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Bearing fault is a process of gradual development and deepening. In the early stage of the fault, if it can be found out in time and
taken reasonable prevention and elimination measures, we can avoid serious losses and safety accidents. �erefore, the feature
extraction and analysis of early weak fault has important practical signi�cance. In this paper, an improved multiscale permutation
entropy (IMPE) method was proposed to overcome the shortcomings in the coarse-grained process. In order to solve the problem
that only considering a single coarse-grained sequence under a certain scale may lead to the loss of feature information, this paper
proposed to calculate the time series with equal overlapping segments, that was to consider all coarse-grained sequences under the
same scale to re�ect the feature information of fault signals more comprehensively. In order to solve the problem that feature
extraction is not re�ned enough when using the �rst-order moment mean value calculation in traditional MPE calculation, a
calculation method based on the skewness of the third-order moment was proposed. �e calculation method is more sensitive to
the complexity and �uctuation of signals and can better describe the feature details and extract the fault features e�ectively. IMPE
was applied to feature extraction of early weak fault of rolling bearing and input into Support Vector Machines (SVMs) for faults
classi�cation. Aiming at SVM parameter optimization problem, an improved chaos �re�y optimization algorithm was proposed.
Experimental results show that the new method of early weak fault identi�cation based on IMPE-SVM was e�ective in detecting
rolling bearing faults with di�erent severity.

1. Introduction

�e rolling bearing supports the rotating shaft and the parts
on the rotating shaft to maintain the normal working po-
sition and rotation accuracy of the rotating shaft. Its running
state directly a�ects the overall performance of the rotating
machinery. Most faults of rotating machinery are caused by
rolling bearings, so it is of great signi�cance for bearing fault
diagnosis [1]. In the early stage of rolling bearing fault, the
vibration signals collected by the sensor have no obvious
characteristics and is often submerged in noise interference,
which makes it very di�cult for rolling bearing fault di-
agnosis [2].�erefore, early fault diagnosis of rolling bearing
has always been the focus and di�culty of researchers.

Early fault diagnosis methods can be divided into two
categories: model-based fault diagnosis method and data

driven fault diagnosis method. Cf A [3] developed a Hier-
archical Model Updating Strategy (HMUS) for Finite Ele-
ment (FE) model updating with regard to uncorrelated
modes. Tian et al. [4] established the dynamic model of
inter-shaft bearing with localized defects with respect to
time-varying displacement excitation to accurately describe
the dynamic features of inter-shaft bearings with localized
defect under operation. Fei et al. [5] proposed feature en-
tropy distance method for the process character analysis and
diagnosis of rolling bearing faults by the integration of four
information entropies in time domain, frequency domain
and time-frequency domain and two kinds of signals in-
cluding vibration signals and acoustic emission.

How to extract the useful information from the signal is
an urgent problem to be solved, which determines the ac-
curacy and reliability of subsequent fault identi�cation.
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Permutation entropy (PE) is a nonlinear analysis method
used to detect the randomness and dynamic variability of
time series. It has the characteristics of high calculation
efficiency, stable calculation value, strong anti-noise ability
and suitable for online monitoring. It has been widely used
in time series analysis and provides an effective tool for early
fault weak feature extraction and analysis [6–8]. PE only
carries out single-scale analysis of time series and ignores the
useful fault information on other scales. &erefore, Aziz and
ARIF proposed multiscale permutation to carry out multi-
scale analysis and processing of mechanical vibration signals
to ensure the integrity of local and global information. Zhao
et al. [9] presented a rolling bearing fault diagnosis approach
by integrating wavelet packet decomposition (WPD) with
multi-scale permutation entropy (MPE),Experimental study
on a data set from the Case Western Reserve University
bearing data center has shown that the presented approach
can accurately identify faults in rolling bearings. Xiong et al.
[10] proposed a method of complete ensemble empirical
decomposition with adaptive noise (CEEMDAN) to solve
the problem in virtue of its advantage of adaptive noise
reduction. Combined with the multi-scale permutation
entropy (MPE), which can reflect the random degree of time
series in various scales and effectively detect the sudden
dynamic change of the time series, an intelligent bearing
fault recognition method is proposed by joint use of
CEEMDAN, MPE, Fisher ratio and Gath-Geva (GG) clus-
tering algorithm.

MPE is sensitive to the fluctuation of signals and can
better describe feature details. However, there are some
problems, such as the loss of feature information caused
by considering only a single coarse-grained sequence at
a certain scale. Aiming at the problem in MPE, Zheng et al.
[11] proposed a new nonlinear dynamic method called
generalized composite multiscale permutation entropy
(GCMPE).GCMPE was compared with MPE by analyzing
simulation data and also the influence of parameters on
GCMPE calculation was studied. Huo et al. [12] proposed an
improved entropy measure, termed Adaptive Multiscale
Weighted Permutation Entropy (AMWPE). &en, a new
rolling bearing fault diagnosis method is developed based on
AMWPE and multi-class SVM. Li et al. [13] proposed a
refined composite multiscale weighted permutation entropy
(RCMWPE) method to efficiently characterize the operating
state of bearings. &e proposed method focuses on two as-
pects: the improved version reduces the dependence of en-
tropy on the length of the original time series, and the error
caused by considering the amplitude information is sup-
pressed. Li et al. [14] proposed a method based on refined
composite multiscale permutation entropy (RCMPE) and a
support vector machine, the RCMPE algorithm is utilized to
extract bearing feature information, and it is compared and
analyzed with MPE and multiscale entropy (MSE). &rough
simulation and experimental verification of the signal, it is
found that as the scale factor increases, RCMPE can retain
more useful information. In this paper, an improved multi-
scale permutation entropy algorithm is proposed. By con-
sidering all coarse-grained time series at the same scale and
using the third-order moment skewness calculation instead of

