more real
data to deceive the discriminator, while the discriminator
tries to distinguish the true and false data. After many
rounds of the game between generator and discriminator,
they will reach Nash equilibrium. So far, the data generated
by the generator are close to the distribution of real sample
data, and the discriminator cannot correctly identify the
authenticity of the data. -e structure diagram of GAN is
shown in Figure 1.

In the GAN training process, the generator input is a set
of random noise Z � (z1, z2, . . . , zm), and the output is the
generated sample G � (G(z)1, G(z)2, . . . , G(z)m), which is
similar to the real sample distribution. -e input of the
discriminator is the generated sample G(Z) or the real
sample X � (x1, x2, . . . , xm), and the output is a probability
value adopted to discriminate the real sample from the
produced sample. -e discriminator and generator are al-
ternatively trained to reach the Nash balance, and the lost
function is

min
G

max
D

L D, G � Ex∼Pdata(x)[log(D(x))] + tEz∼Pz(z)n􏼐

log(1 − D(G(z))))( 􏼁.
(1)

A conditional generative countermeasure network
(CGAN) is an extension of the original GAN. -e generator
and discriminator add additional information y as condi-
tion. Y can be any information, such as category information
or other modality information [28]. In the generative pat-
tern, previous input noise Pz(z) and condition information
y jointly create a joint hidden tier representation. -e
adversarial training framework is quite flexible in the
composition of a hidden layer representation. Similarly, the
objective function of conditional GAN is a two-player
minimax game with conditional probability.

min
G

max
D

L(D, G) � Ex∼Pdata(x)[log(D(x|y))]

+Ez∼Pz(z)[log(1 − D(G(z|y)))].
(2)

Since the instability of the original GAN training pro-
cess, it is easy to cause problems such as gradient disap-
pearance and model collapse. WGAN is applied and
skillfully solves these problems [29]. WGAN introduces
Wasserstein distance to solve the problem that JS divergence
(Jensen-Shannon divergence) in original GAN is difficult to
train due to less coincidence between noise data and real
data. WGAN has realized the following progress: (1) the
sigmoid activating function of the last tier of the discrim-
inator is discarded; (2) the loss of the generator and dis-
criminator is no longer logarithmic; (3) momentum and
momentum are no longer used when optimizing the
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network. Adam and other optimization algorithms use
RMSProp and SGD; (4) WGAN limits the absolute value of
the discriminator to a fixed constant c after each parameter
update. -e loss function of WGAN with penalty term is

V(G, D) � max
D

Ex∼Pdata(x)
[D(x)] − Ex∼Pz(z)[D(x)]􏼚

−λEx∼Ppenalty(x) ∇xD(x) − 1( 􏼁
2

􏽨 􏽩􏼛,

(3)

where λEx∼Ppenalty(x)(.) is the penalty term, which aims to
make D(x) smooth enough to make the model converge
[30], and Ppenalty(x) is the data between the actual data
Pdata(x) and the produced data Pz(z). ∇xD(x) is the de-
rivative of x.

DuringWGAN training, we no longer have to work hard
for the balance between the generator and the discriminator.
As long as the discriminator is trained better, the samples
generated by the generator are more realistic. Besides, even if
the network structure is relatively simple, WGAN can still
show good results and avoid the problem of model collapse
[29]. In WGAN, we can also identify the quality of the
produced sample by the loss function of the discriminator,
that is, the Wasserstein distance between the generated
sample and the real sample.

2.2. Convolutional Neural Network. CNN is a model com-
posed of neural networks with multiple layers, mainly
composed of multiple filtering layers and a classification layer
[32]. -e filter mainly extracts features from the input data
through the convolution layer and the pooling layer. A
classifier serves as a multitier sensor comprising some
completely connected tiers. CNN serves as a neural net model
with multiple levels, which mainly comprises many filtering
stages and a classification stage. -e filter abstracts charac-
teristics from the input, and it has two levels, namely the
convolution layer and the pool layer.-e classification stage is
a multitier sensor consisting of some fully connected layers
(FCLs). -e structural model of CNN is shown in Figure 2.

Conv_1 is a convolution layer, pool_1 is a pool layer, and
the two take turns to extract two-dimensional data features.
Posterior to some convolution layers and pooling layers, all
the characteristics after convolution are expressed through
an FCL, and then, a classifier is used to accurately classify the
sample data.

