
Research Article
Acoustic Diagnosis of Rolling Bearings Fault of CR400 EMU
Traction Motor Based on XWT and GoogleNet

Gang Yang ,1 Yuqian Wei,2 and HengKui Li3

1School of Mechanical Engineering, Southwest Jiaotong University, No. 111, North 2nd Ring Road, Jinniu District,
Chengdu 610036, Sichuan Province, China
2Tangshan Insitute, Southwest Jiaotong University, No. 38, Huayan North Road, Jichang Road, Lubei District, Tangshan 063000,
Hebei, China
3CRRC Qingdao Sifang Co LTD, No. 88, Jinhong East Road, Jihongtan Street, Chengyang District, Qingdao 266109,
Shandong Province, China

Correspondence should be addressed to Gang Yang; yanggang@swjtu.cn

Received 10 July 2022; Revised 5 October 2022; Accepted 11 October 2022; Published 1 November 2022

Academic Editor: Arturo Garcia-Perez

Copyright © 2022 Gang Yang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acoustic diagnosis has been a research hotspot in recent years because of the advantages of noncontact signal acquisition.
However, acoustic diagnosis technology has not been applied to bearing fault diagnosis of Electric Multiple Units (EMU) traction
motor. Traditional fault diagnosis methods are difcult to diagnose acoustic signals with complex noise. An intelligent fault
diagnosis method based on Cross Wavelet Transform (XWT) and GoogleNet model is proposed in this paper. Firstly, the fault
feature enhancement algorithm is proposed using XWTand bandpass fltering. Secondly, the CR400 EMU traction motor bearing
fault test bed is built to collect real fault acoustic signals from two diferent positions, then XWT is applied to the original signal to
identify the fault feature frequency band, then bandpass fltering is used to flter out the noise frequency band other than the fault
feature frequency band. Finally, the kurtosis spectrum of the denoised signal and the original signal are input into GoogleNet,
respectively, for fault classifcation. Te result shows that (1) GoogleNet achieves 98.23% accuracy in the fault classifcation for
denoised signals, while only 89.66% accuracy for the original signals. (2) Deep learning is an efective method for the acoustic
diagnosis of motor bearing faults in EMU trains.

1. Introduction

Te railway transportation system plays a major role in the
rapid development of the national economy. As the core
component of the train, the health status of the traction
motor directly afects the safety of train operation [1].
According to the survey, bearing failure is one of the most
frequent train faults [2–4]. When the bearing failure cannot
be found, that may lead to train derailment, resulting in huge
accidents and economic losses. Terefore, it is necessary to
monitor the train bearing and get the health status of the
bearing in time. As a traditional diagnostic technology, the
diagnosis technology based on vibration signals has been
improving and has become the mainstream fault diagnosis
technology [5–8]. In recent 15 years, acoustic diagnosis

technology was very important in bearing condition mon-
itoring and was always the research hotspot of fault diagnosis
[9–15]. Previous studies have shown that acoustic mea-
surement technology can be successfully applied to the feld
of fault diagnosis [16, 17]. Compared with the vibration
signal acquisition method, it is more convenient to collect
acoustic signals. Tere is no need to drill the bearing seat,
and the strength of the structure will not be afected.
Terefore, acoustic diagnostic technology has more ad-
vantages than vibration diagnosis technology.