the first-order moment mean calculation, the characteristic
information of the signal can be reflected more compre-
hensively and accurately to make up for the defect of MPE.

&e essence of early fault diagnosis is fault identification
and classification. Support vector machine (SVM) [15–17] is
a good small sample set clustering algorithm. It also has
excellent learning ability in the case of limited data, and has
good generalization. It is widely used in fault diagnosis and
other fields. However, in the process of fault identification,
how to select appropriate parameters has become an im-
portant problem to be solved. Scholars have done a lot of
work in algorithm optimization and parameter optimiza-
tion. Keshtegar et al. [18] proposed two different Modified
multi-extremum Response Surface basis Models (MRSM)
for dynamic nonlinear responses of failure capacities for
turbine blisk responses. &e proposed MRSM is established
using two regression processes including regressed the input
variables by linear or exponential basis functions in first
calibrating phase and regressed the second-order polyno-
mial basis function using inputs data provided by first stage
in second calibrating procedure. Lu et al. [19] proposed
moving extremum surrogate modeling strategy (MESMS) in
respect of multi-physics coupling with various dynamics/
uncertainties to improve the dynamic reliability analysis of
complex structures like turbine blisk, In this strategy, ex-
tremum thought is adopted to handle the dynamic process of
input parameters and output response, and the importance
sampling (IS) method is utilized to extract efficient samples
and improve the efficiency of dynamic reliability estimation.
Lu et al. [20] developed a surrogate model method, namely
modified Kriging-based moving extremum framework
(MKMEF), absorbing extremum thought, moving least
squares (MLS) technique, Kriging model and collaborative
evolution genetic algorithm (CEGA). For this proposed
MKMEF, the extremum thought is used to transform dy-
namic output response into extremum values within a time
domain, and the MLS method is applied to obtain efficient
samples to derive Kriging model. Fei et al. [21] developed
distributed collaborative improved support-vector regres-
sion (DCISR) method and multilevel nested model to ef-
fectively perform the reliability-based design optimization
(REDO) of the assembly relationship to improve the as-
sembly relationship design, In the DCISR method, the
improved support-vector regression (ISR) is developed as
the basis function of the DCISRmodel for reliability analysis,
by adopting multi-population genetic algorithm (MPGA) to
find the optimal model parameters. Zheng et al. [22] in-
troduce an improved PSO-SVM algorithm based on distance
pairing sorting support vector preselecting. &ey proposed
that the training data set used distance pairing sorting
support vector preselecting to obtain a support vector
candidate set, the PSO parameter optimization process was
put on the support vector candidate set. In this paper, a
chaotic firefly optimization algorithm (CFOA) is introduced
to optimize SVM parameters, and a new algorithm based on
chaotic firefly optimization support vector machine (CFOA-
SVM) is proposed.

Based on the above analysis, this paper uses the im-
proved multiscale permutation entropy to extract the signal
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features, and uses the SVMwith the optimized parameters of
the improved chaotic firefly optimization algorithm to
classify the faults. A new bearing early fault identification
method based on IMPE-SVM is proposed, and the proposed
method is applied to the fault diagnosis experiments of
rolling bearings with different severity, &e results show that
this method can effectively and accurately identify various
types of faults.

&e rest of this paper is organized as follows: In Section
2, we describe our proposed method in detail. &e experi-
mental results are given in Section 3, while Section 4 con-
cludes this paper with remarks.

2. Methods

2.1. Overview of Our Method. &e fault diagnosis method
proposed in this paper mainly includes two parts: feature
extraction and fault recognition. Firstly, the IMPE method
was used to extract the multi-scale permutation entropy
features of all signal samples, and then the permutation
entropy feature vector was normalized, and the feature
vector was divided into the training set and testing set. &en
the SVM was trained, and the parameters were optimized by
CFOA to obtain the optimal diagnosis model. Finally, the
test set was input into the trained SVM for fault identifi-
cation and classification. In order to verify the performance
of the proposed fault diagnosis method in mechanical early
weak fault detection and identification, the bearing fault
identification experiments with different degrees of damage
were carried out on the bearing open data set of Case
Western Reserve University.&e flow chart of fault diagnosis
based on IMPE-SVM is shown in Figure 1.