2.2.1. Convolutional Layer. -e convolution layer convolves
the input local region with the convolution kernel, and then,
the activating unit generates output characteristics. Each
filter adopts the identical kerne to extract the local char-
acteristics of the input local region, which is weight sharing.
A filter corresponds to a feature map in the following tier,
and the quantity of feature maps is known as the depth of the
tier. Assuming that the l layer in the CNN network is a
convolutional layer, and i denotes the i-th filtering kernel of
the l layer, the calculation formula for the l-th layer is shown
as follows:

y
l+1
i (j) � X

l
(j)∗K

l
i + b

l
i. (4)

In the formula, K l
i represents the shared weight of the

i-th convolution kernel in the l-th convolutional layer, bl
i

represents the corresponding offset value of the convolution
kernel, and X l(j) represents the j-th local field of view area
in the l-th layer. y l+1

i (j) denotes the j-th characteristic map
of the (l + 1)-th tier. After the convolution operation is over,
the obtained result is inputted into the nonlinear activating
function to get the output of this layer of neurons. -e
activating function used is the RELU function, and its ex-
pression is shown in the following formula:

RELU(z) �
z, z> 0,

0, z≤ 0.
􏼨 􏼩 (5)

2.2.2. Pooling Layer. In order to decrease the space di-
mension of the characteristic map and prevent overfitting, a
pool layer is usually added to the convolution layer. Max-
imum pooling is the most commonly used type of pooling. It
only takes the most important part of the input, that is, the
maximum value. Its expression is shown in the following
formula:

F
l+1
i (j) � max

(j−1)w+1<tx ≤ jw

(j−1)w+1< ty ≤ jh

H
l
i(t)􏽮 􏽯,

(6)

where Hl
i(t) denotes the value of neuron t in the i-th feature

map of the i-th tier, and w and h represent the width and
height of the pooling window, respectively. Fl+1

i (j) repre-
sents the output result posterior to pooling.

Nosie zm

True

False

Generator

DiscriminatorGenerated
data

Real data
xn

Figure 1: -e structure diagram of GAN.

4 Shock and Vibration



2.2.3. Fully Connected Layer. -e FCL is like a multilayer
perceptron. Its main function is to convert the 2D char-
acteristic map output into a 1D vector, which is convenient
for classification and recognition and regression prediction.
In classification and recognition, -e Softmax classifier is
usually used for classification, and its expression is shown in
formula (7), where k denotes the quantity of classification
species and θjx denotes the parameters of the classification
tier. In regression prediction, themean squared error is often
used as the lost function, and its expression is shown in
formula (8). In the formula, Yi denotes the predicted sample
value and yi denotes the real value. M denotes the sum of
samples.

Oj �

p(y � 1)|x; θ

p(y � 2)|x; θ

· · ·

p(y � k)|x; θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1

􏽐
k
j�1 exp θj

x􏼐 􏼑

exp θ1x􏼐 􏼑

exp θ2x􏼐 􏼑

· · ·

exp θk
x􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

MSE �
􏽐

n
i�1 Yi − yi( 􏼁

2

M
. (8)

2.3. Exponential Smoothing. Exponential smoothing is a
method of predicting by calculating the weighted average of
past observations [31]. It mainly includes one exponential
smoothing, two exponential smoothings, and three expo-
nential smoothings. -is paper uses exponential smoothing,
which can smooth the time series, eliminate random fluc-
tuations, and find the changing trend of the series. Its cal-
culation formula is shown in the following formula:

Ft+1 � αYt +(1 − α)Ft, (9)

where Yt denotes the real observation result in period t, Ft

is the predicted value in period t, and α is the smoothing
coefficient.

3. Proposed Methodology

Convolutional neural networks have strong characterization
capabilities for sequence and image data. -erefore, the
AdCNN model combines CNN and GAN to predict the
bearing RUL. It changes the generator in GAN to a predictor
composed of a 1DCNN.-e discriminator mainly comprises
a multilayer neural net. -e two achieve Nash equilibrium
through repeated adversarial training and, finally, use the
predictor to calculate the bearing RUL. -e main archi-
tecture of AdCNN is shown in Figure 3.

3.1. AdCNN Prediction Model Based on Adversarial Training

3.1.1. Flow Diagram. Compared with the original charac-
teristics of the vibration signal, the frequency domain data
have a strong regularity and contain more useful infor-
mation about the original signal, which can help us to
quantitatively analyze the vibration signal [33]. -e process
of the AdCNN prediction approach based on adversarial
training is depicted in Figure 4.

Firstly, the vibration signal is obtained from the sensor,
each sample Si � S1i , S2i , . . . , Sn

i􏼈 􏼉 is transformed by a fast
Fourier transform (FFT) and labeled, and the frequency
domain samples Xi � X1

i , X2
i , . . . , Xn

i , yi􏼈 􏼉 are obtained, in
which i denotes the i-th sample, n represents the dimension
of each sample, li represents the label corresponding to the
sample (li is the bearing RUL, and the calculation method is
the ratio of the diversity between the present time and the
fault time to the difference between the start time of bearing
degradation and the time of failure. For instance, if the
starting time of a bearing degradation is 1000 seconds, the
current time is 1200 seconds, and the bearing failure time is
2000 seconds, and the current remaining useful life of the
bearing is (2000−1200)/(2000−1000)� 0.8). Figure 5 shows
the original vibration signal waveform and the frequency
domain data signal waveform after FFT.

