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Accidents occur frequently while constructing deep foundation pits for metro stations, thereby risking substantial economic losses
and casualties. To subject the construction of such pits to scienti�c and rational risk assessment and overcome the limitations of
existing risk evaluation models and risk fusion problems, proposed here is a risk-assessment model for such pits based on fuzzy
evidential reasoning and the two-tuple linguistic analytic network process (TL-ANP). First, the risk loss indicators are optimized,
the weights of di�erent risk events and of each risk loss indicator in the metro-station deep-foundation-pit construction project
are calculated using TL-ANP, and trapezoidal fuzzy numbers are used to describe the occurrence probability of each risk event and
loss. Second, relying on a table of expert weight indices, the best–worst method based on generalized interval-valued trapezoidal
fuzzy numbers is used to determine the weights of experts. Finally, the overall risk grade of the construction project is evaluated by
aggregating the risk levels of all risk events through an evidence-reasoning algorithm.�e analysis results for a deep foundation pit
for a station on Line 5 of NanningMetro show that the model provides a quantitative basis for determining expert weights and risk
loss weights reasonably and improving the reliability of the evaluation system. Also, not only does applying the method show that
such a construction project can be judged as having a certain risk grade, but more importantly it can identify the key factors and
loss indicators a�ecting the overall risk grade of the pit, whereupon risk control measures can be adopted in a targeted manner. In
comparison with traditional methods, the proposed method is shown to be practical and e�ective, providing a reference basis for
analyzing the risks of similar projects in the future and guaranteeing construction safety.

1. Introduction

Constructing deep foundation pits (DFPs) is an essential but
high-risk part of any urban rail project, and the uncertain
factors in the construction process are the essential reasons
for the risks in metro DFP construction. During the con-
struction of a metro DFP, complex geological conditions and
the surrounding environment often lead to large-scale de-
structive accidents [1, 2]. For example, while constructing
Xianghu station on Line 1 of Hangzhou Metro in 2008, the
DFP collapsed because of severe overexcavation and failure
of the supporting system, resulting in more than 20 deaths

[3]. Between 2003 and 2017, there were 322 metro con-
struction accidents in Guangdong and Beijing in China, with
an average fatality rate of 89.4%. Given that in the past
decade, the total infrastructure investment in China’s metro
projects was ca. RMB 4080 billion, the ability to make timely
and objective assessments of the construction risks of metro
DFPs is pertinent to not only safety and maintenance costs
but also safeguarding the safety of construction workers and
residents, and risk management for metro DFP construction
is now of high priority in China [3].

Existing evaluation methods derived from probabilistic
risk analysis, such as fault tree analysis and Monte Carlo
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simulation, have greatly promoted the development of risk
management for metro DFP construction. However, the
existing assessment methods based on probabilistic risk
analysis have several drawbacks; their evaluation results
depend heavily on the completeness and accuracy of the risk
data, meaning that these methods often fail to give satis-
factory results [4, 5]. *erefore, to overcome the inherent
defects of these methods based on probability theory, many
scholars have adopted a series of fuzzy evaluation methods
to assess the risk of metro DFP construction. Wang and
Chen [6] combined fuzzy comprehensive evaluation and
Bayesian networks to evaluate the risks of DFP projects in
terms of risk probability, loss, and controllability, and Meng
et al. [1] applied hierarchical analysis and fuzzy set theory to
evaluating the risks of DFP supports. However, these fuzzy
evaluation methods lack a reasonable way to determine the
weights of experts, which is the key to collecting expert
evaluation information. *e best-worst method (BWM)
performs well in reducing the number of pairwise com-
parisons and maintaining judgment consistency [7], and it
has received increasing attention for resolving expert
weights.

*e overall construction risk of a metro DFP comprises
many subrisks combined in different ways, and each subrisk
has a complex interdependence. To analyze comprehensively
the overall impact of many risk events on the whole system,
a large amount of risk information must be fused to de-
termine the overall risk of metro DFP construction. *e
method of fuzzy evidential reasoning (FER) involves
modeling the risk uncertainty by combining fuzzy set theory
and belief structure, realizing risk information fusion
through an FER algorithm, and finally obtaining evaluation
results with different belief grades [8]. Du et al. [9] first used
fuzzy evidence theory to evaluate comprehensively the
construction risk of DFP engineering in 2014; the evaluation
results reflected the beliefs of experts about the risk grade,
but the method failed to solve the risk-assessment problem
when more than two continuous fuzzy evaluation grades
intersected. Wei et al. [10] proposed a new belief-structure
transformation method for cases in which the evaluation
grade is a multi-intersection fuzzy state, but they failed to
consider multiple risk evaluation indicators and their
weights. Also, determining the weight of each risk event is an
important part of integrating all the risk information, but the
previous single-risk evaluation methods struggle to analyze
reasonably the weight relationship of each risk event in
metro DFP construction; for example, the model con-
structed by the analytic hierarchy process (AHP) is a re-
cursive hierarchy and is unsuitable for systems with complex
levels [11–13], fuzzy comprehensive evaluation is very
subjective in determining the weight of each risk in the
evaluation object [14, 15], and fuzzy network analysis cannot
avoid information loss or distortion [16]. *erefore, there is
an urgent need to find a suitable method for determining the
weight of each risk event for a metro DFP construction risk
system.

To address the above shortcomings, established herein is
a new risk-assessment model for metro DFPs based on the
two-tuple linguistic analytic network process (TL-ANP) and

FER; this model optimizes expert weights and risk event
weights and refines the loss evaluation indicators in fuzzy
language. We then apply it to the engineering example of
a DFP for a metro station on Line 5 of Nanning Metro,
which offers a reference basis for future risk analysis of
similar projects. *e present research results can be used in
the risk management of constructing actual metro DFP
projects to ensure construction safety and reduce potential
losses.

2. Basic Theory

2.1. Fuzzy Evidential Reasoning (FER). Fuzzy set theory [17]
is used widely in model recognition, risk assessment, and
uncertain decision making. In different stages of DFP
construction, the information that can be collected for risk
assessment is often fuzzy, and fuzzy set theory can better
quantify risk assessment by transforming experts’ subjective
linguistic fuzzy judgments into fuzzy numbers. *e present
study uses trapezoidal fuzzy numbers, which are more
suitable for risk assessment in engineering construction.

Liu et al. [18] proposed that FER is a safety analysis
framework that combines evidential fuzzy set theory and
evidential reasoning, and it is commonly used to deal with
fuzziness or fuzzy uncertainty in fuzzy assessment problems.
For an evaluation of the indicators, suppose that the risk
event is el(l � 1, 2, . . . , L), the weight is λ � (λ1, λ2, . . . λL),
and the risk grade is H � Hn, n � 1, 2, . . . N􏼈 􏼉. *e general
steps of fuzzy evaluation using the FERmethod can be found
in the evidence fusion method of Yang et al. [19].

First, the results of expert scoring in the form of trap-
ezoidal fuzzy numbers should be converted into a belief
structure (Hn, cl

n), n � 1, 2 . . . N􏼈 􏼉, where cl
n is the evidence

for the object to be evaluated as Hn on evaluation indicator
el, which satisfies cl

n ≥ 0 and 􏽐 cl
n ≤ 1. *en, all the evidence

is merged using an FER algorithm, which is used to calculate
βn and βn,(n+1), where βn is the belief in the evaluation target
as a whole being rated as Hn, βn,(n+1) is the belief in the
evaluation target being rated as Hn or Hn+1 (i.e., there is an
intersection of fuzzy evaluation grades), and βn,(n+1) must be
allocated to βn and βn+1. Finally, the distributed belief and
the previously obtained belief βn are superimposed to obtain
the final result (Hn, βn), n � 1, 2 . . . N􏼈 􏼉 of the fuzzy evalu-
ation of the evaluation object.

2.2. Model of Generalized Linguistic-Values Two-Tuple.
Martinez and Herrera [20] proposed a model of a linguistic-
values two-tuple, which represented discrete language in-
formation as a continuous language-valued model, thus
overcoming the problem of information loss in a continuous
domain. Chen and Tai [21] proposed a model of a gener-
alized linguistic-values two-tuple and a conversion function,
which overcomes the defect of the uncertain value range of β.
If S � s0, s1, s2, . . . , sg􏽮 􏽯 is a discrete set of odd-dimensional
linguistic terms, then (si, α) is a linguistic two-tuple value
and β is the linguistic two-tuple value’s representative value.
β represents the result of the language symbol assembly
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operation, and the linguistic two-tuple values corresponding
to β can be obtained by the reversible function Δ:

Δ: [0, 1]⟶ S × −
1
2g

,
1
2g

􏼢 􏼡,

Δ(β) � si, α( 􏼁.

(1)

where i � round(β · g), α � β − (i/g), α ∈ (− (1/2g),

(1/2g)), and

Δ− 1
: S × −

1
2g

,
1
2g

􏼢 􏼡⟶ [0, 1],

Δ− 1
si, α( 􏼁 �

i

g
+ α

� β.

(2)

2.3.Two-TupleLinguisticAnalyticNetworkProcess (TL-ANP).
Many scholars use the fuzzy analytic network process to
determine risk factor weights, but there is information loss
in the process of converting language scores into triangular
fuzzy numbers [22]. To make up for this deficiency, Wan
et al. [16] used linguistic variables to represent the scores for
pairwise comparisons of risk sets and subrisks, capturing the
uncertainty in pairwise comparison judgments. *erefore,
herein TL-ANP is used to evaluate the weight of risk factors.
Classical ANP is extended by using linguistic variables to
replace the numerical values of the 1–9 scale, and the un-
derlying ideas are as follows:

First, linguistic two-tuple values are used to compare risk
factors in pairs to form a pairwise judgment matrix. Second,
the Eigenroot method is used to determine the weight vector
of the judgment matrix. Finally, the weight vector is pro-
cessed and integrated to obtain a supermatrix. Using
a similar method, the factor-set weight matrix can be ob-
tained, and then the limit value of the weighted supermatrix
is calculated to obtain the normalized weight value of each
risk factor. For the specific steps, see Section 4.3.