Although acoustic diagnostic technology has advantages,
in practice, acoustic signals are always extremely complex
and contain a lot of noise, so it is difcult to extract fault
features from original signals, which brings great difculty to
the reliability of acoustic diagnostic technology [18]. With
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the development of computer technology, machine learning
has been widely used in the feld of mechanical equipment
fault diagnosis. By taking the time-domain statistical
characteristics of the original signal or denoised signal as the
input dataset, excellent fault diagnostic results can be
achieved by using excellent algorithms such as KNN, SVM,
andDBN [19–22]. Convolutional neural network (CNN) has
superior performance in the feld of feature recognition. By
taking the characteristic data of the signal as the input data of
the CNN for deep feature extraction, which can achieve an
excellent fault classifcation function. For example, Fengli
proposed deep convolution domain advisory transfer
learning (DCDATL), in which the deep convolution residual
feature extraction method is used to extract the deep fault
features from the bearings signal, and fnally the fault
classifcation achieves an accuracy of more than 90% [23].
Alexander takes the kurtosis spectrum of acoustic emission
signal as the input image of LeNET5 network and fnally uses
the softmax classifer for fault classifcation. Under the
working condition of 250 rpm–500 rpm, he achieved a
classifcation accuracy of 95.6% to 100% [24]. Zhan pro-
posed a normalized convolutional neural network model,
applied the model to the fault classifcation of the bearing
dataset of Western Reserve University, and fnally achieved a
classifcation accuracy of 98.5% [25]. Liu used a probabilistic
neural network (PNN) to diagnose the denoised vibration
signal and obtained 100% classifcation accuracy [26]. Zhang
et al. applied a support vector machine (SVM) to intelligent
fault diagnosis of bearings and fnally achieved 89.58% ac-
curacy on the overall sample [27]. Appana extracts the deep
feature of the signal through the self built CNN architecture
and fnally uses softmax to classify the fault type, achieving
an accuracy rate of 86.5% [28]. Tao uses DBN for bearing
fault identifcation and compares the diagnostic efect of
DBN with SVM BPNN and KNN [29]. Liu et al. proposed
Categorical Adversarial Autoencoder (CatAAE) for unsu-
pervised bearing fault diagnosis. Finally, under the SNR of
20 db to −4 db, the diagnostic accuracy is 96.76% to 85.76%
[30]. Kumar et al. used ANN to diagnose the signals after
wavelet denoising and achieved 96.67% accuracy [31]. At the
same time, using a machine learning algorithm for fault
classifcation and comparing the classifcation accuracy of
the model on the denoised signal and the original signal can
also verify the efect of denoising.

Cross wavelet transform (XWT) has been widely used in
the feld of regional climate analysis. It can be used to analyze
the coherence of two signals in the time-frequency domain
and obtain a common frequency band [32]. Research shows
that XWTcan be used to enhance the fault feature of bearing
signals, but XWT is rarely used in the feld of fault diagnosis.
For example, Jimeng proposed a bearing fault feature en-
hancement method based on XWT, and his experimental
comparison showed that the bearing fault feature was en-
hanced in the time and frequency domain of the vibration
signal [33]. Lihua applied XWTto transformer fault diagnosis,
XWT was applied to the vibration signals collected from
diferent directions. Ten, the principal components of the
signal were extracted according to the cross wavelet coherence
spectrum. Te results show that the interference components

in the signal were greatly reduced and the fault feature were
enhanced [34]. At present, XWT has not been applied to the
research of acoustic signal fault feature extraction. Aiming at
the problem that it is difcult to extract fault features from the
complex sound produced by a working train traction motor.
Combining with XWT and bandpass fltering, this paper
proposed a method of fault feature enhancement. Te in-
novations of this paper are as follows: (1) in order to study the
acoustic diagnosis of bearing fault based on the real acoustic
signal of traction motor, we have established a CR400 ex-
perimental platform for collecting acoustic signal of train
traction motor bearing faults; (2) the fault feature frequency
band (coherent frequency band) is identifed by wavelet
coherence analysis of the acoustic signals; (3) fnally, the
kurtosis spectrum of the signal is used as the input image
dataset of CNN to realize the acoustic diagnosis of the traction
motor bearing of CR400 EMU.

Te layout of this paper is as follows: Section 2 intro-
duces the fault feature enhancement method proposed in
this paper, Section 3 introduces the deployment of the ex-
perimental platform and the source of sound data, and
Section 4 provides the details of the processing of fault
feature extraction. Finally, in Section 4.3, the fault classif-
cation of bearing based on GoogLeNet is done to verify the
efectiveness of this method. In the end, the research of this
paper is summarized in Section 5.