Next, the obtained frequency domain sample data are
divided proportionally into training set
X � X1, X2, . . . , Xm􏼈 􏼉 and test set T � T1, T2, . . . , Tm􏼈 􏼉, the

``` ``` ```...

... ... ......

Training 
data Conv_1 Pool_1 Conv_2 Pool_n

...
FC layer

cl
as

sifi
ca

tio
n 

or
re

gr
es

sio
n 

Figure 2: Schematic diagram of CNN structure.
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AdCNN neural network is built, the network parameters θ
are initialized, the learning set is utilized to train the net-
work, after multiple rounds of iterative training, until the
converged AdCNN model is obtained, and then, the test set
is input to predict the bearing life, and the predicted value
􏽥ypre is obtained.

Finally, the predicted value is smoothed to get the final
prediction result ypre.

3.1.2. AdCNN Network Architecture. -e main architecture
of AdCNN is shown in Figure 6.

-e predictor contains a one-dimensional CNN, which
comprises filtering and prediction. -e filter is used to ex-
tract characteristics from the input signal, which is divided
into a convolution layer and a pool layer. -e prediction is a
multilayer perceptron composed of several FCLs. -e
convolution layer convolutes the input local region with the
filter core, and then, the output feature is generated by the
activation unit. Each filter uses the same kernel to extract the
local features of the input local region, which is weight
sharing. In order to reduce the variation of internal co-
variance and speed up the training process of deep neural
network (DNN), batch normalization (BN) layer is intro-
duced. BN layer is usually added after the convolution layer
or FCL and before the activation unit. After the convolution
operation, the activation function is needed, which enables
the network to obtain the nonlinear expression of the input
signal, improve the representation ability, and make the
learned features more sufficient. We use the popular Rec-
tified linear unit (ReLU) as the activation unit to accelerate
the convergence speed of AdCNN. In the AdCNN structure,
pool layer is usually added after the convolution layer. As a
down-sampling operation, it reduces the space size of
network features and the number of neural net parameters.
-e most commonly used pool layer is the maximum pool
layer, which performs a local maximum operation on the
input features to reduce the number of parameters and
obtain location invariant features.

One part of the discriminator is used to calculate the
mean square error between the predicted value (RUL) and
the real value (real RUL) of the predictor, and the other
part is a multilayer neural network. Its purpose is to learn
the matching degree between the input data and its
corresponding label. When the input data and label (real
RUL) are input into the multilayer neural network, it will
give a high score. -e detailed network parameter settings
of the discriminator will be introduced in the experi-
mental part.

After multiple iterations of the discriminator and the
predictor, the discriminating ability of the discriminator is
getting more and more potent, and the predicting ability of
the predictor is getting stronger and stronger. Finally, the
two reach the Nash balance and then take out the predictor
alone to predict the remaining life of bearing. -e network
loss function is shown in the following formula:

min
P,M

max
D

L(D, P) � Ex,y∼Pdata(x,y)[log(D(x, y))]

+Ex∼Pdata(x)[log(1 − D(x, P(x)))]

+Ex,y∼Pdata(x,y)[M(P(x), y)],

(10)

where D(.) represents the discriminator, P(.) represents the
predictor, M(.) represents the calculated mean square error,
x denotes the training sample, and y denotes the relevant
training sample label.

3.1.3. AdCNN Training. Now, we discuss how AdCNN is
trained. As shown in Algorithm 1, the training process is
mainly to optimize the network by updating the weight
parameters of the discriminator and predictor through
continuous iterations. -e update optimization of the dis-
criminator (line3–line8) is mainly realized by increasing the
score of matching the sample with the real label, reducing
the score of matching the sample with the predicted value,
and reducing the mean square error between the real label
and the predicted label. -e update optimization of the

Prediction
Pre (x)

Generator
G (Z, y)

Train data/labelReal data/label
(X,y)

X ypre

(X,ypre)

y

Z

Prediction 
model

Data 
augmentation

D (X,y/ypre)
Discriminator

D (X/X~,y)

(X~,y)

X~

Figure 3: General structure of the approach.
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predictor (line9–line12) is mainly to obtain a higher score in
the discriminator by learning to generate a predicted value
closer to the real label.

3.1.4. Smoothing. Although deep neural networks can
usually obtain a clear global pattern in the estimated
RUL, regional undulation unavoidably emerges, which
usually leads to undependable prognosis property
[15]. To solve the prognosis problem caused by local
fluctuations, this paper uses an exponential smooth-