2.4. Generalized Interval-Valued Trapezoidal Fuzzy
Best–Worst Method (GITrF-BWM). BWM has become
a popular method for solving multicriteria decision-making
problems because of its efficiency in reducing the number of
pairwise comparisons and its good performance in main-
taining judgment consistency [23, 24]. Wan et al. [7] pro-
posed a new GITrF-BWM based on generalized interval-
valued trapezoidal fuzzy numbers (GITrFNs). In this ap-
proach, decision makers identify the best and worst experts
in a given situation; then according to the pairwise com-
parison, the weight of the expert is obtained. *e specific
steps are as follows:

Step 1: Determine the expert set S � s1, s2, ..., sn􏼈 􏼉.
Step 2: Decision makers decide who is the best expert sB

and the worst expert sw.

Step 3: Establish the corresponding relationships be-
tween the linguistic terms and the GITrFNs. (see
Table 1).
Step 4: Provide the linguistic reference preferences for
the best expert, and obtain the GITrF best-expert-to-
other-experts vector 􏽥GB � [􏽥gB1, 􏽥gB2, 􏽥gB3, . . . , 􏽥gBn],
where 􏽥gBj � [(gl

1Bj, gl
2Bj, gl

3Bj, gl
4Bj; hl

gBj), (gu
1Bj, gu

2Bj,

gu
3Bj, gu

4Bj; hu
gBj)].

Step 5: Provide the linguistic reference preferences for
the worst expert, and obtain the GITrF other-experts-
to-worst-expert vector 􏽥GW � [􏽥g1W, 􏽥g2W, . . . , 􏽥gnW],
where 􏽥gjW � [(gl

1jW, gl
2jW, gl

3jW, gl
4jW; hl

gjW), (gu
1jW,

gu
2jW, gu

3jW, gu
4jW; hu

gjW)].
Step 6: Let the optimal GITrF weight vector for experts
be 􏽥wj � [(wl

1j, wl
2j, wl

3j, wl
4j; hl

wj), (wu
1j, wu

2j, wu
3j, wu

4j;

hu
wj)]，which can be solved by establishing the fol-

lowing programming model:

min max
j

􏽥wB

􏽥wj

− 􏽥gBj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

􏽥wj

􏽥ww

− 􏽥gjW

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩

s.t. 􏽘
n

j�1
R 􏽥wj􏼐 􏼑 � 1,

w
l
1j ≤w

l
2j ≤w

l
3j ≤w

l
4j,

w
u
1j ≤w

u
2j ≤w

u
3j ≤w

u
4j,

w
l
4j ≤w

u
4j,

0≤ h
l
wj ≤ h

u
wj ≤ 1,

(j � 1, 2, . . . , n),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where R(􏽥wj) is the weight value of each expert, and 􏽥wB and
􏽥ww are those of the best and worst expert, respectively. *e
graded mean integration representation (GMIR) R(􏽥wj) of
the GITrFN 􏽥wj � [􏽥wl

j, 􏽥wu
j ] is defined as

R 􏽥wj􏼐 􏼑 �
1
12

w
l
1j + 2w

l
2j + 2w

l
3j + w

l
4j􏼐 􏼑h

l
wj􏽨

+ w
u
1j + 2w

u
2j + 2w

u
3j + w

u
4j􏼐 􏼑h

u
wj􏽩.

(4)

3. Risk-Assessment Process

*e risk-assessment process is shown in Figure 1 and is as
follows:

(1) *e risk indicator system is established regarding
4M1E (man, machine, method, material, environ-
ment), and the work-breakdown-structure risk-
breakdown-structure (WBS-RBS) method is used to
prepare the risk list for the metro DFP.

(2) In determining the expert weights, the best expert
and the worst expert are determined according to the
expert weight index table. GITrF-BWM is used to
analyze the weight of each expert, reduce the number
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of pairwise comparisons, and improve the rationality
of the expert-weight distribution.

(3) In terms of determining the weights of risk factors
and evaluation indicators, each expert evaluates the
relationship between each risk factor and each risk
loss index in the form of scoring to form a pairwise
judgment matrix. Herein, TL-ANP is used to cal-
culate the weights of the four loss indicators and of
each risk event so as to avoid the loss or distortion of
evaluation information.

(4) *e experts are then asked to rate the probability of
the risk event and the four loss indicators after
normalization. Compared to scoring only the
probability of risk and economic loss, this method
has a richer assessment content and canmake a more
refined assessment.

(5) *rough the risk-identification framework, the event
risk grade in the form of trapezoidal fuzzy numbers
is converted into the belief structure of the impact of
each risk event on the overall DFP risk and used as
evidence of risk information fusion. After integrating
the risk information, the most likely risk grade of the
whole project is obtained.

4. Risk-Assessment Preparation

4.1. Expert Weights. Many experts with different back-
grounds or fields are usually involved in risk assessment, and
they have diverse professional grade, comprehensive ability,
and familiarity with the assessed issues. We use these expert
backgrounds as the basis for determining the best and worst
experts, and we express the reference preferences of the best
and worst experts in linguistic terms.*e index scoring table
for determining the expert weights is given in Table 2.

min

ηl+
Bj +ηl−

Bj +ηu+
Bj +ηu−

Bj +ηl+
jW +ηl−

jW +ηu+
jW +ηu−

jW + ξl+
1Bj + ξl−

1Bj + ξl+
2Bj + ξl−

2Bj + ξl+
3Bj + ξl−

3Bj + ξl+
4Bj + ξl−

4Bj

+ξu+
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2Bj + ξu−
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3Bj + ξu−

3Bj + ξu+
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4jW

+ξl−
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s.t.

h
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wB − h
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u
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w
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n

j�1,l≠i
w

l
1j≤1,w

l
1i + 􏽘

n

j�1,l≠i
w
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4j≥1,w
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3Bj≥0,ξu+
4Bj≥0,ξu−
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1Bj≥0,ξu−
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3jW≥0,ξl+
4jW≥0,ξl−
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where the symbol ∨ is the maximum operator and the
symbol ∧ is the minimum operator.

Herein, fuzzy numbers are used to represent the com-
parative relationship among experts. However, the

traditional fuzzy numbers used directly to deal with un-
certain information have certain limitations because (i) the
same fuzzy language level has different meanings to different
people and (ii) the membership function of traditional fuzzy
numbers is an accurate function and so is inappropriate for
describing imprecise sensory information. *erefore, herein
GITrF-BWM is used to determine the expert GITrF weights.

To solve equation (3), some positive-deviation variables
and negative-deviation variables are introduced, and
a programming model such as equation (5) is established.
After solving equation (5), the optimal GITrF weight vector
can be obtained. It is noted that equation (5) is a goal
programming model because there are only some positive-
deviation variables and negative-deviation variables in the
objective function, and it can be solved using the LINGO 11
software.

4.2. Obtaining the Risk Grade of a Risk Event. In risk-control
systems, WBS-RBS is commonly used for risk identification.
After identifying all the risk events related to the con-
struction of a metro DFP, the risks are categorized upward
layer by layer until the total target of the system to establish
the risk indicator system for metro DFP construction.

According to the risk-assessment method provided
variously in the literature [25–27], the risk value is usually
expressed as Rl � Pl ∗Cl(l � 1, . . . L). After identifying all
possible risks with WBS-RBS, risk categorization is carried
out to establish a risk evaluation indicator system for metro
DFP construction, and then the probability of each con-
struction risk event and four loss indicators are evaluated in
the system. *e probability of occurrence and all types of
losses can be divided into five grades. *e loss is subdivided
into direct economic loss, construction delay loss, casualties
loss, and surrounding environmental impact loss. *e
classification criteria of these probabilities and various losses
can be set according to the suggestions in the aforemen-
tioned guide, and the membership function corresponding
to each grade can be obtained, as given in Tables 3 and 4.

Considering the weight of each expert’s score, m experts
evaluate the occurrence probability of the lth risk and the
four losses. *e membership function of each risk loss is
normalized by minimum-maximum normalization, and the
membership functions derived from the evaluation of dif-
ferent loss indicators are converted to the range of [0, 1] by
linearization. Taking the economic loss as an example, the
normalization equation is

c
i∗
l,e �

c
i
l,e − c

i
l,e,max

c
i
l,e,max − c

i
l,e,min

, (7)

where ci
l,e,max is ci

l,e,d in the membership function, and ci
l,e,min

is ci
l,e,ain the membership function; the same pertains to the

construction delay, environmental impact, and human
casualties, and the results are given in Table 5. After
normalization, each risk-loss evaluation is fused according
to the weight of each risk indicator, and the final mem-
bership functions of risk occurrence probability and loss
are
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Figure 1: Flowchart of risk assessment.

Table 1: �e corresponding GITrFNs and the expert score di�erence of the linguistic terms for the GITrF-BWM.

Linguistic terms GITrFNs Overall score di�erence of experts
Equally important (EI) [(1.000, 1.000, 1.000, 1.000; 1.000), (1.000, 1.000, 1.000, 1.000; 1.000)] (0, 5]
Weakly important (WI) [(0.782, 1.019, 1.154, 1.379; 0.800), (0.664, 0.899, 1.257, 1.500; 1.000)] (5, 10]
Fairly important (FI) [(1.648, 1.934, 2.075, 2.360; 0.800), (1.500, 1.789, 2.218, 2.500; 1.000)] (10, 15]
Very important (VI) [(2.647, 2.934, 3.076, 3.361; 0.800), (2.500, 2.790, 3.218, 3.500; 1.000)] (15, 20]
Absolutely important (AI) [(3.653, 3.938, 4.078, 4.363; 0.800), (3.500, 3.793, 4.222, 4.500; 1.000)] (20, 25]
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where ci
l,a, ci

l,b, ci
l,c, and ci

l,dare the evaluation results of the
fusion of the four normalized risk losses by experts. *e
expert weights are then fused to form a membership
function for the total risk loss of each risk event.