2.2. ImprovedMultiscale PermutationEntropy. According to
the principle of MPE, the coarse-grained process can be
regarded as the average of the original time series in a length
of window. &ere are some shortcomings in this process:
firstly, different scale factors easily lead to instability of
calculation results. In MPE calculation, the length of each
coarse-grained time series is equal to [N/λ], when the scale
factor is too large, the length of coarse-grained data will be
shortened with the increase of scale factor. Since calculation
of permutation entropy depends on the data length, in order
to reduce the MPE deviation caused by data length short-
ening, the average value of all coarse-grained time series
under the same scale factor is taken as the final permutation
entropy. However, in the process of down-sampling the data
by a scale factor, the dynamic change of the original signal is
weakened to a certain extent, and the estimated entropy
value is less than the expected value, which may lead to
inaccurate and unreliable results [23]. Secondly, non-
overlapping computation based on continuous point seg-
mentation may lead to incomplete feature extraction. In the
coarse-grained process, the time series are divided into equal
non overlapping segments. Taking scale 3 as an example,
each sequence (x1, x2, x3), (x4, x5, x6), etc. are considered
separately, then the average value of all the data points in
each segment is calculated. In this calculation process, the

sequences (x2, x3, x4), (x3, x4, x5), etc. are not considered.
&is may result in the loss of some potentially useful in-
formation in the signal.&irdly, the coarse-grained sequence
based on mean value calculation can reflect the centralized
trend of data, but it is difficult to reflect the general situation
of a group of data.

2.2.1. Calculation Principle. In order to overcome the above
shortcomings, an improved multi-scale permutation en-
tropy (IMPE) feature extraction method was proposed. &is
method mainly improves the permutation entropy method
based on the data skewness to obtain the mean value and
calculate the overlapped data points, to better characterize
the overall trend of the data, and to improve the reliability of
permutation entropy in the random measurement and
dynamic change detection of time series.

&e skewness [24] is a characteristic number repre-
senting the degree of asymmetry of the probability distri-
bution density curve with respect to the average value, the
skewness of the samples is the third order standard moment
of the samples. &e formula is Sk � E[(X − μ)3/(σ)3], where
μ is the mean value, σ is the standard deviation, and E is the
mean operation.&e larger the absolute value of skewness is,
the less ideal the performance of the mean value is, oth-
erwise, the more reliable themean value is [25]. Skewness is a
dimensionless parameter, which is very sensitive to the
change of signal amplitude and is not affected by working
conditions, so it is especially suitable for early fault detection.
&erefore, this paper proposes an improved multiscale
permutation entropy based on skewness calculation to
measure the difference of permutation entropy probability
distribution under different states, to reveal the weak and
complex change process of mechanical fault occurrence and
development.

&is paper has improved the traditional MPE non
overlapping computing coarse-grained series, and considers
multiple time series zλk,f � 1/λ

λ− 1
k�0xi+k+λ(f− 1) in each scale to

form yλ
k � zλ

k,1, zλ
k,2, . . . , in this way, for each scale factor λ,
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Figure 1: Overview of our method.
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λ different time series were considered, which was different
from the traditional MPE which only considers a single
coarse-grained sequence and a single coarse-grained se-
quence at the same scale. To sum up, the improved mul-
tiscale permutation entropy algorithm is proposed as
follows:

Step 1: for the scale factor λ, the original time series is
divided into λ different coarse-grained sequences yλ

k,f,
k � 1, 2, . . . , λ; f � 1, 2, . . . , [N/λ], which are ob-
tained based on the following formula:

y
λ
k,f �

1
λ



fλ+k− 1

i�(f− 1)λ+k

xi − xi

xd
i

 

3

, (1)

where xi � 1/λ
λ− 1
h xi+k, , 1≤f≤N/λ, 2≤ k≤ λ, xd

i

is the standard deviation.
Step 2: PE values of all coarse-grained sequences yλ

f

under each scale factor λ are calculated.
Step 3: calculate the mean value IMPE of all permu-
tation entropy under each scale factor, which is the
permutation entropy of the original time series under
the scale factor λ.

IMPE(x(i), m, t, λ) �
1
λ

PE y
(λ)
f , m, t . (2)

Step 4: λ � λ + 1, repeat steps 2 and 3 until λ � λm,
where λm is the largest scale factor, then all PE values
are plotted as a function of the scale factor λ, which is
called IMPE.

Figure 2 shows the algorithm flow of IMPE. It can be
seen that λ different coarse-grained sequences related to the
scale factor λ are considered in the IMPE algorithm, that is,
all the coarse-grained sequence information under the same
scale is considered. In the traditional MPE algorithm, only
one group of coarse-grained sequences y

(λ)
1 is considered in

the calculation of each scale.&erefore, compared withMPE,
IMPE can reflect the signal fault characteristic information
more comprehensively. Moreover, the calculation of PE
itself is based on the comparison of adjacent data points
without considering the size of the data itself. &erefore, in
formula (2), the mean value of the first-order moment, the
unbiased square error of the second-order moment and the
skewness of the third-order moment are calculated. In
theory, it can reflect the characteristics of the whole coarse-
grained sequence data, but compared with the mean value of
the first-order moment and the unbiased square error of the
second-order moment, the skewness calculated based on the
third-order moment is more sensitive to the change of the
data. &erefore, the multi-scale permutation entropy based
on skewness is more sensitive to the complexity and vola-
tility of signals, and can better describe the feature details.