ing method. -e global prediction result
􏽥ypre � 􏽥y1, 􏽥y2, . . . , 􏽥ym􏼈 􏼉 output by the predictor is expo-
nentially smoothed to obtain the final prediction result
ypre � y1, y2, . . . , ym􏼈 􏼉. -e specific smoothing method is
shown in the following formula:

y1 � 􏽥y1,

y2 � α􏽥y1 +(1 − α)y,

y3 � α􏽥y2 +(1 − α)y2,

⋮,

ym � α􏽥ym−1 +(1 − α)ym−1,

(11)

where α (0< α< 1) represents the smoothing coefficient.
When the prediction sequence has large fluctuations, it is
better to choose a larger α, which can quickly keep up with
changes; otherwise, it is better to choose a smaller α.

3.2. CWGAN-Based Data Generation Model. In an actual
production environment, it is difficult to acquire massive

Start

Get vibration signal from sensor
Si = {si

1, si
2, ..., si

n}
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Figure 4: Flow diagram of bearing prediction method based on AdCNN.
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high-quality sample information. -erefore, this paper
proposes a data enhancement method based on CWGAN.
-e basic idea is to combine the advantages of WGAN and
CGAN to generate sample data. -e specific flow diagram is
shown in Figure 7.-e input of the generator is real RUL and
noise data, and the output is false sample data; there are two
types of discriminator input, one is real RUL and false
sample data, and the other is real RUL and real sample data.
After multiple iterations of the generator and discriminator,
after the network reaches the Nash equilibrium, massive
sample information is produced by the generator to enhance

the data set. -e loss function of CWGAN is shown in the
following formula:

V(G, D) � max
D

Ex,y∼Pdata(x,y)[D(x, y)] − Ex,y∼PG(x,y)[D(x, y)]􏽮

−λEx,y∼Ppenalty(x,y) ∇xD(x, y) − 1( 􏼁
2

􏽨 􏽩􏼛,

(12)

where D(x, y) is the discriminator and λEx,y∼Ppenalty(x,y)(.) is
the penalty term, which aims to make D(x) smooth enough
and the model converges, Ppenalty(x, y) refers to the data
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Figure 6: Network architecture diagram of AdCNN model.
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between the real data Pdata(x, y), and the generated data
PG(x, y). ∇xD(x, y) is the derivative of x.

Now, we discuss how to train CWGAN. As shown in
Algorithm 2, the training process still optimizes the network
through constant iterations to renew the weight variables of
the discriminator and generator. -e update optimization of
the discriminator (line3–line9) mainly includes increasing
the sample to match the real label score and reducing the
score that the sample matches the predicted value. -e
update optimization of the generator (line10–line13) is
mainly to obtain a higher score in the discriminator by
learning to generate a predicted value closer to the real label.

4. Experiments

-e experimental data adopt the bearing degradation data set
of the IEEE 2012 PHMdata challenge [34]. In this experiment,
the threshold of complete degradation of the bearing is set as
the amplitude is greater than 20 g.-e collected data are from
the acceleration sensors in the horizontal and vertical di-
rections, and the sampling frequency is 25.6 kHz. -e in-
formation collection is carried out every 10 s, each time

duration is 0.1 s. -erefore, there are 2560 vibration accel-
eration data for each sample data. As shown in Table 1, the
data set contains 17 bearing degradation data under three
different working conditions based on many literature studies
[35, 36], and the horizontal vibration signal can provide more
useful degradation information than the vertical signal.
-erefore, the experiments in this paper use the horizontal
vibration signal as the training data.

4.1. RUL Prediction Experiment Process Based on AdCNN

4.1.1. AdCNN Model Parameter Description. -is experi-
ment builds a prediction model based on Google’s open-
source deep learning framework-Tensorflow. -e AdCNN
model is mainly composed of predictors and discriminators.
-e quantity of tiers of the predictor net model is set as
depicted in Table 2. -e model has 3 convolution layers and
3 pool layers. -e first convolutional layer conv_1 has 32
convolution kernels (the kernel size is 21 × 1), the second
conv_2 layer has 48 convolution kernels (11 × 1), and the
third conv_3 has 64 convolution kernels (7 × 1). -e sizes of

Real RUL

Noise
Fake data

Generator 

Discriminator
Real data

Figure 7: Network architecture diagram of CWGAN model.

(1) Initialize: discriminator with parameter θ D, predictor with parameter θP.
(2) for k training iterations do
(3) for k d iterations do
(4) specimen m example (X1, y1), (X2, y2), . . . , (Xm, ym)􏼈 􏼉 from dataset
(5) obtaining predicted data X1, X2, . . . , Xm􏼈 􏼉, 􏽥yi � P(Xi).

(6) update θ D by descending along its gradient
(7) ∇θ D

[1/m 􏽐
m
i�1 log D(Xi, yi) + 1/m 􏽐

m
i�1 log(1 − D(Xi, 􏽥yi)) + 1/m 􏽐

m
i�1 ( 􏽥yi − yi)

2]

(8) end for
(9) for kp iterations do
(10) update θP by descending along its gradient
(11) ∇θP

[−1/m 􏽐
m
i�1 log(D(Xi, P(Xi)))]

(12) end for
(13) end for

ALGORITHM 1: AdCNN training process.