After obtaining the probabilities of risk events and the
total risk loss, the risk-identification framework is estab-
lished according to

Rk � Rka, Rkb, Rkc, Rkd􏼈 􏼉

� min Plia ⊗Csia􏼂 􏼃( 􏼁,􏼈

􏽐
p

li�1 􏽐
c
si�1 Plib ⊗Csib􏽨 􏽩

[p × c]
,

􏽐
p

li�1 􏽐
c
si�1 Plic ⊗Csic􏽨 􏽩

[p × c]
,

max Plid ⊗Csid􏼂 􏼃( 􏼁},

(10)

Table 4: Corresponding relation between risk loss grade standard and membership function (1).

Grade Language assessment Economic losses Delay time Environmental impact Casualties
1 Ignored C1≤ 500 C2≤1 C3≤ 50 C4≤ 5
2 Considered 500≤C1≤ 1000 1≤C2≤ 3 50≤C3≤100 5≤C4≤10
3 Serious 1000≤C1≤ 5000 3≤C2≤ 6 100≤C3≤ 500 10≤C4≤ 50
4 Very serious 5000≤C1≤ 10000 6≤C2≤12 500≤C3≤1000 50≤C4≤100
5 Catastrophic C1≥ 10000 C2≥12 C3≥1000 C4≥100

Corresponding relation between risk loss grade standard and membership function (2)
1 Ignored {0, 0, 250, 500} {0, 0, 1, 2} {0, 0, 25, 50} {0, 0, 2, 5}
2 Considered {250, 500, 1000, 3000} {1, 1, 3, 5} {25, 50, 100, 300} {2, 5, 10, 30}
3 Serious {750, 1000, 5000, 7500} {2, 3, 6, 9} {75, 100, 500, 750} {8, 10, 50, 75}
4 Very serious {3000, 5000, 10000, 55000} {4, 6, 12, 18} {300, 500, 1000, 5500} {30, 50, 100, 550}
5 Catastrophic {7500, 10000, 100000, 100000} {9, 12, 24, 24} {750, 1000, 10000, 10000} {75, 100, 1000, 1000}

Table 2: Expert weight indicator table.

Indicators Indicator grade
Length of service 0–5 5–10 10–15 15–20 ≥20
Record of formal schooling Specialized subject Undergraduate course Master’s degree Doctor Postdoctoral
*e title Other Primary Intermediate Deputy senior Senior
*e winning Other Municipal Provincial National World
Score 1 2 3 4 5

Table 3: Corresponding relation between risk occurrence probability grade standard and membership function.

Grade Language assessment Probability interval Membership function
1 Impossibility P≤ 0.01% {0, 0, 0.00005, 0.0001}
2 Infrequent 0.01%≤ P≤ 0.1% {0.00005, 0.0001, 0.001, 0.0055}
3 Occasionally 0.1%≤ P≤ 1% {0.00055, 0.001, 0.01, 0.055}
4 Possible 1%≤P≤ 10% {0.0055, 0.01, 0.1, 0.55}
5 Frequently P≥ 10% {0.055, 0.1, 1, 1}

Table 5: Relationship between risk loss grade and membership function after normalization.

Grade Economic losses Delay time Environmental impact Casualties
1 {0, 0, 0.0025, 0.005} {0, 0, 0.04, 0.08} {0, 0, 0.0025, 0.005} {0, 0, 0.002, 0.005}
2 {0.0025, 0.005, 0.01, 0.03} {0.04, 0.04, 0.12, 0.21} {0.0025, 0.005, 0.01, 0.03} {0.002, 0.005, 0.01, 0.03}
3 {0.0075, 0.01, 0.05, 0.075} {0.08, 0.13, 0.25, 0.38} {0.0075, 0.01, 0.05, 0.075} {0.008, 0.01, 0.05, 0.075}
4 {0.03, 0.05, 0.1, 0.55} {0.17, 0.25, 0.5, 0.75} {0.03, 0.05, 0.1, 0.55} {0.03, 0.05, 0.10, 0.55}
5 {0.075, 0.1, 1, 1} {0.375, 0.5, 1, 1} {0.075, 0.1, 1, 1} {0.075, 0.1, 1, 1}
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where “[ ]” means that only the effective combination, that is,
a certain grade of risk membership function needs to
consider the combination of probability and consequences,
need to see the risk evaluation matrix on the guide to assess,
called the effective combination, the risk evaluation matrix
in the risk guide is given in Table 6. Suppose that Hn denotes
risk grade n, which can be obtained by combining p sets of
probabilities and c sets of losses, where n � 1, 2 . . . 5,
1≤p≤ 5 and 1≤ c≤ 5.

4.3. Determining Weights of Risks and Loss Indicators.
After Sections 4.1 and 4.2, the relationship between the grade
of a single risk event and the membership function can be
obtained. To further obtain the overall risk level of the metro
DFP, classical ANP was extended by using linguistic vari-
ables instead of the values on a scale of 1–9 (Table 7), and TL-
ANP was proposed for the analytical calculation of risk
weights and indicator weights. TL-ANP determines the
weights of not only individual risk factors but also loss
indicators. Herein, the steps of TL-ANP are illustrated by the
example of determining the weights of each risk.

Step 1: Establish the network structure
*e risk factors are ujk, and a set of them is
Uj(j � 1, 2, . . . , 12). Based on the 12 risk-factor sets of
(i) pit precipitation, (ii) maintenance structure, (iii)
foundation treatment, (iv) pit excavation, (v) main
structure, (vi) surrounding buildings, (vii) expansive
rock, (viii) carbonaceous mudstone, (ix) fill, (x)
earthquake, (xi) surrounding pipelines, and (xii)
windstorm and the interactions among the risk factors
under them, a network structure is constructed
Step 2: Determine the weight matrix A
Construct a judgment matrix Ai � (ai

kj)n×n(i � 1, 2,

. . . n) for each set of risk factors based on the linguistic
two-tuple values. Here, wi � (wi1, wi2, . . . win)T is the
weight vector of matrix Ai(i � 1, 2, . . . n), which can be
obtained using equation (11). Integrating
wi(n � 1, 2.., n) gives the weight matrix A:

wik � △
􏽐

n
j�1△

− 1
a

i
kj􏼐 􏼑

􏽐
n
k�1 􏽐

n
j�1△

− 1
a

i
kj􏼐 􏼑

⎛⎝ ⎞⎠(i, k � 1, 2, . . . , n),

(11)

A �

a11 · · · · · · a112

⋮ ⋱ ⋮
⋮ ⋱ ⋮

a121 · · · · · · a1212

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

Step 3: Determine the supermatrix
Similar to the method for determining A, the matrix
Wij(i, j � 1, 2, . . . , n) is obtained by comparing the
interactions between the risk factors uik in the risk-
factor set Ui and those in the other risk-factor sets,
whereupon the final super matrix W is formed.
Step 4: Calculate the weighted supermatrix W

*is is done as

W � Δ Δ− 1
(A) × Δ− 1

(W)􏼐 􏼑. (13)

Step 5: Calculate the limit matrix W∞ and obtain the
weights of risk factors ω � (ω1,ω2, . . . ,ωt)

T

*is is done as

W
∞

� Δ lim
k→∞
Δ− 1

(W)􏼐 􏼑
k

􏼒 􏼓. (14)

5. Risk-Assessment Model for a Metro Deep
Foundation Pit

5.1. Transformation of Indicator Risk Belief Structure. *e
risk level of each event contributes to the overall risk grade of
the metro DFP construction. FER involves quantifying the
impact of each risk event on the overall risk grade rating, i.e.,
the risk level of each risk event is used as the evidence that
the overall project is rated as having a specific risk grade, and
all the evidence is aggregated at the end. *e belief structure
of the event risk level is transformed as follows:

(1) Draw the membership function curve of metro DFP
construction risk grade, i.e., the membership func-
tion curve of risk-identification framework
H � Hn, n � 1, 2, . . . 5􏼈 􏼉, and plot the membership
function curve of the risk levelRl for each risk event l.

(2) Find the intersection area of the membership
function of risk level Rl of each event l and the
membership function of each level Hn in the risk-
identification framework, which is the membership
degree of risk event l to the overall risk being rated
Hn. Finally, the above-obtained degree of the
membership function is normalized to obtain the

Table 7: Linguistic terms corresponding to linguistic variables for
pairwise comparisons.

Linguistic variable Linguistic terms
Extreme weak S0
Extreme weak S2
Weak S3
Moderately weak S4
Equally strong S5
Moderately strong S6
Strong S7
Very strong S8
Extremely strong S9

Table 6: Risk evaluation matrix.

Risk
Risk of loss

Ignore Consider Serious Very
serious Disaster

P≤ 0.01% 1 1 2 3 4
0.01%≤
P≤ 0.1% 1 2 3 3 4

0.1%≤P≤ 1% 1 2 3 4 5
1%≤P≤ 10% 2 3 4 4 5
P≥ 10% 2 3 4 5 5
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belief structure cln(n � 1, 2, . . . 5) of each event risk
grade in the risk-identi�cation framework.

5.2. Risk Information Fusion Based on Evidential Reasoning.
In Sections 4.3 and 5.1, each risk event’s weight and belief
structure are obtained, respectively, and the FER algorithm
is used for evidence fusion [8, 28] to obtain the overall risk
grade of metro DFP construction. First, we calculate the
basic belief σln of each risk event:

σln � ηlc
l
n, (15)

σlH � 1 − ∑
5

n�1
σln, (16)

where σln is the basic belief in risk event l having risk grade
Hn, and σlH is the risk that cannot be determined because of
lack of information:

σlH � 1 − ηl,

σH � k ∏
L

l�1
σlH .