2. Fault Feature Enhancement Algorithm
Based on XWT

In practice, the waveform of the sound signal emitted by the
working traction motor is very complex. Tere are many
noise sources in the sound generated by the motor, so it is
difcult to identify the bearing fault. When the noise is
removed out from the original signal, the periodic impact
component caused by the bearing fault in the signal will be
more obvious. In order to remove the noise component in
the signal, this paper proposed a method combining XWT
and bandpass fltering to flter the fault feature frequency
band of the original signal. Te feature signal is recon-
structed based on the method to achieve the function of
noise reduction. In the following, the sound signal emitted
by the traction motor is described as xsound(t) (abbreviated as
xs(t)) for convenience of expression.

2.1.WaveletCoherenceAnalysisBasedonXWT. Based on the
theory of wavelet analysis, XWT can be used to analyze the
coherence of two sets of time-domain signals in their whole
frequency domain. Multiple sound signals are collected from
diferent directions for the same target, and these sound
signals contain noise and fault signals similarly. In this
paper, two microphones will be used to collect the sound of
the working traction motor from two diferent directions,
collected signals are called xs1(t) and xs2(t), respectively. Due
to diferent sound propagation paths, the signals collected by
the microphone at diferent positions will be diferent. Based
on the principle of the wavelet transform, XWT is applied
between xs1(t) and xs2(t) as follows:
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where a is the scaling factor, τ is the translation factor, ∗
represent complex conjugate, ψ(t) is the morlet wavelet
function, ω0 is the initial phase angle. Te absolute value of
Wxs1−xs2(a,τ) is the cross wavelet power spectral density. Te
higher the value, the greater the coherence between xs1(t)
and xs2(t). Due to the randomness and instability of noise,
the cross wavelet power spectral density between noise
signals will be very small, that is, its coherence is very small.
According to the diference of coherence content, in the
complete frequency band of the traction motor signal, the
noise and fault signal will be easily distinguished [32, 35]. In
order to visually observe the coherence of the whole fre-
quency band and the frequency band of noise and fault
signal, the wavelet coherence spectrum of xs1(t) and xs2(t)
needs to be made. In the wavelet coherence spectrum, the
coherence is expressed by the brightness of the color.

2.2. Bandpass Filter. Te bandpass flter can transmit the
signals within a specifc frequency range, and block the
signals outside this frequency range to achieve the purpose
of selective transmission. After identifying the noise fre-
quency band or fault feature frequency band, the noise signal
can be purposefully deleted from the original signal by using
bandpass flter. At present, bandpass flter has been widely
used in signal processing.

2.3. Steps of Fault Feature Enhancement. According to the
wavelet coherence spectrum, the frequency band of the noise
can be identifed, and the design parameters of the bandpass
flter can be determined. Te algorithm steps of fault feature
enhancement based on wavelet coherent spectrum plus
fltering are as follows:

(1) Deploy two microphones in two diferent positions
around the motor to collect two sets of sound signals
(xs1(t) and xs2(t)). For ensuring that the propagation
paths of xs1(t) and xs2(t) are diferent from each
other, the two microphones are placed at the posi-
tions of the motor with a diference of 90 degrees.

(2) Te cross wavelet transform is applied to xs1(t) and
xs2(t), and the wavelet coherent spectrum between
them is drawn. According to the light and dark
distribution of each frequency band in the wavelet
coherent spectrum, the frequency band of the noise
is determined. Based on this noise band, a bandpass
flter is designed.

(3) Te bandpass flter is used to flter and reduce the
noise of xs2(t) based on the wavelet coherent spec-
trum. Finally, the denoised signal is marked as
xfeature(t). Te fow of the whole process is shown in
Figure 1.

3. CR400 EMU Motor Bearing Acoustic
Data Experiment

An acoustic bearing fault test bed of the traction motor of
CR400 EMU is established. Te model of the traction motor
is YQ-625, its rated output power is 625 kW, and the
maximum output speed is 5600 rpm. Te test bearing is a
cylindrical roller bearing whose type is NU214. In this ex-
periment, the bearing is installed at the drive end of the
traction motor. Bearing specifcations are shown in Table 1.