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the three pooling layers are 4 × 1, 2 × 1, and 2 × 1. -ere are
two FCLs FC_1 and FC_2, which are composed of 512 and
256 neurons, respectively. In order to avoid overfitting of the
pattern, dropout technology is adopted in the FCL with a
dropout ratio of 0.7. -e pooling layers pool1, pool2, and
pool3 adopt the maximum pooling method. -e first few
layers in the network use the ReLU activating function, and
the eventual output tier is the sigmoid activating function,
because the bearing RUL is at a value of 0-1. -e learning
rate of the predictor is lr_P� 0.001, the batch scale is 100,
and the iterations are 3000.

-e discriminator network model has five FCLs, and the
three hidden layers are composed of 64, 128, and 256 neurons,
respectively.-e parameter settings are shown in Table 3.-e
batch size during model training is 100, the learning rate
(lr_D) is 0.0001, and the iterations are 15000 times. During

the training process, we trained the predictor P once after
completing the training of discriminator D for 5 times.

4.1.2. Experimental Process and Result Analysis. In this
experiment, 16 bearing data from all the bearings shown in
Table 1 will be selected as a training set, and the rest one that
Bearing2_7 will be used as test set. To evidence the superior
performance of our model, DNN [37], LSTM [38], and SVR
[39] are designed and compared with the methods in this
paper. Among them, DNN is to input the time-frequency
features compressed by self-encoding into the deep neural
network for bearing life prediction. -e parameter setting is
that the neural network has 9 layers, the activation function
of the hidden layer is ReLU, the activation function of the
output layer is sigmoid, the epoch is 50, the learning rate is

(1) Initialize: discriminator with parameter θD, generator with parameter θG.
(2) for k training iterations do
(3) for k d iterations do
(4) sample m example (X1, y1), (X2, y2), . . . , (Xm, ym)􏼈 􏼉. from dataset
(5) sample m noise samples Z1, Z2, . . . , Zm􏼈 􏼉 from the prior Pprior(Z)

(6) obtaining generator data 􏽥X1,
􏽥X2, . . . , 􏽥Xm􏼈 􏼉, 􏽥Xi � G(Zi, yi)

(7) update θ D by descending along its gradient
(8) ∇θ D

[1/m 􏽐
m
i�1 D(Xi, yi) − 1/m 􏽐

m
i�1(D( 􏽥Xi, yi, )) + λEx,y∼Ppenalty(x,y)[(

����∇xD(x, y)ŁŁŁ − 1)2]]

(9) end for
(10) for kp iterations do
(11) update θG by descending along its gradient
(12) ∇θP

[−1/m 􏽐
m
i�1 D(G(Zi, yi), yi)]

(13) end for
(14) end for

ALGORITHM 2: CWGAN training process.

Table 1: -e details of bearing dataset.

Conditions Load (N) Velocity (rpm) Bearings

1 4000 1800 Bearing1_1 Bearing1_2 Bearing1_3 Bearing1_4
Bearing1_5 Bearing1_6 Bearing1_7

2 4200 1650 Bearing2_1 Bearing2_2 Bearing2_3 Bearing2_4
Bearing2_5 Bearing2_6 Bearing2_7

3 5000 1500 Bearing3_1 Bearing3_2 Bearing3_3

Table 2: Details of the predictor networks in this experiment.

Layer type Kernel Channel Stride Activation Number of training parameters
Input — 1 — — —
Conv_1 21× 1 32 2 ReLu 704
Pool_1 2×1 32 1 — —
Conv_2 11× 1 48 2 ReLu 576
Pool_2 2×1 48 1 — —
Conv_3 7×1 64 2 ReLu 512
Pool_3 2×1 64 1 — —
FC_1 — 1 — ReLu 4981248
FC_2 — 1 — ReLu 65664
Output — 1 — Sigmoid 257
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0.001, the optimization algorithm adopts SGD, and the loss
function is the mean square error. -e LSTM model first
extracts the bearing characteristic parameter set (frequency
domain root mean square, time-domain root mean square,
frequency domain average amplitude, time field peak-to-
peak value, frequency field variance, wavelet packet third

frequency range standardized power spectrum, wavelet
packet first 7 band normalized energy spectrum) and inputs
the characteristic parameters into the LSTM network for
bearing life prediction. -e parameters setting is that the
LSTM has 4 layers, hidden units are 240, time step is 40, the
batch size is 40, and the learning rate is 0.0006. -e bearing
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Figure 8:-e remaining life prediction outcomes of different methods in the same test bearing. (a) AdCNN’s remaining life prediction
results; (b) LSTM’s remaining life prediction results; (c) DNN’s remaining life prediction results; (d) SVR’s remaining life prediction
results.

Table 3: Details of the Discriminator networks in this experiment.

Layer Dimension Activation Number of training parameters
Input 1281 — —
Hidden_1 64 ReLu 82084
Hidden_2 128 ReLu 8320
Hidden_3 256 ReLu 33024
Output 1 Sigmoid 257
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performance degradation indicators in SVR are root mean
square and kurtosis, and the kernel function uses the RBF
kernel function. -e kernel function selects the “RBF”
kernel, the penalty factor is 325, and the kernel function
parameter is 0.06. All these models have experimented with
the bearing training set and test set mentioned. -e learning
set is characterized by corresponding feature extraction
methods and then inputs into the corresponding net to