(17)

�e FER algorithm is used to fuse the information of risk
factors to obtain the risk-evaluation results of the metro
DFP, and the speci�c algorithm is as follows:

σn � k ∏
L

l�1
σln + σlH[ ] − ∏

L

l�1
σlH





 , n � 1, 2, . . . 5, (18)

σn,(n+t) � kμ
max
Fn,(n+t) ∏

L

l�1
σln + σln+t + σlH[ ] − ∏

L

l�1
σln + σlH[ ]




− ∏
L

l�1
σln+t + σlH[ ] +∏

L

l�1
σlH

, n � 1, 2, . . . 5,

(19)
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Sn'

Sn+t
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Figure 2: Intersection of di�erent fuzzy grades.

Table 8: Formulas related to belief redistribution.

�e intersection of two fuzzy evaluation grades is less than 1 �e intersection of the two fuzzy evaluation grades is
equal to 1

�e magnitude of
redistribution to βn

βn,(n+t)n � (sn + AFn,(n+t)n · sn,(n+t)/sn + sn,(n+t) + s(n+t))βn,(n+t) βn,(n+t)n � AFn,(n+t)′n βn,(n+t)
�e magnitude of
redistribution to
βn+t

βn,(n+t)n+t � (AFn,(n+t)n · sn,(n+t) + sn+1/sn + sn,(n+t) + s(n+t))βn,(n+t) βn,(n+t)n+t � AFn,(n+t)′n+t βn,(n+t)

Distribution
coe«cient of βn

AFn,(n+t)n � (1/2)[(1 − (dn/dn + dn+t)) + (Sn/Sn + Sn+t)] AFn,(n+t)′n � 1 − (Sn′ + Sn,(n+t)′/Sn′ + 2Sn,(n+t)′ + Sn+t′)

Distribution
coe«cient of βn+t

AFn,(n+t)n � (1/2)[(1 − (dn+t/dn + dn+t)) + (Sn+t/Sn + Sn+t)] AFn,(n+t)′n � 1 − (Sn,(n+t)′ + Sn+t′/Sn′ + 2Sn,(n+t)′ + Sn+t′)
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

− 1

,

(20)

βn �
σn

1 − σH
, (21)

βn,(n+t) �
σn,n+1
1 − σH

. (22)

First, the fusion equations (18)–(20) are used to obtain
the mass functions σn and σn,n+t of the basic belief of the DFP
risk evaluation on Hn and Hn,(n+t), where Hn,(n+t) is the
intersection of fuzzy grades Hn and H(n+t). k is the nor-
malized coe«cient, and the �nal evaluation result is ob-
tained using equations (21) and (22). βn is the belief that the
overall pit risk is evaluated to gradeHn after combining the L
risk factors, βn,n+1 is the belief about the fuzzy risk grade
Hn,(n+t), and the fuzzy intersection belief βn,n+1 should be
redistributed to βn and βn+t.

Because there are di�erent cases of intersection of Hn
andH(n+t), the way to redistribute βn,n+1 is di�erent, and the
intersection of di�erent cases is shown in Figure 2. Suppose
that the maximum a«liation of the intersection of two fuzzy
grades is less than one, as shown in Figure 2. βn,n+1 can be
redistributed according to Table 8, and βn,(n+t)n and βn,(n+t)n+t
represent the allocated values βn,n+1. If the maximum
membership degree of the intersection of the two fuzzy
evaluation grades is equal to one, as shown in Figure 2, then
sn and sn+t become zero. Table 8 �e speci�c equations are
given in Table 8.

Finally, βn,(n+1) � (n � 1, 2, . . . 4, t � 1, 2, . . . 4, n + t≤ 5)
are redistributed to βn and βn+t, and the distributed belief is
superimposed on the belief obtained from equation (21) to
obtain the �nal βn.

6. Case Analysis

6.1. ProjectOverview. As part of the phase-I project of Line 5
of Nanning Metro, Jiangqiao Metro Station is located at the
intersection of Kunlun Avenue and Jiangqiao Road. �e
total length of the station is 156.2m, its width is 22.1m, and
its ®oor depth is 21.5–23.6m. Jiangqiao station is an un-
derground three-island platform station, and its construc-
tion method is cut and cover.�e construction pit support is
made from bored piles with internal support, and a water
curtain made of 800-mm-diameter rotary piles is used to
hold back the water in the thick �ll layer near the culvert at
the station’s western end. Figure 3 shows the DFP in cross
section, and Figure 4 shows its support schematically. Seven
dewatering wells are arranged in the main part of the station,
and four are set in the auxiliary structure. To the northeast of
the station are houses built by the villagers of Jiangqiao
Village, and to the northwest is the Dajiahui commercial
o«ce building. �ere are high-voltage cable towers to the
south of the station, and the surrounding military optical
cables and power pipelines are complicated. �e general
layout of the Jiangqiao station is shown in Figure 5.

6.2. DataAcquisition. Ten experts were invited to evaluate the
construction of the DFP project. �e best expert E3 and the
worst expert E6 were selected by a priori scoring based on each

Figure 3: Cross section of the foundation pit.

Steal pipe

support ø800*16

Doubel pilejet

grouting pile ø800156.2 m

22.1 m

21.5 m Reinforced Bored pile

ø1000@1300

Reinforced concrete

diagonal support 700*800 mm

Reinforced concrete

support 600*700 mm

Figure 4: Schematic diagram of foundation pit support.

Figure 5: General layout of Jiangqiao station.

Table 9: Linguistic fuzzy reference comparisons between criteria.

Expert E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
Best expert E3 FI WI EI FI VI AI WI WI FI AI
Worst expert E6 FI VI AI WI WI EI VI VI FI EI
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expert’s background, and the linguistic reference preferences of
the best and worst experts were provided (see Table 9). *en,
GITr-BWMwas applied to calculate the weights of each expert.
From Tables 1 and 9, the GITrF best-expert-to-other-experts
and other-experts-to-worst-expert vectors are obtained:

􏽥GB � 􏽥gB1, 􏽥gB2, 􏽥gB3, 􏽥gB4, 􏽥gB5, 􏽥gB6, 􏽥gB7, 􏽥gB8, 􏽥gB9, 􏽥gB10􏼂 􏼃,

􏽥GW � 􏽥g1W, 􏽥g2W, 􏽥g3W, 􏽥g4W, 􏽥g5W, 􏽥g6W, 􏽥g7W, 􏽥g8W, 􏽥g9W, 􏽥g10W􏼂 􏼃,

(23)

where

􏽥gB1 � [(1.648, 1.934, 2.075, 2.360; 0.800), (1.500, 1.789, 2.218, 2.500; 1.000)],

􏽥gB2 � [(0.782, 1.019, 1.154, 1.379; 0.800), (0.664, 0.899, 1.257, 1.500; 1.000)],

􏽥gB10 � [(3.653, 3.938, 4.078, 4.363; 0.800), (3.500, 3.793, 4.222, 4.500; 1.000)],

􏽥g1W � [(1.648, 1.934, 2.075, 2.360; 0.800), (1.500, 1.789, 2.218, 2.500; 1.000)],

􏽥g2W � [(2.647, 2.934, 3.076, 3.361; 0.800), (2.500, 2.790, 3.218, 3.500; 1.000)],

􏽥g10W � [(1.000, 1.000, 1.000, 1.000; 1.000), (1.000, 1.000, 1.000, 1.000; 1.000)].

(24)

From equation (5), a goal programming model was
established, and after solving it using LINGO 11, we

obtained the optimal GITrF weight vector for the experts:
w∗ � [w∗1 , w∗2 , w∗3 , w∗4 , w∗5 , w∗6 , w∗7 , w∗8 , w∗9 , w∗10], where

w
∗
1 � [(0.482, 0.698, 0.954, 1.198; 0.08), (0.209, 0.397, 0.608, 1.400; 0.19)],

w
∗
2 � [(0.495, 0.700, 1.000, 1.250; 0.11), (0.141, 0.285, 0.800, 1.500; 0.17)],

w
∗
3 � [(0.530, 0.780, 1.050, 1.272; 0.125), (0.125, 0.350, 0.800, 1.600; 0.240)],

w
∗
10 � [(0.521, 0.764, 0.987, 1.208; 0.10), (0.124, 0.251, 0.700, 1.400; 0.12)].

(25)

Calculating their GMIRS, the result is shown in Table 10,
these being the weights of the experts.

Based on the structure system of DFP-construction risk
evaluation, after several rounds of screening, we finally
obtained 30 construction risk factors, as shown in Figure 6.
*e 10 experts had to conduct two evaluations. *e first
evaluation involved each expert using TL-ANP to evaluate
the importance of the 30 risk events just obtained. *e
purpose was to use TL-ANP to obtain the weight of each risk
event and loss index. *e DFP risk network relationship is
shown in Figure 7, where the results of one of the experts’
judgments are used as an example to illustrate the TL-ANP.
Based on Step 2 in Section 4.3, the decision maker describes
the factors in each risk-factor set using binary semantics
according to the criteria in Table 7, and the weight matrix A

of the 12 risk-factor sets is derived after the operations in
Step 2, as given in Table 11. *e supermatrixW for each risk
factor can be obtained in a similar way, as given in Table 12.
*e linguistic two-tuple values are transformed using
equation (2), and the limit supermatrix W is obtained using
equation (15). *e limit matrix W∞ is equivalent to
(Δ− 1(W))30, from which it can be seen that the weights of
the risk factors are ω1 � (s0, 0.0300), ω2 � (s0, 0.0214), ω3 �

(s0, 0.0234), ω4 � (s0, 0.0210), . . . ω29 � (s0, 0.0312),

ω30 � (s0, 0.0334). According to formula (2), the expert’s
evaluation results of the risk factor weight can be obtained:
ω1 � 0.030, ω2 � 0.021, ω3 � 0.023, ω4 � 0.021, . . . ω29 �

0.031, ω30 � 0.033.
Based on the weights of the 10 experts, the TL-ANP

evaluation results of each expert on the weights of the risk

Table 10: Expert index score.