2.2.2. Parameter Analysis and Optimization. According to
the calculation principle of permutation entropy, the delay
time t, embedding dimension m, signal length N and scale
factor λ are the four main parameters affecting permutation

entropy algorithm. &e permutation entropy calculation is
highly dependent on the selection of embedding dimension
m. When m is too large, the phase space calculation is
complex and the computing time increased, and when m is
too small, the reconstructed information is not enough to
extract and detect the mutation signal. According to Bandt
and Pompe [26], the range of m is 3 to 7. According to
Matilla-Garćıa [27], the signal length should satisfy N≥ 5m!

when to obtain reliable statistical data. &e scaling factor λ
determines the permutation entropy characteristics of sig-
nals in the corresponding scale. Generally speaking, there is
no unified standard for the maximum scale factor. As
proposed by Zheng et al. [28], the maximum scale factor is
usually greater than 10.

In order to research the influence of parameter selection
on the calculation results of IMPE, Gaussian white noise was
considered in the experiments. Although white noise is
random in the time domain, its power spectral density is
parallel to the horizontal axis and independent of frequency.
In order to research the influence of embedding dimension
m on MPE and IMPE calculation results, Gaussian white
noise with data length of 2048 was selected, embedding
dimensions were 3, 4, 5, 6, 7, delay factor was 1, and scale
factor was 20. &e results are shown in Figure 3. It can be
seen from the figure that the permutation entropy of
Gaussian white noise decreases monotonically with the
increase of scale factor λ. MPE and IMPE in the same
embedded dimension have similar intervals. However, in the
whole scale factor range, the fluctuation range of MPE is
larger than that of IMPE, that is, IMPE is more stable.
Secondly, when the embedding dimension m is small, such
as 3 or 4, the permutation entropy is larger. Moreover, with

Time Series

Calculate sequences yλf
under each scale factor λ

Dividing coarse-grained 
sequences

Calculate PE mean value under the
scale factor λ 

Y

λ=λ+1

f= f+1

Y

N

N

IMPE

f > λ?

λ > λm?

Figure 2: IMPE algorithm flow.
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the increase of scale factor, the change of PE value is not
obvious, which cannot reflect the advantages of multi-scale
analysis. However, if it is too large, such as 6 or 7, the
permutation entropy calculation process makes the coarse-
grained sequence homogenized, and it is easy to ignore the
details of the time series. &erefore, the embedding di-
mension m� 5 was determined by experiments. If the signal
length n is too large, it will affect the calculation efficiency,
but if it is too small, the condition of N≥ 5m! cannot be
satisfied. Considering these constraints, the signal length
2048 is enough to obtain reliable and stable permutation
entropy. Whenm� 5, the relationship between PE and scale
factor is shown in Figure 4. It can be seen the influence of
delay factor on time series is very small when the embedding
dimension is fixed. &erefore, the delay factor t � 1 is de-
termined in this paper. Finally, the scale factor λ is set to 20.

2.3. Support Vector Machine

2.3.1. Algorithm Principle. Support vector machine (SVM)
is a better small sample set clustering supervised learning
algorithm, which classifies data based on statistical learning
and structural risk minimization principle, and minimizes
the upper bound generalization error [29]. SVM overcomes
the problems of too large network scale, over learning and
poor generalization ability of general classification
methods. It also has excellent learning ability in the case of
limited data, and has achieved good results in fault diag-
nosis and other fields. Traditional SVM is an algorithm
based on binary classification problem, which cannot be
directly deal with multi classification problem [30].
Scholars use the calculation process of standard SVM to
construct multiple decision boundaries in order to realize
multi classification of samples. &e common methods are
“one against all” and “one against one” [31], &is paper
adopts one-to-one SVM.

For the obtained training sample set (xi, yi),
((i � 1, . . . , n, x ∈ Rn, y ∈ R), where xi is the input space
vector of the data sample and yi is the target value. SVM
classification model is as follows:

f(x) � W
Tβ(x) + b,

M �
1
2

W
T

����
����
2

+ δF,

(3)

where β(x) represents the high-dimensional space feature of
mapping input space vector x, and W and b are parameters
to be determined. 1/2‖WT‖2 is the regular term, δF is the
empirical error, δ is the penalty factor, F is the loss function,
this is equivalent to the approximate accuracy of the training
data points, and the parameters W and b can be estimated by
minimizing the regularization risk function [32]. &e clas-
sification problem is transformed into a convex optimization
problem, which can be expressed as follows:

min
1
2

W
T

����
����
2

+ δ
n

i�1
c
2
i ,

s.tyi W
T
xi + b ≥ 1 − ci.