obtain the corresponding prediction results. -e prediction
results of the 4 models on the same test bearing are shown in
Figures 8(a)∼8(d).

It can be seen from (a)–(d) in Figure 8 that the proposed
method has a high degree of fit with the predicted value of
real bearing degradation life, indicating that it has good
prediction ability. As shown in Figure 8(a), AdCNN makes
the distribution of the model closer to the real distribution
by using adversarial training, so the error of the predicted
RUL result is the smallest, and the local volatility problem is
reduced by exponential smoothing. As shown in
Figures 8(b)–8(d), it can be observed that the RUL pre-
diction results of the other three methods have greater errors
and more obvious volatility compared with the real RUL
values. -is indicates that AdCNN has a better ability to
predict bearing RUL. In addition, compared with SVR, the
prediction effects of the other three methods have better
performance, which reveals that the deep learning approach
performs better for bearing RUL prediction. In order to
quantify the prediction errors of the four methods, we use
the average absolute error (formula (13)), the root mean
square error (formula (14)), and the maximum error (for-
mula (15)) to measure the prediction effects of various
methods. -e different errors corresponding to the three
methods are shown in Table 4.

MAE �
􏽐

m
i�1 y

i
pre − y

i
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

m
, (13)

RMSE �

�������������

􏽐
m
i�1 y

i
pre − y

i
􏼐 􏼑

m

􏽳

, (14)

ME � max y
i
pre − y

i
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (15)

From the error statistics of Table 4, it can be seen that the
average absolute errors of AdCNN compared with SVR,
DNN, and LSTM methods are reduced by 77.21%, 66.30%,
and 51.56%, and the root means square error has been
reduced by 64.81%, 51.69%, and 33.72%, respectively. For
the maximum error, AdCNN is the smallest, and the
other three methods are relatively large, which further
shows that AdCNN has less volatility. -e quantized
error statistics confirm the experimental results in Fig-
ure 8. Obviously, compared with the other three
methods, AdCNN has achieved the best performance in
the above three quantitative indicators, which proves the
effectiveness of AdCNN in bearing RUL life prediction.
In addition, the three deep learning methods are less
than SVR in various errors, which fully reflects the

robustness and generalization ability of the deep learning
method.

4.1.3. Ablation Study. In this part, we mainly focus on the
design of AdCNN. We conduct several ablation studies by
removing or replacing one design component from AdCNN
at a time. We mainly divided into the following situations:

(i) 1DCNN: In this model, only one-dimensional CNN
is adopted for bearing RUL prediction. -e net
structure and hyperparameters are consistent with
those of the predictor in AdCNN. -e model loss
function only uses the mean square error.

(ii) AdDNN: In this model, we employ a simple deep
neural net to replace the predictor in AdCNN, and
the discriminator module is consistent with the
model proposed in this paper.

(iii) AdRNN: In this model, a cyclic neural net is
adopted to replace the predictor in AdCNN, and the
rest of the network structure is consistent with
AdCNN.

(iv) AdCNN_nos: In this model, there is no exponential
smoothing for the bearing prediction RUL gener-
ated by the network, and the network output value is
directly used as the predicted RUL. -e overall
network structure is consistent with the AdCNN
mentioned in this paper.

Figure 9 shows the box plot of the absolute error (cal-
culated as AE � |ypre − y|) between the RUL ypre and the
real RUL y of the predicted bearing of various architectures).
-e box graph contains the information of quartile and
dispersion degree, which can easily compare the effects of
different modules. Compared with AdCNN and 1DCNN,
the absolute error of AdCNN is significantly less than that of
1DCNN, which shows that adding a discriminator to
1DCNN will have a better prediction effect. Comparing
AdCNN and AdCNN_nos, the absolute error interval of
AdCNN_nos is larger, which shows that exponential
smoothing has a certain effect on large data fluctuations. In
addition, AdCNN has a smaller absolute error distribution
compared with AdDNN and AdRNN, which further shows
that AdCNN has a higher predictive ability for bearing RUL.

4.2. Data Augmentation Experiment Process Based on
CWGAN

4.2.1. CWGANModel Parameter Description. Cwgan model
is mainly composed of generator and discriminator. -e

Table 4: Comparison of various error values of different methods.

Method
Error type

MAE RMSE ME
SVR 0.136 0.162 0.51
DNN 0.092 0.118 0.45
LSTM 0.064 0.086 0.37
AdCNN 0.031 0.057 0.13
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number of layers of its network model is shown in Table 3.
-e generator has an input dimension of 101 (100-dimen-
sional noise and 1-dimensional label), 128 neurons in the
first hidden layer, 200 neurons in the second hidden layer,