Laser etching is used to produce single point damage.
Te width of laser etching damage is 0.3mm or 2mm which
are mild fault and severe fault respectively. Mild fault or
severe fault are produced on cage, ball, outer race, and inner
race, respectively. Tere are eight fault types, namely cage
mild fault, cage severe fault, ball mild fault, ball severe fault,
outer race mild fault, outer race severe fault, inner race mild
fault, and inner race severe fault. Tese fault types are re-
ferred simply to as CMF, CSF, BMF, BSF, ORMF, ORSF,
IRMF, and IRSF, respectively. Te fault bearings are shown
in Figure 2.

Five microphones are placed around the traction motor
to collect the sound signal when the traction motor is
working. Te layout of the test bed is shown in Figure 3. Te
bearing speed is set to 2414 rpm to simulate the working
condition of the train at 160 km/h.Te sampling rate is set to
54.94 kHz. Te sampling duration of bearing acoustic signal
is shown in Table 2.

4. Acoustic Diagnosis of CR400 EMU Motor
Faulty Bearing

4.1. Signal Denoising Based on XWT. Based on the method
proposed in this paper, we frst need to deploy two mi-
crophones around the motor. As shown in Figure 3, mi-
crophone 1 and microphone 2 are selected as research
objects. Because the relative positions of these two micro-
phones and the motor are 90 degrees diferent, and their
signal propagation directions are completely diferent. Te
acoustic signals collected by the two microphones are ab-
breviated as xs1(t) and xs2(t). Teir sound pressure fuctu-
ation waveforms are shown in Figure 4.

Taking the fault of CMF as an example, the method in
this paper is used to deal with it. Firstly, cross wavelet
transform is applied to xs1(t) and xs2(t), and then the wavelet
coherence spectrum is obtained, as shown in Figure 5.

It can be observed from Figure 5 that the noise fre-
quency band is between 0.125 KHz and 4KHz and below
0.03125 KHz, and the other frequency bands are coherent
frequency bands (common frequency bands). Ten, the
bandpass flter is used to reduce the noise of xs2(t), so that
only the coherent frequency band is retained in the signal.
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Table 1: Bearing specifcation.

Number of
roller

Roller
diameter
(mm)

Roller
length
(mm)

Width
(mm)

Intermediate
diameter (mm)

Outer raceway
diameter (mm)

Out
diameter
(mm)

Inner raceway
diameter (mm)

Inner
diameter
(mm)

16 13 13 23 97.5 110.5 125 84.5 70

Ball Mild Fault Ball Severe Fault

Cage Severe FaultCage Mild Fault

Inner Race Severe Fault

Inner Race Mild Fault

Outer Race Mild Fault

Figure 2: Faulty bearings.

Microphone 1

Microphone 2

Figure 3: Test bed.

Table 2: Summary of signal sampling duration.

Fault type CMF CSF BMF BSF ORMF ORSF IRMF IRSF
Sampling duration (s) 445 205 445 210 205 195 375 180

Xs1 (t)

Xfeature (t)

Xs2 (t)

XWT

Bandpass

Wavelet
Coherence
spectrum

Figure 1: Algorithm of fault feature enhancement.
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Ten, the fault characteristic signal is obtained. Te sound
pressure fuctuation waveform of xfeature(t) is shown in
Figure 6.

Compared with the original signal, the complexity of
xfeature (t) become lower. A large part of the noise in the
signal is fltered out, and the burr in the waveform is
eliminated to a great extent. Other fault signals have been
processed in the same way, and the repeated expression will
not be repeated.