(4)

In order to obtain the maximum generalized optimal
classification, the problem of maximum classification interval
and minimum misclassification samples must be considered.
Lagrangemultipliers and optimality constraints are introduced
to solve the problem. At the same time, considering that most
of the practical classification problems are nonlinear problems,
the kernel function is introduced to transform it into a linear
separable problem in high-dimensional space. Finally, the
classification decision function is obtained as follows:

f(x) � 
n

i�1
aiK xi, xp  + b, (5)

where ci is the error, αi is the Lagrange multiplier and
K(xi, xp) is the kernel function. &e kernel function [33] is
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introduced into SVM to solve the nonlinear problem ef-
fectively and reduce the calculation cost. &e common
kernel functions are linear kernel function, polynomial
kernel function, Laplace kernel function, sigmoid kernel
function and Gaussian radial basis function. At present,
there is no good theoretical method to guide how to select
the kernel function, which needs to be selected according to
the specific problems and the experience of researchers.
According to the existing researches, the selection of dif-
ferent kernel functions has little influence on the results, that
is, SVM is not very sensitive to kernel function [34]. In this
paper, the Gaussian radial basis function is selected and its
expression is K(xi, xp) � exp(‖ − xi − xp‖2/2σ2), where σ is
the kernel parameter.

2.3.2. Improvement of SVM and Parameter Optimization.
Penalty factor δ and kernel parameter σ are the main pa-
rameters affecting the classification accuracy of SVM. &e
value of penalty factor δ balances the empirical risk and
structural risk [35]. If δ is too small, it means that the limi-
tation of empirical error is small, and the complexity of the
model is reduced, but the empirical risk increases and the
phenomenon of under fitting occurs. If δ is too large, the
empirical risk will be reduced, but the structure will become
complex and over fitting phenomenon will appear easily. &e
kernel parameter σ will affect the mapping function [36]. A
suitable σ can make the Gaussian kernel as small as possible,
thus reducing the dimension of high-dimensional space
samples and reducing the empirical error of classifiers, which
is conducive to accurate classification. If σ is too small, the
distance between all mapped points is almost equal, that is,
there is no clustering phenomenon, if σ is too large, two
different points will become the same point in high-dimen-
sional space after mapping, that is to say, all samples will be
classified into the same class and cannot be distinguished.
&erefore, in order to get a good classification effect, it is
necessary to take a certainmethod to optimize the parameters.

In this paper, the firefly algorithm [37] was used to
optimize the SVM parameters. In the traditional firefly al-
gorithm, the optimization results are easy to oscillate re-
peatedly at the local or global extreme points [38], and the
convergence is slow, which reduces the optimization ac-
curacy. In order to improve the optimization ability and
population diversity of the algorithm, the chaotic firefly
optimization algorithm (CFOA) was used, this paper mainly
optimizes the initial sequence chaotic mapping method to
improve the diversity of the population and the ergodicity of
the optimization, and improve the ability to fall into local
minima. At present, logistic map is often used to generate
chaotic sequence, and its optimization speed is easily af-
fected by uneven traversal. In this paper, tent chaotic map
(TCM) was used to generate initial sequence. Tent map [39]
is a kind of nonlinear dynamic discrete chaotic mapping
method which is widely used at present. It has uniform
distribution function and good correlation. It has simple
iteration and fast search speed. It can generate random and
ergodic initial sequence when used in Firefly sequence
initialization.

xi+1 � a − (1 + a) xi


, (6)

where a ∈ [0, 1], xi ∈ [0, 1].
After generating chaos mapping, the chaos space is

mapped to the optimal solution space by

ud,b � Ub − Db(  · xi+1 + Db, (7)

where Ub and Db are the upper and lower limits of d di-
mension variables respectively.

According to the set chaotic mapping function, the
chaotic sequence is generated from formula (2), and then the
chaotic sequence is mapped to the optimization space by
using formula (3) to search the optimal solution.&e process
of improved chaotic firefly optimization SVM parameter
penalty factor δ and Gaussian kernel σ is shown in following
[40]:

Step 1: initialize parameters
Step 2: generate initial firefly sequences using tent
chaotic map
Step 3: the parameters σ and δ that need to be optimized
are taken as the initial positions of fireflies and mapped
to the search space
Step 4: the light intensity of firefly was taken as the
objective function value and calculated
Step 5: calculate the distance to attract fireflies
Step 6: calculate the attractiveness of fireflies
Step 7: update adaptive step size
Step 8: if the stop condition is met, go to the next step;
otherwise return to Step 4
Step 9: complete the optimization and output the
optimal parameters σ and δ

3. Experimental Results

3.1. Open Bearing Fault Data Set. &e experimental data of
bearing damage degree evaluation are from the bearing data
of Case Western Reserve University [41]. &e test bench is
shown in Figure 5, it consists of a 2 HP motor, a torque
sensor, a dynamometer and control electronics device. &e
fault of the drive end bearing and the fan end bearing are
simulated on the test bench. &e drive end bearing model is
SKF6205, and the fan end bearing model is SKF6203, the
bearing supports the motor shaft, the bearing pedestal at the
fan end and the drive end of the motor. An acceleration
sensor is placed above them to collect the vibration signal of
the fault bearing. By using EDM technology, the single point
local damage was processed manually. &e fault points were
set on the rolling body, outer ring raceway and inner ring
raceway respectively, with diameters of 0.18mm, 0.36mm
and 0.54mm, these fault points simulate three different
degrees of damage of rolling bearing, which are minor stage
of failure, macro stage of failure and final stage of failure.&e
vibration signal is collected under four different load con-
ditions, and the sampling frequency is 12 kHz. In this paper,
the drive end bearing SKF6205 is selected for research. &e
specific bearing information is shown in Table 1. As the basic
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element of rolling bearing, the fatigue pitting and spalling
damage is a common failure mode of rolling bearing.
&erefore, this paper takes the rolling element as the re-
search object to carry out the fault diagnosis research of
bearing with different damage degree. &e motor speed is
1750 rpm and the load is 1492W.