and an output dimension of 1280, representing the gener-
ated samples. -e input dimension of the discriminator is
1281 (1280-dimensional sample data and 1-dimensional
label).-e first hidden layer has 128 neurons, and the second
hidden layer has 256 neurons. -e output is one-dimen-
sional, indicating the true and false probability of generating
sample data. -e hidden layer of generator and discrimi-
nator adopts the ReLU activation function, the last layer of
generator adopts the sigmoid activation function, and the
last layer of discriminator has no activation function.
Generator learning rate LR_ G� 0.0001, discriminator
learning rate LR_ D� 0.00005, batch size� 128, and the
number of iterations is 30000.

-e CWGAN model consists of a generator and a rec-
ognizer, and the number of layers of its network model is set
as shown in Table 5. -e generator has an input dimension of
101 (100-dimensional noise and 1-dimensional label), the first
hidden tier has 128 neurons, the second hidden tier has 200
neurons, and the output dimension is 1280, representing the
generated samples. -e input dimension of the discriminator
is 1281 (1280-dimensional sample data and 1-dimensional
label), the first hidden layer carries 128 neurons, the second
hidden layer has 256 neurons, and the output is one-di-
mensional, indicating whether the generated specimen data
are true or false probability. Both the generator and the
discriminator hidden layer adopt the ReLU activation func-
tion, the last layer of the generator adopts the sigmoid ac-
tivating function, and the last layer of the discriminator has no
activation function. -e study rate of the generator lr_G is
0.0001, the study rate of the discriminator lr_D is 0.00005, the
batch scale is 128, and the iterations are 30000.

4.2.2. Experimental Process and Result Analysis. In this
experiment, we only take 40% of the real data in Table 1 for
adversarial training. -is is to simulate the actual situation

with fewer high-quality data samples. Figures 10(a)–10(c),
respectively, show the frequency domain waveforms of real
samples and the frequency domain waveforms of samples
generated by CWGAN under three operation environments.
-e data generated by the CWGANmodel under conditions 2
and 3 are quite similar to the real data. Although the generated
data under condition 1 are slightly different in some fre-
quency bands, it can still be seen that the overall distribution
of generated data is basically consistent with the original
frequency domain data. Intuitively, it shows that CWGAN
has sufficient representation ability that the generated high-
quality samples can be used to enhance the data set to alleviate
the problem of few samples in the actual situation.

In the case of few original samples, adding these CWGAN-
generated samples will make the data sample features richer,
and training the mixed samples can greatly improve the
prediction accurateness and pattern generalizability.

To verify the effectiveness of enhancing the data set
through CWGAN, a large number of bearing degradation
samples are generated from the generator and then mixed
into the existing samples to train the AdCNN prediction
model. When the converged AdCNN model is obtained, the
test set is input to predict the bearing life. -is experiment is
to ensure that the specimen quantity in the training data
collection does not change. -e original data and the
CWGAN-generated data in the training data set are set at
different ratios: 90%–10%, 80%–20%, 60%–40%, 40%–60%,
20%–80%, 10%–90%. Input different proportions of training
data into the three methods (DNN, SVR, and LSTM) are
mentioned in Section 4.1.2 and AdCNN to train the pre-
diction model. -e same bearing data were then used to test
the prediction accuracy of the four models.

Table 6 shows the mean absolute deviation and root
average squared deviation of the RUL predicted by the
training model under different percentages of the generated
data in the learning set. For the convenience of observation,
data in Table 6 are drawn in the line graph, which is shown in
Figure 11. As it is presented in Table 6 and Figure 11,
AdCNN has the highest prediction accurateness of the
model trained under different proportions of generated data.
Observing the line graph, we can find that as the proportion
of generated data continues to increase, the prediction ac-
curacy of various methods is different. When declining the
generated data accounted for 10%–60% of the training data,
the MAE and RMSE of DNN, LSTM, and AdCNN did not
rise significantly. -is shows that when the generated data
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Figure 9: Box plot of prediction absolute error in various model
situations.

Table 5: Details of the CWGAN networks in this experiment.

Layer Dimension Activation Number of
training parameters

G_Input 101 — —
G_h1 128 ReLu 13056
G_h2 200 ReLu 25800
G_output 1280 Sigmoid 257280
D _Input 1281 — —
D_h1 128 ReLu 163968
D_h2 256 ReLu 33024
D_output 1 — 512