4.2. Spectral Kurtosis Analysis of Feature Signal. Spectral
kurtosis (SK) was precisely defned by Antoni in 2006 [36].
As the more developed SK analysis for optimum selection of
the bandwidth, the kurtogram is accepted and used in fault
diagnosis, particularly in bearings. Moreover, kurtosis has a
high probability of carrying a high value for nongaussian
noises and fault feature [37]. When the bearing fails, there
will be a gap between its components and ferce collision will

occur between them under violent rotation.Te fault impact
causes a component of a specifc frequency band into the
original signal. In this paper, the spectral kurtosis of the raw
signal and feature signal is calculated based on short-time
Fourier transform. SK is very sensitive to the transient
impact included in the signal. When the noise is removed,
the SK value will increase to indicate that signal could better
refect the fault of the bearing.

Te kurtogram takes the frequency as the horizontal axis
and uses the color scale to represent the spectral kurtosis
value of each frequency. Figure 7 (left) shows the spectral
kurtosis of IRMF’s original signal, and Figure 7 (right) shows
the spectral kurtosis of its feature signal (xfeature(t)). It can be
seen from Figure 7 (right) that the spectral kurtosis is the
largest in the range of center frequency of 2.5753 kHz and
bandwidth of 1.7169 kHz, that is, the transient impact is the
most obvious in this range. In Figure 7, the maximum of
kurtosis (Kmax) of feature signal is 23.8332 which is sig-
nifcantly larger than the original signal’s 2.6636. Terefore,
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the xfeature(t) can better refect the bearings fault than the
original signal. In kurtogram, the frequency band corre-
sponding to the brightest color region can better charac-
terize the impact between bearing part [38].

Figures 8–14 show the kurtogram of other seven fault
feature signal. It can be seen that for all fault types, all the
Kmax of the fault feature signal are signifcantly greater than
their original signal. According to the defnition of spectral
kurtosis, the greater the value, the more obvious the impact
component in the signal. After the processing by the method
proposed, the noise in the original signal could be removed
to a great extent.

Tere is a great diference in spectral kurtosis for dif-
ferent types of fault data. Te diference of center frequency,
bandwidth, and maximum spectral kurtosis results in the
diferent light and dark distribution of the corresponding
kurtogram. So the kurtogram of xfeature(t) are used as the
feature images of bearing fault signal to represent the fault
condition.

4.3. Fault Diagnosis of EMU Motor Bearing Fault Based on
CNN

4.3.1. Preparation of Bearing Faults’ Kurtograms Dataset.
Figure 15 shows the preparation process of kurtograms
dataset. Te sampling duration of the signals are recorded in
Table 2. In order to increase the number of samples, the
equal interval overlapping segmentation method is adopted
to generate a sample signal. Te time length of a single
sample is set to 1 second and the interval time is set to 0.5
second. After dividing the signal, a total of 4512 sample

signals are generated. Ten, kurtograms of all sample signals
are randomly divided into a training dataset and testing
dataset in a ratio about 7 : 3.

4.3.2. Fault diagnosis Based on GoogleNet and Denoised
Signal. Convolutional neural network (CNN) is used for
fault classifcation, and the efectiveness of the proposed
method will be further verifed by comparing the classif-
cation performance of CNN on the original signal and fault
feature signal. Based on the original GoogleNet, a fault
classifcation model is established. GoogleNet uses the In-
ception structure to improve the sparsity of the network, so
as to improve the computing speed. And, GoogleNet has
higher performance than AlexNet and LeNet5. For more
details about GoogleNet, please browse to reference [39].
GoogleNet structure is shown in Table 3.

Since there are totally 8 types of bearing faults in this
paper, the classifcation number of GoogleNet was set to 8.
Te loss function used is cross entropy loss function, and
Adam optimizer is used to optimize all the weight param-
eters of GoogLeNet. Before fault classifcation, in order to ft
the dataset as soon as possible, the initial learning rate was
set to 0.001. Te model learns the kurtograms dataset 45
times in total, and the learning rate are changed every 15
times to ensure the stability of the model. Te learning rate
was set to 0.0001 and 0.00001 at the 16th learn and 31st learn,
respectively. Every time the model fts in the training dataset,
the performance of the model on the test dataset will be
output.

Figure 16 shows the ftting process of GoogLeNET to the
kurtogram dataset in this paper. Te blue curve in Figure 16
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Figure 11: Kurtogram of BMF.