3.2. Definition of Bearing Failure. Bearing failure, especially
fatigue pitting and wear, is usually a gradual development
process from weak to severe. Figure 6 shows the fault de-
velopment process of bearing, which can be roughly divided
into four stages, namely, four types: the initial stage of
failure, the stage of minor failure, the stage of macro failure
and the stage of final failure. It can be seen that the bearing
can work normally about 80% of the time in the basic rated
life cycle. Once the fault occurs, the deterioration process of
the fault is not linear development, but changes according to
the exponential law. &erefore, it is very important to re-
search the development process of bearing fault and grasp
the change law of signal in the process of fault development,
to carry out the assessment of bearing health status, to
predict the remaining life, to formulate necessary mainte-
nance and repair measures, to ensure the normal operation
of machinery and reduce the occurrence of accidents.

&e research results show that with the deepening of
bearing fault, the physical quantities monitored will change.
Taking vibration signal as an example, the characteristic
change process is as follows:

&e first stage is the initial stage of bearing failure.
Currently, the total amount and frequency spectrum of noise
and vibration velocity are normal, but the peak energy and
spectrum have some symptoms, which reflect the initial
abnormal of bearing.&e characteristic frequency of bearing
fault occurs in the range of 20Hz–60 kHz in ultrasonic
section.

&e second stage is minor stage of failure, which is
mainly the minor pitting or damage on the surface of parts.

At this time, the noise increases slightly, the signal fault
characteristics are weak, and the fault information is easy to
be submerged by noise. &e total vibration velocity and
frequency spectrum change is not prominent, but the total
peak energy has a greater increase, and the frequency
spectrum is more prominent.&e characteristic frequency of
bearing fault occurs in the range of 500Hz–2 kHz.

&e third is the macro stage of failure. &e slight fault
gradually expands and becomes more obvious.&e noise can
be heard and the total vibration speed increases greatly. &e
fault characteristic frequency, harmonic and sideband of the
bearing on the frequency spectrum are clearly visible. &e
peak energy becomes larger and the frequency spectrum is
more obvious than the second stage. &e bearing failure
frequency occurs in the range of about 0-1 kHz. Generally, it
is recommended to replace the bearing at the later stage of

A

B C D
E

Figure 5: Bearing test ring. A: fan end bearing; B: electronic motor; C: drive end bearing; D: torque transducer; E: dynamometer.

Table 1: Drive end bearing parameters (mm).

Type External diameter Internal diameter &ickness Diameter of rolling element Pitch diameter Number of rolling
6205-2RS
JEM SKF 52 25 15 7.94 39 9

1 2 3
4

L10 Time

Disaster Destruction 
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Figure 6: Four stages of rolling bearing fault development (L10 is
the basic rated life of the bearing): (1) initial stage of failure, (2)
minor stage of failure, (3) macro stage of failure, and (4) final stage
of failure.
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the third stage. At this time, the rolling bearing failure
characteristics such as pitting, spalling and wear can be
observed by naked eyes.

&e fourth stage is the final stage of the fault.&e damage
degree of the bearing is further deteriorated, large area
spalling, the noise intensity is obvious, the total vibration
velocity and amplitude are significantly increased, and the
bearing fault characteristic frequency on the vibration speed
spectrum is replaced by larger random high-frequency noise,
the total peak energy increased rapidly and showed unstable
changes. &is will lead to functional failure, and the bearing
must not be allowed to run in the final stage of fault de-
velopment, otherwise catastrophic damage may occur.

Our research shows that if the whole service life of the
rolling bearing is 1, then the bearing will work normally in
the first 80% of its life cycle from the moment the bearing is
put into service. &e later life cycle time corresponds to the
fault development stage of rolling bearing, and its remaining
life is 10%∼20% in the first stage, the second stage is 5%–
10%, the third stage is 1%–5%, and the fourth stage is about 1
hour or 1%. &erefore, in order to avoid the catastrophic
failure of bearing development to the final failure stage, it is
necessary to monitor the working state of the bearing, in
order to ensure the safe and reliable operation of the ma-
chinery, the fault feature information is extracted to detect
the small fault and initial anomaly early, and necessary
maintenance and repair measures are taken.