Expert Working years Educational background Job title Top prize Score Score difference GMIR
1 3 3 3 1 10 3 0.0905
2 3 4 3 4 14 5 0.1012
3 5 4 4 4 17 EB 0.1374
4 1 3 3 2 9 6 0.0972
5 2 2 2 2 8 4 0.0867
6 2 2 1 1 6 EW 0.0740
7 4 3 4 3 14 5 0.1146
8 3 3 3 3 12 5 0.1273
9 3 3 3 2 11 4 0.0933
10 2 2 1 1 6 6 0.0779
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Risk assessment index system of deep foundation pit construction
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Figure 6: Risk system of DFP construction.
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factors were assembled, and the combined weight size of
each risk factor was obtained as ω� (0.045, 0.025, 0.025,
0.020, 0.060, 0.076, 0.031, 0.020, 0.027, 0.019, 0.028, 0.025,
0.009, 0.012, 0.018, 0.029, 0.036, 0.025, 0.020, 0.015, 0.060,
0.057, 0.061, 0.026, 0.031, 0.026, 0.059, 0.039, 0.046) T (as
given in Table 13).

*e risk event weights are attached to the DFP-con-
struction risk evaluation system, as shown in Figure 6. Also,

using the same method, the weights of the four losses of
economic loss, delay time, environmental impact, and ca-
sualties are 0.574, 0.148, 0.139, and 0.139, respectively.

*e second assessment was that each expert evaluated
independently the possibility of each event and the degree of
each loss indicator. *e evaluation results were normalized
using equation (7) and combined with the loss indicator
weights to obtain the overall loss affiliation function. *en,

Table 11: Weight matrix.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

U1 (S1,
− 0.046) (S0, 0) (S1,

− 0.045)
(S0,
0.012)

(S1,
− 0.019)

(S1,
0.012)

(S1,
0.024)

(S1,
− 0.029)

(S1,
0.024) (S0, 0) (S1,

− 0.024)
(S1,

− 0.025)

U2 (S0,
0.048)

(S1,
0.012)

(S1,
0.032)

(S1,
0.013)

(S0,
0.039)

(S1,
0.012)

(S1,
− 0.022)

(S1,
0.039)

(S0,
0.043)

(S1,
− 0.032)

(S0,
0.038)

(S1,
0.058)

U3 (S1,
0.038)

(S1,
0.038)

(S0,
0.012)

(S1,
0.048)

(S1,
− 0.022)

(S1,
− 0.038) (S0, 0) (S1,

− 0.024)
(S1,

− 0.047)
(S1,
0.012)

(S1,
− 0.022)

(S0,
0.017)

U4 (S1,
0.026)

(S1,
0.056)

(S0,
0.026)

(S0,
0.056)

(S0,
0.037)

(S0,
0.047)

(S1,
0.058)

(S0,
0.037)

(S0,
0.031)

(S1,
0.059)

(S1,
0.027)

(S0,
0.030)

U5 (S1,
− 0.026) (S0, 0) S1,

0.026)
(S1,

− 0.023)
(S1,
0.021)

(S1,
− 0.025)

(S1,
0.039)

(S0,
0.044)

(S1,
− 0.013) (S0, 0) (S0,

0.031)
(S0,
0.026)

U6 (S1,
− 0.041)

(S1,
0.012)

(S1,
0.014)

(S0,
0.012)

(S0,
0.048)

(S1,
− 0.023)

(S1,
− 0.014)

(S1,
− 0.048)

(S0,
0.012)

(S1,
− 0.014)

(S0,
0.048)

(S1,
− 0.026)

U7 (S1,
− 0.033) (S0, 0) (S0,

0.014)
(S1,

− 0.023)
(S1,

− 0.042)
(S1,

− 0.042)
(S1,
0.023)

(S0,
0.022)

(S1,
− 0.023)

(S1,
0.030)

(S1,
− 0.038)

(S1,
− 0.035)

U8 (S0,
0.021)

(S1,
− 0.054)

(S1,
− 0.054)

(S1,
− 0.054)

(S1,
− 0.043)

(S1,
− 0.055)

(S1,
− 0.055)

(S1,
− 0.043)

(S1,
− 0.054)

(S1,
0.026)

(S1,
− 0.043)

(S1,
− 0.033)

U9 (S0,
0.021) (S0, 0) (S0,

0.012)
(S0,
0.013)

(S0,
0.027)

(S0,
0.037) (S0, 0) (S1,

0.047)
(S0,
0.023) (S0, 0) (S0,

0.027)
(S1,
0.021)

U10 (S1,
− 0.026)

(S1,
− 0.054)

(S1,
− 0.044)

(S1,
− 0.044)

(S1,
− 0.017)

(S0,
0.044)

(S1,
− 0.054)

(S0,
0.012)

(S1,
− 0.015)

(S1,
− 0.054)

(S1,
− 0.017)

(S0,
0.011)

U11 (S0,
0.039)

(S1,
− 0.050)

(S1,
− 0.040)

(S1,
− 0.051)

(S1,
− 0.015)

(S0,
0.048) (S0, 0) (S1,

− 0.045)
(S1,

− 0.021)
(S1,

− 0.026)
(S1,

− 0.015)
(S1,

− 0.017)

U12 (S1,
− 0.024)

(S1,
0.038)

(S1,
0.044)

(S1,
0.039)

(S1,
− 0.014)

(S1,
− 0.018) (S0, 0) (S1,

− 0.013)
(S1,
0.038) (S0, 0) (S1,

− 0.013)
(S1,

− 0.027)

Table 12: Supermatrix.

u1 u2 u3 u4 . . . u27 u28 u29 u30
u1 (S4, − 0.0625) (S4, 0) (S5, 0) (S0, 0) . . . (S5, 0) (S0, 0) (S0, 0) (S3, − 0.0625)
u2 (S5, − 0.0625) (S4, 0) (S3, 0) (S0, 0) . . . (S3, 0) (S0, 0) (S0, 0) (S6, − 0.0625)
u3 (S1, 0.0417) (S4, − 0.0278) (S3, 0.0139) (S2, 0.0278) . . . (S4, − 0.0278) (S2, − 0.0417) (S3, − 0.0556) (S3, − 0.0556)
u4 (S3,0.0139) (S2, − 0.0556) (S2, − 0.0278) (S2, − 0.0556) . . . (S1, − 0.0556) (S4, − 0.0278) (S1, 0.0556) (S2, − 0.0139)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u27 (S2, − 0.0278) (S3, − 0.0556) (S4, − 0.0417) (S3, 0.0417) . . . (S3, 0.0139) (S3, 0.0556) (S0, 0) (S2, − 0.0278)
u28 (S3, − 0.0556) (S4, − 0.0278) (S1, 0) (S2, 0.0139) . . . (S2, − 0.0278) (S3, 0.0556) (S4, − 0.0278) (S3, − 0.0556)
u29 (S4, − 0.0556) (S2, − 0.0278) (S3, 0) (S2, − 0.0278) . . . (S2, − 0.0278) (S3, − 0.0278) (S2, − 0.0278) (S4, − 0.0417)
u30 (S2, − 0.0139) (S2, 0.0556) (S4, 0) (S4, 0.0139) . . . (S4, 0.0556) (S2, − 0.0278) (S2, 0.0556) (S2, − 0.0278)

Figure 7: Network relationship diagram of metro deep foundation pit risk events.
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the probability and loss evaluations of all the experts were
combined using equation (8) and equation (9). *e risk
grade for each risk event was calculated by multiplying the
probability of the event and the loss, as given in Table 14.

6.3. Risk Assessment. *e risk-identification framework was
constructed according to the method introduced in Section
4.2. Equation (10) was used to work out the corresponding
relationship between risk grade standard and membership
function, as given in Table 15. *e risk grade membership
function of metro DFP construction risk events was then
transformed into a belief structure through the risk-iden-
tification framework, and the basic belief distribution
function σl

n and unallocated belief σl
H of each risk event l

were calculated according to equation (15) and equation
(16), as given in Table 16.

By fusing equations (18)–(20), we obtain the basic belief
σn for the overall risk of the Jiangqiao station rated as grade
Hn, and the basic belief σn,(n+t) for the intersection grade
Hn,n+t, as given in Table 17. We then use equations (21) and
(22) to obtain the belief value βn of the overall risk grades
and the belief βn,(n+t) value of the intersection of the grades,
as given in Table 18. According to the different fuzzy risk
grade intersection cases, the fuzzy intersection belief is
distributed by Table 8. *e belief distribution coefficient and
the distribution results are given in Tables 19 and 20,

respectively. Finally, the distributed belief is superimposed
on the nonintersection belief to obtain the final belief of the
DFP being rated at each level, as given in Table 21. *e final
results show that the most likely overall metro DFP risk is
the second-grade risk with a probability of 0.2479. As Ta-
ble 15 shows, the metro DFP with this risk level must be
strengthened for daily management scrutiny.

7. Discussion

7.1. Analysis of Results. *e overall risk grade has been
derived, but which risk events and risk loss indicators should
be focused on in risk control requires further analysis. To
clarify the key factors affecting the risk of this project and the
critical loss indicators, the following four aspects are
analyzed.

(1) Each risk event weight is kept constant, the belief
structure is changed by changing the event risk level
in the same type, and the impact of each event risk
level change on the overall risk level is compared.
Here, the belief βl

2 of each risk event in the risk-
identification framework is set to zero in turn, and
the risk grade belonging to the overall risk is cal-
culated based on this. *e comparison results are
presented in Figure 8, which shows that the risk
factors that have more impact on the evaluation of

Table 13: Evaluation results of risk factor weight by experts.