Kmax =6.4195 at level 6, Optimal Window Length=128,
Center Frequency=22.9632 kHz, Bandwidth=0.42922 kHz

Kmax = 67.7292 at level 4, Optimal Window Length = 32,
Center Frequency = 2.5753 kHz, Bandwidth = 1.7169 kHz
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Figure 10: Kurtogram of IRSF.
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shows the change of the ftting degree of the model on the
training dataset.Te orange curve indicates the performance
of themodel on the test dataset after each ftting of themodel
to the training dataset. It can be seen that at the end of the
15th ftting, the ftting accuracy of the model on the training
dataset reached to 98.23%, then the classifcation accuracy
on the test dataset reached to 96.30%. Ten, as the learning
rate decreases to 0.0001, the ftting extent of the model
becomes better. At the end of the 45th ftting, the accuracy
has reached to 98.23%. Te result shown in Figure 16 shows
that the fault feature signal processed can efectively refect
the fault state of the bearing.

Te results show that the method proposed in this paper
can enhance the fault feature, and GoogLeNet can accurately
identify the fault types of faulty bearings according to the
information of kurtograms of fault feature signals.

4.3.3. Comparison Experiment for Denoise or Not. Te
original signal is divided based on the steps shown in Fig-
ure 15, but XWT-Bandpass noise reduction is not applied
before the division process. Ten, the kurtosis spectrum
dataset of all original signal samples is produced. Finally, the
kurtosis spectrum of the original signal is input into the

Kmax =3.8025 at level 7, Optimal Window Length=256,
Center Frequency=24.1436 kHz, Bandwidth=0.21461 kHz

Kmax =34.8563 at level 4.6, Optimal Window Length=48,
Center Frequency=2.8615 kHz, Bandwidth=1.1446 kHz
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Figure 12: Kurtogram of BSF.

Kmax =2.5647 at level 3.6, Optimal Window Length=24,
Center Frequency = 24.0362 kHz, Bandwidth = 2.2892 kHz

Kmax = 9.467 at level 4, Optimal Window Length = 32,
Center Frequency = 2.5753 kHz, Bandwidth = 1.7169 kHz
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Figure 13: Kurtogram of ORMF.

Kmax =1.0121 at level 3.6, Optimal Window Length=24,
Center Frequency = 24.0362 kHz, Bandwidth = 2.2892 kHz

Kmax = 13.9379 at level 3, Optimal Window Length = 16,
Center Frequency = 5.1506 kHz, Bandwidth = 3.4337 kHz
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Figure 14: Kurtogram of ORSF.
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GoogLeNet described in Table 3 for fault classifcation, and
the fault classifcation accuracy of the original signal is
obtained.

Figure 17 shows the ftting process of GoogLeNet to the
kurtogram dataset of original signal and fault feature
signals. Te blue curve and orange curve in Figure 17

Table 3: GoogLeNet structure.

Type Patch size/Stride OutputSize Depth #1× 1 #3× 3 reduce #3× 3 #5× 5 reduce #5× 5 Pool proj
Convolution 7× 7/2 112×112× 64 1
Max pool 3× 3/2 56× 56× 64 0
Convolution 3× 3/1 56× 56×192 2 64 192
Max pool 3× 3/2 28× 28×192 0
Inception (3a) 28× 28× 256 2 64 96 128 16 32 32
Inception (3b) 28× 28× 480 2 128 128 192 32 96 64
Max pool 3× 3/2 14×14× 480 0
Inception (4a) 14×14× 512 2 192 96 208 16 48 64
Inception (4b) 14×14× 512 2 160 112 224 24 64 64
Inception (4c) 14×14× 512 2 128 128 256 24 64 64
Inception (4d) 14×14× 528 2 112 144 288 32 64 64
Inception (4e) 14×14× 832 2 256 160 320 32 128 128
Max pool 3× 3/2 7× 7× 832 0
Inception (5a) 7× 7× 832 2 256 160 320 32 128 128
Inception (5b) 7× 7×1024 2 384 192 384 48 128 128
Avg pool 7× 7/1 1× 1× 1024 0
Dropout (40%) 1× 1× 1024 0
Linear 1× 1× 8 1
Softmax 1× 1× 8 0