3.3. Experimental Analysis of Signal SpectrumCharacteristics.
According to the calculation, the rotation frequency of the
shaft is 29.2Hz, and the fault characteristic frequency of the
rolling element is fo � 137.6Hz according to the geometric
parameters of the bearing and the rotation frequency of the
shaft. Figure 7 shows the time domain waveform and
spectrum of rolling element signal in normal state and three
different damage degrees. Figure 7(a) shows the spectrum of
normal signal. It can be seen from the figure that the main
frequency of signal under normal condition of bearing is
concentrated in low frequency band, the main characteristic
frequencies are 87.89Hz, 1037Hz and 2104Hz, which are 3
times, 37 times and 71 times of the shaft rotation frequency,
respectively. Figure 7(b) shows the spectrum of slight
damage of rolling element, and compares the spectrum of
normal state, the bearing develops from normal to slight
damage, and the frequency component increases and the
frequency value begins to increase. &e main frequency
components are 3000–3500Hz, of which 1400Hz, 3176Hz
and 3434Hz are the multiple frequency of rolling element
characteristic frequency. Figure 7(c) shows the spectrum of
moderate damage signal of rolling element. From slight
damage to moderate damage, the main frequency compo-
nents basically remain unchanged, the amplitude of a small
part of low-frequency and low amplitude clutter increased,
and the amplitude of high-frequency components decreased
slightly. &e main frequency components of 1400Hz,
2730Hz and 3287Hz were the multiple frequency of rolling
element characteristic frequency. Figure 7(d) shows the
spectrum of rolling serious damage signal. From moderate

damage to damage injury, the clutter frequency of high-
frequency part of main frequency components is less, and
energy is concentrated on several prominent high-frequency
components, among the main frequency components,
1406Hz, 3029Hz and 3445Hz are the multiple frequency of
rolling element characteristic frequency.

3.4. IMPE Feature Extraction. Based on the optimized
parameter m � 5, t � 1, λ � 20, N � 2048 mentioned above,
the multi-scale arrangement entropy of all samples in four
states of bearing is calculated. Figure 8 shows the mean
value of permutation entropy for different health states of
bearings. It can be seen from the figure that when the scale
factor is 1, the PE value of bearing normal state vibration
signal is less than that of other three fault states. &e
reason may be that the dynamic characteristics of the
vibration signal will change and the PE value and increase
accordingly when the rolling bearing has a local fault.
&erefore, permutation entropy method is suitable for
rolling bearing fault monitoring, and is an effective means
for health monitoring and fault detection. For example, in
the above cases, a PE value of 0.75 can effectively dis-
tinguish the fault state from the normal bearing. It is also
found that although the single scale permutation entropy
can detect the normal and fault bearings, it cannot judge
the severity of the fault.

In addition, it can be seen from Figure 8 that the multi-
scale arrangement entropy values of three bearing vibration
signals with different severity degrees have significant dif-
ferences under different scale factors. In other words, the
permutation entropy of the four states is arranged according
to a certain size relationship under a certain scale, while the
PE value size relationship of the four states is no longer
tenable in another scale. &is shows that the permutation
entropy of different states has its own fluctuation range on
multi-scale, and the fluctuation range of permutation en-
tropy of different states has certain overlap and intersection.
When the scale factor is 1, the PE value of each state is more
obvious, but with the increase of scale factor, the PE value of
each state is closer to the original value, which shows that
increasing the scale factor blindly cannot improve the ability
of IMPE to distinguish different states. &is is because the
overall influence of fault characteristics on permutation
entropy is averaged by coarse granulation process.&e larger
the scale factor is, the more obvious the average effect is, and
the smaller the difference of permutation entropy of fault
characteristics is, therefore, in order to reduce the dimension
of feature vector and reduce the computational complexity,
the permutation entropy can be calculated by selecting the
first 10 scales. To sum up, the improved multi-scale per-
mutation entropy method can effectively reflect the fault
characteristics of rolling bearing and reflect the difference of
signal complexity under different states. However, as the
previous analysis, sometimes the usage of coarse-grained
sequences may reduce the usefulness of permutation entropy
method, so it is not suitable to directly use multi-scale
permutation entropy features for fault identification and
classification.
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3.5. Diagnosis Results and Analysis. Four kinds of samples,
including normal state, slight damage, moderate damage
and serious damage, were selected for experimental study.
&e status category labels are 1,2,3,4, and 30 samples are
selected for each state, with a total of 120 samples. &ere are
40 samples in 10 groups as training set, and 80 samples in 20
groups as test set.

&e extracted IMPE features are input into SVM classifier
for training, and the parameters of SVM are optimized by

CFOA. CFOA initial value are set by: the maximum pop-
ulation size is 30, the number of iterations is 200, the light
absorption coefficient is 1, the step factor is 0.6, and the
maximum attraction is 1. Fault detection accuracy is used as
fitness function, CFOA is used to optimize SVM parameters.
&e optimization interval of penalty factor is 0.001–1.00, and
that of kernel function is 1.00–100.00. After optimization, the
optimal penalty factor δ � 10.8429 and the parameter of
Gaussian kernel function σ � 0.4853.&e training data is used
as the input training SVM, and the test data is input into the
trained SVM for state classification.&e final diagnosis results
are shown in Figure 9. 78 of the 80 test samples were identified
accurately, the correct rate of diagnosis was 97.5%, and the
classification accuracy was high. All the normal samples are
correctly identified. Among the three bearing samples with
different damage degrees, the serious damage status is cor-
rectly identified, which is of great significance for timely
detection of serious faults and necessary maintenance and
repair. One slight damage sample was identified as a serious
damage sample, and one moderate damage sample was
identified as a slight damage sample. &e experimental results
show that the IMPE-SVMmethod proposed in this paper can
accurately judge the bearing damage with different severity,
and the diagnosis effect is good.