ωE1 ωE2 ωE3 ωE4 ωE5 ωE6 ωE7 ωE8 ωE9 ωE10 ω
u1 0.030 0.024 0.031 0.032 0.032 0.063 0.059 0.058 0.064 0.057 0.045
u2 0.021 0.019 0.020 0.023 0.024 0.024 0.026 0.029 0.031 0.029 0.025
u3 0.023 0.028 0.023 0.020 0.022 0.022 0.026 0.027 0.029 0.028 0.025
u4 0.021 0.022 0.021 0.019 0.023 0.019 0.019 0.020 0.019 0.019 0.020
u5 0.070 0.067 0.070 0.073 0.069 0.049 0.048 0.051 0.052 0.051 0.060
u6 0.081 0.075 0.082 0.078 0.083 0.063 0.070 0.078 0.070 0.080 0.076
u7 0.025 0.021 0.023 0.023 0.029 0.039 0.038 0.040 0.039 0.030 0.031
u8 0.021 0.023 0.027 0.014 0.020 0.019 0.019 0.019 0.019 0.018 0.020
u9 0.032 0.031 0.035 0.033 0.032 0.022 0.022 0.020 0.025 0.011 0.027
u10 0.028 0.022 0.024 0.027 0.028 0.013 0.013 0.014 0.013 0.007 0.019
u11 0.028 0.027 0.023 0.022 0.028 0.033 0.029 0.035 0.028 0.028 0.028
u12 0.020 0.017 0.024 0.021 0.022 0.029 0.035 0.031 0.029 0.021 0.025
u13 0.011 0.010 0.013 0.010 0.015 0.007 0.006 0.007 0.006 0.006 0.009
u14 0.015 0.016 0.016 0.011 0.016 0.010 0.009 0.008 0.008 0.008 0.012
u15 0.021 0.022 0.020 0.020 0.021 0.018 0.015 0.014 0.018 0.015 0.018
u16 0.020 0.020 0.022 0.023 0.022 0.036 0.040 0.035 0.040 0.033 0.029
u17 0.033 0.040 0.031 0.036 0.032 0.040 0.039 0.041 0.036 0.033 0.036
u18 0.027 0.030 0.023 0.031 0.026 0.022 0.022 0.022 0.024 0.023 0.025
u19 0.031 0.031 0.033 0.030 0.033 0.029 0.028 0.021 0.020 0.030 0.028
u20 0.022 0.020 0.020 0.022 0.023 0.021 0.020 0.018 0.017 0.023 0.020
u21 0.013 0.012 0.012 0.014 0.013 0.019 0.015 0.017 0.015 0.020 0.015
u22 0.063 0.072 0.069 0.062 0.063 0.057 0.053 0.052 0.054 0.057 0.060
u23 0.066 0.068 0.063 0.068 0.068 0.048 0.046 0.048 0.052 0.053 0.057
u24 0.063 0.065 0.069 0.070 0.062 0.055 0.055 0.052 0.057 0.060 0.061
u25 0.026 0.022 0.026 0.023 0.028 0.028 0.027 0.028 0.028 0.027 0.026
u26 0.032 0.030 0.032 0.032 0.033 0.031 0.032 0.032 0.031 0.030 0.031
u27 0.029 0.029 0.032 0.023 0.020 0.026 0.024 0.023 0.025 0.027 0.026
u28 0.063 0.054 0.060 0.068 0.061 0.061 0.057 0.052 0.052 0.060 0.059
u29 0.031 0.035 0.025 0.034 0.022 0.049 0.049 0.047 0.049 0.049 0.039
u30 0.033 0.044 0.029 0.034 0.029 0.048 0.062 0.064 0.053 0.069 0.046
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Table 14: List of possibility, loss, and risk grade of all risk events in metro deep foundation pit.

Risk events Probability Loss Grade of risk

Hole collapse (e1) (0.01, 0.017, 0.175, 0.182) (0.029, 0.040, 0.120,
0.222) (2.81E − 04, 7.07E − 04, 0.021, 0.041)

Broken pile (e2) (0.006, 0.008, 0.084, 0.095) (0.022, 0.033, 0.071,
0.162) (1.2E − 04, 2.74 E − 04, 0.006, 0.015)

Waterproof failures (e3)
(3.2E − 05, 6.6E − 05, 0.001,

0.004)
(0.017, 0.024, 0.057,

0.131) (5.5E − 07, 1.5E − 06, 3.8E − 05, 4.7E − 04)

Poor precipitation effect (e4) (0.001, 0.001, 0.010, 0.054) (0.015, 0.022, 0.072,
0.112) (8.0E − 06, 2.1E − 05, 7.0 E − 04, 0.006)

Precipitation induced settlement (e5) (0.001, 0.001, 0.012, 0.063) (0.025, 0.035, 0.098,
0.157) (1.5E − 05, 4.2E − 05, 0.001, 0.010)

Settlement caused by foundation
treatment (e6)

(1E − 04, 2.5E − 04, 0.003,
0.014)

(0.014, 0.0197, 0.054,
0.111) (2.0E − 06, 5.0E − 06, 1.42 E − 04, 0.002)

Curtain wall not enclosed (e7)
(8.3E − 05, 1.6E − 04, 0.002,

0087)
(0.011, 0.014, 0.040,

0.072) (8.9E − 07, 2.2E − 06, 6.3E − 05, 6.3E − 04)

Longitudinal slope instability (e8)
(3.9E − 05, 7.7E − 05,
7.8E − 04, 0.004)

(0.020, 0.030, 0.073,
0.167) (7.9E − 07, 2.3E − 06, 5.7E − 05, 7.0E − 04)

Piping (e9)
(1.7E − 04, 3.2E − 04, 0.003,

0.018)
(0.020, 0.029, 0.088,

0.158) (3.6E − 06, 9.5E − 06, 2.9 E − 04, 0.003)

Support loss of stability (e10)
(7.6E − 05, 1.4E − 04, 0.015,

0.008)
(0.029, 0.040, 0.114,

0.206) (2.2E − 06, 5.8E − 06, 1.65 E − 04, 0.002)

Support connection damaged (e11)
(9.0E − 05, 1.7E − 04, 0.002,

0.010)
(0.034, 0.047, 0.157,

0.241) (3.0E − 06, 7.9E − 06, 2.6E − 04, 2.2E − 03)

Surrounding deformation is too large (0.006, 0.010, 0.095, 0.106) (0.030, 0.040, 0.145,
0.192) (1.7E − 04, 3.8E − 04, 0.014, 0.020)

*e excavation caused water leakage (5.4E − 04, 8.9E − 04, 0.010,
0.054)

(0.018, 0.025, 0.062,
0.129) (9.7E − 06, 2.3E − 05, 6.0E − 04, 0.007)

Waterproof layer failure (e14)
(8.1E − 05, 1.5E − 04, 0.0013,

0.008)
(0.019, 0.027, 0.065,

0.114) (1.5E − 06, 4.2E − 06, 8.7E − 05, 9.4E − 04)

Failure of high support (e15)
(2.3E − 04, 4.2E − 04, 0.004,

0.024)
(0.032, 0.047, 0.105,

0.205) (7.3E − 06, 2.0E − 05, 4.2E − 04, 0.005)

Support collapsed (e16) (5.9E − 04, 0.001, 0.011, 0.059) (0.040, 0.057, 0.209,
0.257) (2.4E − 05, 6.2E − 05, 0.002, 0.015)

Concrete cracking (e17)
(9.1E − 05, 1.7E − 04, 0.002,

0.010)
(0.025, 0.038, 0.086,

0.186) (2.3E − 06, 6.6 E − 06, 2E − 04, 0.002)

*e station floats as a whole (e18) (6.3E − 04, 0.001, 0.012, 0.065) (0.012, 0.018, 0.081,
0.176) (7.4E − 06, 2.1E − 05, 9.3E − 04, 0.012)

*e earthwork collapsed (e19) (5.8E − 04, 0.001, 0.011, 0.059) (0.029, 0.044, 0.098,
0.257) (1.7E − 05, 4.6E − 05, 0.001, 0.015)

Maintenance structure deformation (8.7E − 05, 1.6E − 04, 0.002,
0.009)

(0.016, 0.023, 0.061,
0.101) (1.4E − 06, 3.8E − 06, 1E − 04, 9.3E − 04)

Foundation pit flooded (e21)
(1E − 04, 2.7E − 04, 0.003,

0.015)
(0.020, 0.027, 0.066,

0.138) (2.9E − 06, 7.3E − 06, 1.8E − 04, 0.002)

Earthquake instability (e22) (0.005, 0.009, 0.094, 0.115) (0.060, 0.084, 0.336,
0.446) (3.1E − 04, 7.9E − 04, 0.032, 0.051)

Well-up water (e23) (5.3E − 04, 0.001, 0.009, 0.049) (0.018, 0.025, 0.062,
0.101) (9.6E − 06, 2.5E − 05, 5.9E − 04, 0.005)

Foundation pit instability (e24)
(9.0E − 05, 1.7E − 04, 0.002,

0.010)
(0.026, 0.040, 0.089

0.199) (2.4E − 06, 6.7E − 06, 1.3E − 04, 0.002)

Foundation pit slope instability (e25)
(9.1E − 05, 1.7E − 04, 0.002,

0.010)
(0.021, 0.029, 0.070,

0.138) (1.9E − 06, 5E − 06, 1.2E − 04, 0.001)

Uneven settlement of foundation (e26) (1E − 04, 2E − 04, 0.002, 0.012) (0.017, 0.023, 0.059,
0.128) (1.8E − 06, 4.6E − 06, 1.1E − 04, 0.002)

Water leakage, large deformation (e27)
(8.4E − 05, 1.7E − 04, 0.002,

0.008)
(0.022, 0.033, 0.077,

0.179) (1.9E − 06, 5.2E − 06, 1.3E − 04, 0.001)

Inclining cracking of building (e28)
(7.7E − 05, 1.4E − 04, 0.001,

0.008)
(0.028, 0.042, 0.093,

0.238) (2.2E − 06, 6.1E − 06, 1.2E − 04, 0.002)

Slope instability (e29)
(3.5E − 05, 6.9E − 05,
7.1E − 04, 0.004)

(0.028, 0.040, 0.088,
0.213) (9.8E − 07, 2.7E − 06, 6.2E − 05, 8.4E − 04)

Pipeline perforation cracking (e30)
(4.5E − 05, 9.1E − 05.
9.1E − 04, 0.005)

(0.018, 0.025, 0.066,
0.115) (8.0E − 07, 2.3E − 06, 5.8E − 05, 5.6E − 04)
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foundation construction risk are (i) excessive sur-
face deformation caused by foundation treatment
(e6), (ii) tilting and cracking of surrounding
buildings (e28), and (iii) welling-up water (e23), with
(i) being the most influential factor. Its changes
impact the belief of each risk grade by 11.95%,
− 34.60%, 8.49%, 10.42%, and 17.94%, respectively.
*e risk events with greater weights also have more

impact on the overall risk evaluation, and the above
three risk events are precisely the three with high-
risk weight, which coincides with our subjective
intuition. *e reason for this result is that each risk
event’s weight must be considered in the risk fusion
calculation process. It is verified that the fuzzy
evidence inference method considers the risk level

Table 16: Belief distribution function list of all risk events in metro deep foundation pit construction.