segmentation
XWT &

Bandpass
filtering

XWT &
Bandpass
filtering

Sam
ple

Sam
ple

Kurtogram

0.5S 1S

Figure 15: Preparation process of kurtograms dataset.
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Figure 16: Faults classifcation accuracy.
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indicates the performance of the model on the the fault
feature signal. Te green curve and red curve in the fgure
shows the change of the ftting degree of the model on the

training dataset and test dataset of the original signal,
respectively. At the end of the ftting, the classifcation
accuracy of the original signal test set is only 89.66%. It can
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Figure 18: Confusion matrices of faults classifcation. (a) Denoised confusion matrix. (b) Original confusion matrix.

Table 4: Model calculation efciency.

Fault type CMF (%) CSF (%) BMF (%) BSF (%) ORMF (%) ORSF (%) IRMF (%) IRSF (%)
Original recall 95.88 78.86 95.88 82.54 79.67 81.75 95.11 89.72
Original precision 91.47 85.99 95.88 82.19 80.03 83.39 88.87 91.13
Denoised recall 97.38 95.12 98.13 96.83 96.75 95.04 99.56 99.07
Denoised precision 98.38 96.31 98.44 96.88 95.11 96.69 99.19 96.90

Table 5: Accuracy comparison table.

Name
Accuracy of each fault (%)

Ref source
CMF CSF BMF BSF ORMF ORSF IRMF IRSF

Our method 97.38 95.12 98.13 96.83 96.75 95.24 99.56 99.07 —
SVM — — 100 100 87.5 100 Ref [27]
CNN — — 46.9 90.3 96.9 Ref [28]
DBN 94.73

Ref [29]KNN 85.23
BPNN 78.13
CATAAE 96.76 Ref [30]
ANN 96.67 Ref [31]
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Figure 17: Faults classifcation accuracy.

10 Shock and Vibration



be seen that compared with the fault feature signal,
GoogLeNet’s ftting degree of the original signal is worse,
which refects that the fault feature of the signal after noise
reduction is more obvious. Figure 18 shows the confusion
matrices of classifcation of the fault feature signal and the
original signal. It can be seen from Figure 18 that the
classifcation accuracy of all fault types has been improved
after fault feature enhancement.

Te faults classifcation recall and precision of all fault
types before and after noise reduction are shown in Table 4.

4.3.4. Comparison with Other Diagnostic Methods. At
present, many classifcation methods have been used in
bearing fault detection, such as SVM, CNN, DBN, KNN, and
BPNN. And the application of these methods in the feld of
fault diagnosis has achieved good results.Te results of these
methods and our methods as well as the fault classifcation
accuracy of each fault of a part methods are listed in Table 5
to compare the efect. It can be seen from Table 5 that the
accuracy of our proposedmethod is higher than that of other
methods, and the accuracy rate of each fault is maintained
between 95% and 100%.Te performance and stability of the
method are better, which again demonstrates the superiority
of this method.

5. Conclusion

In this paper, microphones are used to collect the sound
signals of the working motor from diferent positions.
According to the principle of the cross wavelet transform
and bandpass fltering, the coherent frequency band is
distinguished out and reserved. According to the defnition
of spectral kurtosis, by comparing the spectral kurtosis
values of the original signal and the feature signal, it is
proved that the feature signal can better refect the impact
caused by bearing fault. Te kurtograms of feature signal is
input to GoogLeNet for fault classifcation and then an
accuracy of 98.23% was achieved. While the fault classif-
cation accuracy of the original signal by GoogLeNet is only
89.66%. So the efectiveness of the proposed method is
further proved. Terefore, the method proposed in this
paper can efectively remove noise and enhance the fault
feature, and excellent fault diagnosis can be achieved by
using a convolutional neural network.
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