In order to verify the advantages of the proposed
method, Wavelet, PE, MPE and IMPE features of different
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Figure 8: Permutation entropy of bearing vibration signals in
different health states.
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Figure 7: Time domain waveform and spectrum of rolling element with different damage degree. (a) Normal state. (b) Slight damage of
rolling element. (c) Moderate damage of rolling element. (d) Serious damage of rolling element.
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state samples were extracted for testing. &e recognition and
prediction results of different states are shown in Table 2.
Firstly, through the verification of wavelet feature extraction,
we use the method of literature [40, 41] to extract wavelet or
modified wavelet features. From the results, it can be seen
that the accuracy of the method based on wavelet is low,
while the overall performance based on permutation entropy
is excellent. It can be seen from the table that the classifi-
cation accuracy of bearing in different health states is rel-
atively high when IMPE is used as the feature, while the
classification accuracy of individual state samples is low
when MPE and PE are used as features, for example, MPE
for class 3 moderate damage samples, PE for class 2 slight
damage samples and class 3 moderate damage samples. In
general, IMPE method is better than MPE and PE methods,
which shows that IMPE can effectively extract weak fault
features of bearings.

&e genetic algorithm and particle swarm optimization
algorithm are compared with the improved chaotic firefly
optimization algorithm proposed in this paper. Table 3
shows the training and test results of different SVM

parameter optimization methods. It can be seen from the
table that the optimal training accuracy of SVM optimized
by improved chaotic firefly algorithm is slightly lower than
that of particle swarm optimization algorithm and genetic
algorithm when IMPE is used as fault feature, but its pre-
diction accuracy is the highest, and compared with the other
two algorithms, the improved chaotic firefly optimization
algorithm takes the shortest time.

Figure 10 shows the comparison of the classification
ability of our SVM classifier and several other classifiers
based on the characteristics of IMPE in this paper. Among
them, CO-PNN [42] is the improved coyote optimization
algorithm based probabilistic neural network which get the
accuracy of 94.26%. &e method of 2D-CNN [43] get the
accuracy of 95.31%. &e coyote optimization algorithm
based probabilistic neural network (ICOA-PNN) [44] and
the spiking neural network (SNN) [45] get the accuracy of
98.26% and 97.18%, respectively. &rough comparison, we
can see that our method has achieved the best results.

Although the above four methods are based on neural
network, they do have more vitality in classification, but
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Figure 9: Fault classification results of bearing with different damage degree.

Table 2: Diagnostic results of different feature extraction methods.

Feature extraction 1 2 3 4 Total accuracy (%)
Wavelet [40] 78 79 75 76 77
Wavelet [41] 83 81 79 84 81.75
PE 95 85 90 95 91.25
MPE 100 95 90 95 95
IMPE 100 95 95 100 97.5

Table 3: Training and testing results of different parameter opti-
mization methods.

Parameter
optimization Training accuracy (%) Test accuracy (%) Time

(s)
GA 98.75 96.25 71.67
PSOA 100 97.5 15.67
FA 100 97.5 9.00
CFOA 97.5 98.75 14.33
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these methods often have better performance for image
classification. Mechanical fault diagnosis is often based on
one-dimensional signal. In those classification works, the
weak classifier can also complete the task well. Importantly,
from the mechanism of the algorithm, SVM has lower re-
source dependence, so it can be implemented on a simpler
computing platform.

4. Conclusion

Permutation entropy is conducive to mining useful infor-
mation from the complex and changeable weak signal with
strong noise interference, which provides rich ideas,
methods and technical means for early fault feature ex-
traction of machinery. In view of the shortcomings of tra-
ditional MPE calculation process and the optimization of
SVM parameters, the corresponding improvements are
proposed. In order to solve the problem that only consid-
ering a single coarse-grained sequence under a certain scale
may lead to the loss of feature information, this paper has
proposed to calculate the time series with equal overlapping
segments, that is, considering all coarse-grained sequences
under the same scale, which can reflect the fault feature
information of signals more comprehensively. In order to
solve the problem that the feature extraction may not be
refined enough by calculating the mean value of the first-
order moment in traditional MPE calculation, a calculation
method based on the skewness of the third-order moment
has been proposed.&e calculation method is more sensitive
to the complexity and fluctuation of the signal, better de-
scribes the feature details, and effectively extracts the fault
features. In order to optimize the key parameters of SVM
classifier, an improved chaotic firefly algorithm has been
proposed to optimize SVM parameters. IMPE has been
applied to feature extraction of early weak fault of rolling
bearings. Compared with traditional PE andMPE, it is found
that the IMPE proposed in this paper can quantify different
degrees of damage more effectively, is more sensitive to weak
faults and has better stability. Experimental results show that
the new method of early weak fault identification based on
IMPE-SVM can effectively detect the rolling bearing faults
with different severity.
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