Risk events
Basic belief distribution function

σl
1 σl

2 σl
3 σl

4 σl
5 σl

H

Hole collapse (e1) 0.0069 0.0173 0.0138 0.0069 0.0017 0.9533
Broken pile (e2) 0.0011 0.0088 0.0088 0.0062 0.0035 0.9715
Waterproof failures (e3) 0.0052 0.0074 0.0066 0.0058 0.0016 0.9734
Poor precipitation effect (e4) 0.0049 0.0054 0.0045 0.0052 0.0022 0.9778
Precipitation induced settlement (e5) 0.0187 0.0187 0.0202 0.0025 0.0013 0.9386
Settlement caused by foundation treatment (e6) 0.0407 0.0238 0.0068 0.0051 0.0041 0.9195
Curtain wall not enclosed (e7) 0.0049 0.0061 0.0110 0.0094 0.0033 0.9654
Longitudinal slope instability (e8) 0.0062 0.0077 0.0046 0.0015 0.0005 0.9794
Piping (e9) 0.0068 0.0077 0.0087 0.0039 0.0019 0.9711
Support loss of stability (e10) 0.0038 0.0086 0.0038 0.0029 0.0010 0.9801
Support connection damaged (e11) 0.0054 0.0080 0.0094 0.0054 0.0007 0.9712
Surrounding deformation is too large 0.0000 0.0138 0.0080 0.0032 0.0016 0.9734
*e excavation caused water leakage 0.0015 0.0025 0.0037 0.0015 0.0005 0.9903
Waterproof layer failure (e14) 0.0010 0.0040 0.0037 0.0033 0.0018 0.9862
Failure of high support (e15) 0.0053 0.0075 0.0030 0.0023 0.0008 0.9813
Support collapsed (e16) 0.0071 0.0095 0.0067 0.0057 0.0019 0.9691
Concrete cracking (e17) 0.0081 0.0100 0.0093 0.0085 0.0048 0.9592
*e station floats as a whole (e18) 0.0055 0.0078 0.0070 0.0047 0.0016 0.9734
*e earthwork collapsed (e19) 0.0070 0.0062 0.0070 0.0078 0.0054 0.9666
Maintenance structure deformation 0.0025 0.0064 0.0059 0.0052 0.0022 0.9778
Foundation pit flooded (e21) 0.0018 0.0024 0.0056 0.0051 0.0025 0.9825
Earthquake instability (e22) 0.0000 0.0070 0.0352 0.0176 0.0070 0.9332
Well-up water (e23) 0.0010 0.0013 0.0549 0.0002 0.0001 0.9425
Foundation pit instability (e24) 0.0087 0.0185 0.0179 0.0161 0.0083 0.9306
Foundation pit slope instability (e25) 0.0024 0.0049 0.0122 0.0065 0.0008 0.9731
Uneven settlement of foundation (e26) 0.0073 0.0104 0.0077 0.0056 0.0043 0.9647
Water leakage, large deformation (e27) 0.0040 0.0080 0.0073 0.0066 0.0032 0.9709
Inclining cracking of building (e28) 0.0127 0.0145 0.0165 0.0151 0.0076 0.9336
Slope instability (e29) 0.0109 0.0109 0.0090 0.0083 0.0028 0.9581
Pipeline perforation cracking (e30) 0.0013 0.0051 0.0144 0.0253 0.0087 0.9451

Table 15: Corresponding relation between risk grade standard and membership function (Risk Identification Framework).

Grade Language assessment Control scheme Membership function
1 Ignored Daily management and review {0, 0, 0.00002, 0.00086}
2 Permissible Strengthen daily management review {0, 0.000002, 0.001772, 0.01572}
3 Acceptable Monitoring measures are needed {0, 0.000189, 0.004886834, 0.05571}
4 Unacceptable Establish control and warning measures {0, 0.001501, 0.01746, 0.31792}
5 Refuse to accept Stop immediately and rectify {0.0000648, 0.006323275, 0.5457625, 1}

Table 18: Overall belief values of risk information fusion at all risk
grades and the belief values at the intersection of risk grades.

n βn β1,n β2,n β3,n β4,n

1 0.14352
2 0.17579 0.03770
3 0.16381 0.02980 0.04390
4 0.15219 0.02450 0.03981 0.03859
5 0.08829 0.00137 0.01904 0.02111 0.02016

Table 17: Basic belief of risk information fusion and intersection.

n σn σ1,n σ2,n σ3,n σ4,n

1 0.0883
2 0.1081 0.0232
3 0.1007 0.0183 0.0271
4 0.0936 0.0151 0.0245 0.0237
5 0.0543 0.0008 0.0117 0.0130 0.0124
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of each risk event as the evidence re®ecting the risk
level of DFP construction, which re®ects the im-
portance of risk event weights to fuzzy evidence
inference.

(2) Without considering the in®uence of each risk
event weight, at this stage, the FER algorithm gives
the belief of risk grade evaluation of Nanning
Jiangqiao station with equal weights as βk � [(H1, 0.
1857), (H2, 0.2218), (H3, 0.2487), (H4, 0.2021), (H5,
0.1417)]. Similarly, we change the belief βl2 of risk
events (set to zero in turn) and compare the e�ect of
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Figure 10: E�ect of changes in the level of each loss indicator on
the overall risk level in the case of consideration of loss indicator
weights in uneven settlement of the foundation.
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Figure 9: In®uence of risk level changes of di�erent events on the
overall risk grade of foundation pit under the same weight.
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Figure 8: In®uence of risk level changes of di�erent events on the
overall risk grade of foundation pit.

Table 20: Results of distribution grade intersection belief to each grade.

n β1 β2 β3 β4 β5
β1 0.019981 0.025926 0.005635 0.000617
β2 0.017719 0.023267 0.019507 0.011614
β3 0.003874 0.020633 0.021225 0.008444
β4 0.018865 0.020303 0.017366 0.007862
β5 0.000754 0.007426 0.012666 0.012298

Table 19: Belief distribution coe«cient of each intersection belief.

n AF1,n
1 : AF1,n

n AF2,n
2 : AF2,n

n AF3,n
3 : AF3,n

n AF4,n
4 : AF4,n

n

2 0.53 : 0.47
3 0.87 : 0.13 0.53 : 0.47
4 0.23 : 0.77 0.49 : 0.51 0.55 : 0.45
5 0.45 : 0.55 0.61 : 0.39 0.40 : 0.60 0.39 : 0.61

Table 21: Belief of overall risk of deep foundation pit of Jianqiao Station.

β1 β2 β3 β4 β5
Basic beliefs 0.14352 0.17579 0.16381 0.15219 0.08829
Distribution beliefs 0.05216 0.07211 0.05418 0.06439 0.03314
Total beliefs 0.19568 0.24790 0.21797 0.21657 0.12143
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di�erent event belief structure changes on the
evaluation of the overall risk grade of the DFP. �e
comparison results are shown in Figure 9. �e risk
events with the most impact on the risk grade of
DFP construction are hole collapse of the enclosure
structure (e1) and earthquake-induced DFP in-
stability (e22). �ese risk events have the common
feature that their basic belief σln is distributed un-
evenly; there are obvious peaks and valleys, and
these risk events also deserve to be alerted. How-
ever, compared with the case of considering the
weights of risk events, when the weights are not
considered, then the degree of risk evaluation is
a�ected less, and it is a risk event of secondary
focus.

(3) �e weights of each loss evaluation indicator remain
unchanged, and the membership functions of all loss
evaluation indicators of a certain risk event are
changed in the same way in turn. We compare the
impact of the change in the evaluation level of dif-
ferent loss indicators on the overall risk grade of the
DFP. Here, the membership functions of the losses
caused by uneven foundation settlement (e26) are
selected and set to {0, 0, 0, 0} in turn.�e comparison
results are presented in Figure 10, which shows that
the risk loss indicator with the greatest impact on
DFP-construction risk grade is economic loss.
According to the equation R � P × C for risk in the
Risk Management Guide for Metro and Un-
derground Construction [1], the loss grade directly
a�ects the risk grade, and the greater the weight of
the loss indicator, the greater the impact on the risk
grade, so it can also a�ect the results of the �nal
evidence fusion. As the loss indicator with the largest
weight, the economic loss has the greatest impact on
the overall risk-assessment results, which is a rea-
sonable explanation. Subject to the mutual restraint
of various losses, compared with the impact of risk
event weight, the loss indicator has less impact on the
evaluation of the whole risk grade, indicating that the
subdivision of loss indicators is better for avoiding
evaluation abnormalities.