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Figure 10: Frequency domain waveform diagram of real data and generated data under different working conditions. (a) Frequency domain
waveform diagram under working condition 1. (b) Frequency domain waveform diagram under working condition 2. (c) Frequency domain
waveform diagram under working condition 3.

Table 6: MAE and RMSE of different percentages of generated data training model prediction results.

Methods Percentage of generated data
10% 20% 40% 60% 80% 90%

SVR MAE 0.142 0.156 0.232 0.275 0.247 0.223
RMSE 0.163 0.174 0.251 0.243 0.269 0.251

DNN MAE 0.095 0.102 0.097 0.113 0.158 0.212
RMSE 0.117 0.121 0.109 0.136 0.173 0.229

LSTM MAE 0.067 0.065 0.071 0.092 0.105 0.127
RMSE 0.085 0.082 0.094 0.104 0.122 0.143

AdCNN MAE 0.038 0.029 0.039 0.074 0.085 0.092
RMSE 0.051 0.046 0.058 0.092 0.097 0.105
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accounted for less than 60%, the trained prediction model
can be compared with the model trained with the same
number of real samples which achieves the same prediction
effect. -is further proves the effectiveness of augmenting
the data set by CWGAN. When the proportion of generated
data is higher than 60%, the MAE and RMSE of DNN,
LSTM, and AdCNN all have a certain upward trend, which
indicates that when the percentage of generated data is
relatively large, the predictive ability of all models will de-
crease. By contrast, AdCNN can still maintain a low pre-
diction error of RUL. In CWGAN generation experiments
with different proportions, the MSE predicted by AdCNN
URL decreased by 72.16%, 52.11%, and 32.96% compared
with the other three comparison methods, respectively.
From the overall performance, the RUL prediction method
combined with CWGAN and AdCNN can effectively alle-
viate the problem of small samples, which has the lowest
error. In addition, compared with SVR, the prediction effects
of the three methods are still better, which further proves
that the deep learning approach is better than the machine
study approach and has strong robustness and generaliza-
tion ability. In summary, when there are few available
training samples, we can use CWGAN to generate part of the
training data and mix it into the original sample to train
AdCNN model to realize similar prediction results as the
training model with the same number of real samples.

5. Results and Discussion

In real-world industrial environments, deep learning models
based on data-driven for RUL prediction are often hampered
by few samples. In this work, a novel prognostic framework
comprising conditional Wasserstein distance-based gener-
ative adversarial networks (CWGAN) and adversarial

convolution neural networks (AdCNN) is proposed. -e
CWGAN model uses generators and discriminators for
continuous adversarial training with Wasserstein distance.
After the network achieves Nash equilibrium, the overall
distribution of the CWGAN-generated data is basically
consistent with the original frequency domain data, and
numbers of high-quality CWGAN-generated training data
can be obtained stably from the generator, so as to realize the
augmentation of the data to solve the problem of few
samples. In AdCNN, adversarial training is adopted for
training the prediction model; that is, the predictor uses a
one-dimensional convolutional neural network to extract
the frequency domain features of the bearing layer by layer
and then outputs the predicted value. -e discriminator
calculates the mean square error and judges the prediction
effect of the predictor to promote adversarial training of the
model. Batch normalization and dropout techniques are
applied to accelerate adversarial model training, overcome
vanishing gradient problems, and avoid overfitting. -en,
the exponential smoothing method is used to solve the local
volatility problem of bearing RUL prediction. Via the PHM
2012 challenge datasets, the performance of the proposed
method is verified and compared to the methods based on
SVR, DNN, and LSTM. -e comparison results show that
the RUL prediction method combined with CWGAN and
AdCNN has more advantages, which can not only effectively
alleviate the problem of few samples but also have high
accuracy of bearing remaining useful life prediction.

Recently, many researchers have conducted massive
studies on few-shot learning, among which meta-learning
has achieved good results in few-shot learning. In view of the
fact that it is not simple to obtain massive bearing degra-
dation information, our team will use meta-learning to
realize bearing RUL later on.
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Figure 11: Line graphs of MAE and RMSE in different percentages of generated data training model prediction results. (a) MAE of model
prediction results. (b) RMSE of model prediction results.
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-e experimental data used the bearing degradation data set
of the IEEE 2012 PHM Data Challenge. https://github.com/
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