(4) Regardless of the in®uences of the weights of the loss
evaluation indicators, those weights are set to be
equal. �e FER algorithm gives the project risk
evaluation indicators’ combined belief as βk � [(H1,
0.1677), (H2, 0.2408), (H3, 0.2379), (H4, 0.2292), (H5,
0.1249)]. We set the membership functions of the
various losses caused by uneven foundation settle-
ment (e26) as {0, 0, 0, 0}, and the comparison results
are shown in Figure 11. �e loss evaluation indicator
that has the greatest impact on the risk grade of DFP
construction is the construction-period delay caused
by the construction risk. One of the reasons is that
the standard value of the loss membership function
for the delay time is largest when normalized. Also,
the results can be interpreted via the data in the
expert scoring results.�e opinions of the experts are
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Figure 11: E�ect of changes in the level of each loss indicator on
the overall risk level without considering the weight of loss in-
dicators in the case of uneven settlement of the foundation.
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widely divergent on the delay time loss index, and
there are too-high or too-low extreme end evalua-
tions. �erefore, if there are too-high or too-low
evaluations in the scoring table, then consider re-
moving these extreme evaluation data to make of the
data as reasonable as possible.
Next, we analyze the basic belief distribution.

(5) �e degree of change of the basic belief distribution
function σn for each risk event before and after
considering di�erent loss indicator weights is
compared. �e results are presented in Figure 12,
which shows that the basic belief σ11 for hole collapse
on H1, the basic belief σ65 for foundation treatment
settlement onH5, and the basic beliefs σ221 and σ225 for

foundation pit instability due to an earthquake on
H1 andH5 vary greatly.�ese are also the risk events
with the largest weights. �e changes in the basic
belief grade before and after considering the weights
of di�erent risk events are compared in Figure 13,
which shows that the changes in the basic belief of
each risk event are basically the same, indicating that
the impact on the distribution of basic belief is
relatively small but cannot be ignored. Whether to
consider risk loss indicator weights and risk event
weights will impact the distribution of basic belief,
especially risk loss indicator weights, and thus in-
®uence the determination of the key focus events.
�erefore, introducing loss indicator weights and
risk event weights can more accurately identify the
key events to focus on and improve the accuracy of
the assessment.

�e above sensitivity analysis shows that we need to pay
attention to the importance of risk event weights and risk
loss indicator weights, focus on larger risk events and loss
indicators, and exclude some extreme loss indicator
evaluations.

7.2. Comparison with Previous Studies. �e e�ectiveness of
the method proposed herein is veri�ed in comparison with
�ve previously proposed risk-assessment methods, i.e., (i)
the AHP and fuzzy mathematics due to Meng et al. [1], (ii)
the FER method due to Wei et al. [10], (iii) the ANP method
due to Liu et al. [29], (iv) the FER method due to Mokhtari
et al. [30], and (v) the fuzzy reasoning approach due to An
et al. [31].

�e membership function for each risk level used in the
fuzzy reasoning approach is not based on the likelihood of
occurrence multiplied by the severity of the consequences,
rather it depends on the domain knowledge of the risk expert
involved. Although Mokhtari et al. [30] also used the FER
method, their method for determining the belief structure
di�ers from that used herein; they relied on the maximum
ordinate value of the intersection point of the risk
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Table 22: �e comparison of results obtained by using �ve methods respectively.

Adopted method Ranking of risk level assessment results
AHP and fuzzy mathematics used in Meng et al. (2020) H1 (0.6544)>H2 (0.3450)>H3 (0.0006)>H4 (0.0001)>H5 (0.0000)
FER used in Wei et al. (2020) H2 (0.2438)>H3(0.2391)>H4(0.2118)>H1(0.1968)>H5(0.1084)
FER used in Mokhtari et al. (2012) H2 (0.2395)>H3 (0.2191)>H1 (0.1918)>H4 (0.1898)>H5 (0.1594)
Fuzzy reasoning approach used in an et al. (2011) H2 (1.000)＞H1 (0.000)�H3 (0.000)�H4 (0.000)�H5 (0.000)
ANP used in Liu et al. (2014) H2 (0.3297)>H1 (0.3042)>H3 (0.1708)>H4 (0.1103)>H5 (0.0850)
FER used in this paper H2 (0.2479)>H3 (0.2180)>H4 (0.2166)>H1 (0.1957)>H5 (0.1214)

Table 23: Risk classi�cation criteria.

Grade Risk value R Acceptance Disposal principle
Grade I 1<R Ignorable Daily management and review
Grade II 5<R Permissible Need to pay attention to strengthen the daily management review
Grade III 10<R Acceptable Attention should be paid to preventive and monitoring measures
Grade IV 15<R Unacceptable Decision-making is required to specify control and early warning measures
Grade V 20<R Refuse to accept Immediately stop, rectify, avoid or activate the plan
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membership function and the risk-identification framework,
and the expert weights and risk factor weights are de-
termined differently. *e AHP and fuzzy mathematics
method due to Meng et al. [1] uses membership functions to
optimize the evaluation criteria of risk events, and it uses the
AHP to calculate the risk. *e FER method due to Wei et al.
[10] uses the AHP to determine the weight of risk factors, but
it does not fully consider a variety of loss indicators and their
weights. *e ANP method due to Liu et al. [29] conducts
construction risk assessment by establishing a fuzzy network
analysis method integrating the Delphi method, fuzzy
comprehensive evaluation, and network analysis. *e above
five methods were applied to the present case for risk as-
sessment, and the probability of rating each risk level was
obtained, as given in Table 22.

*e reasons for the different results obtained by the five
methods and the proposed one are analyzed as follows. *e
method due to An et al. [31] drops the values between the
minimum and maximum ones in the inference process,
which makes the confidence level of the risk assessment
result equal to one for a certain level, but it does not give the
confidence level for each risk level. *e FER method due to
Mokhtari et al. [30] and Wei et al. [10] has the following
discrepancies with the one proposed herein. (1) *e dif-
ference between the proposed method and that due to
Mokhtari et al. [30] comes from how the belief structure is
determined. *e probability gap between the top two risk
levels with the highest probability of evaluation is
d23 � 0.2395 – 0.2191 � 0.0204, d23 � 2479–0.218� 0.0299
(results of the proposed method in this study), d23 < d23.
*erefore, it is better to use the area of intersection of the
risk membership function and the risk-identification
framework to determine the affiliation degree. (2) *e
difference between the proposed method and that due to
Wei et al. [10] comes from how the expert weights are
determined and the degree of perfection of the loss in-
dicators. In this case, we have
d23 � 0.2438 – 0.2391� 0.0047 < d23, and so the proposed
method can indicate the risk level more clearly. *e rea-
sonable determination of expert weights and perfect risk
loss indicators are also important factors affecting the
evaluation results. In the ANPmethod due to Liu et al. [29],
the elements in the judgment matrix are expressed on
a scale of 1–9. However, because of the inherent complexity
and uncertainty of the DFP-construction risk problem, it is
difficult for experts to express their preference with full
confidence in the value. In this case, we have
d21 � 0.3297 – 0.3042� 0.0255 < d23, so the optimal evalu-
ation result is not obtained.

It is noted that with the method due to Meng et al. [1],
it is necessary to combine the risk levels in this study
(Table 23) and establish the distribution curves of risk
affiliation functions from level 1 to level 5 such as
equations (26)–(30) , which is applied to the risk as-
sessment of Jiangqiao station on Line 5 of the Nanning

Metro. Using AHP, we obtain the risk evaluation value of
each expert for the project (Figure 14). *e overall risk
value is 4.19, and the membership degree of each risk level
is obtained by substituting into the membership function
of each risk level equations (26)–(30), i.e., (0.55/4.19),
(0.29/4.19), (4.7E − 04/4.19), (2.8E − 09/4.19), (6.6E − 10/
4.19), and after normalization, we obtain the probability
of the construction being rated as having a grade-I risk as
being 65.44%. Compared with other methods, the results
obtained are too risky, and there have been risk events in
the actual construction process, such as water inflow from
the catchment well and leakage of the enclosure structure;
it is not enough to just carry out daily management and
review. Also, as with ANP, AHP is not effective in
avoiding information loss or distortion.

μA x5( 􏼁 �
e

− x5− 22.5( )/3( )
2

, 1≤x5 ≤ 22.5,

1, 22.5≤x1 ≤ 25,

⎧⎪⎨

⎪⎩

(26)

μA x4( 􏼁 � e
− x4− 17.5( )/3( )

2

, 1≤ x4 ≤ 25, (27)

μA x3( 􏼁 � e
− x3− 12.5( )/3( )

2

, 1≤ x3 ≤ 25, (28)

μA x2( 􏼁 � e
− x2− 7.5( )/3( )

2

, 1≤x2 ≤ 25, (29)

μA x1( 􏼁 �
1, 1≤ x1 ≤ 3,

e
− x1− 3( )/2.4( )

2

, 3≤ x1 ≤ 25.

⎧⎨

⎩ (30)

8. Conclusions

To overcome the limitation of single loss indicators in the
existing risk-assessment methods of using FER to assess
metro DFPs and the inherent defect of AHP to determine the
risk weights, proposed herein was a risk-assessment eval-
uation model for metro DFP construction based on FER and
TL-ANP.*e validity of the model was verified by taking the
construction risk evaluation of the descending Jiangqiao
station on Line 5 of Nanning Metro as an example. We draw
the following conclusions.

*is study completed the risk loss evaluation indicators
by normalizing the membership functions of different
grades in the evaluation indicators, subdividing the risk loss
into four indicators, and distributing weights to these in-
dicators to avoid the influence of extreme evaluation on the
final result, thereby making the assessment result of risk loss
more objective.

For determining the weights, TL-ANP was applied to
analyze the loss-indicator weights and risk-event weights in
this study, which overcomes the problem of information loss
in the continuous domain. GITrF-BWM was used to

20 Shock and Vibration



reasonably determine the expert weights, which provides
a quantitative basis for improving the reliability of the
evaluation results.
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