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Sound speed pro�le (SSP) inversion is usually performed by linear statistical regression, such as the single empirical orthogonal
function regression (sEOF-r) model. However, due to the complex dynamic activities of the ocean, the relationship between
parameters is not strictly linear, often resulting in an unsatisfactory inversion result. In this study, an algorithm based on the
random forest (RF) integrated learning model, for SSP inversion, was proposed. Using the sea surface temperature anomaly
(SSTA) and sea surface height anomaly (SSHA) data, the sound speed pro�le of the upper 1000m layer in the South China Sea was
reconstructed, and its accuracy was evaluated through the root mean square error (RMSE). ­e accuracy of the evaluation
demonstrated that the RF model proposed here could reconstruct the SSP in the upper 1000m layer better than the sEOF-r can.
Compared with the latter, the average reconstruction accuracy of the RFmodel was improved by 0.56m/s.­e linear regression of
the sEOF-r model fell short of expectations in the regression between surface and subsurface parameters. By removing the
constraints of linear inversion, the nonlinear regression of the RF model showed a smaller RMSE and better robustness in the
reconstruction process and was superior to the sEOF-r model at all depths. As a result, it provided an e�ective integrated learning
model for SSP reconstruction.

1. Introduction

Sound speed pro�le (SSP) refers to the distribution of sound
speed with ocean depth, which is an important ocean
waveguide parameter that plays an important role in un-
derwater acoustics applications, such as underwater target
identi�cation, monitoring of the marine environment, and
underwater communication [1–3]. ­e most traditional
method to obtain the SSP is to measure it on-site by using
appropriate equipment, but this is time-consuming and
laborious, and the three-dimensional distribution of sound
speed in a large area cannot be obtained in real-time. Satellite
remote sensing can carry out continuous and high-resolu-
tion observations of sea areas, providing long-term and
large-area remote sensing data to meet the needs of large
range and urgency. Nevertheless, the data are limited to the
ocean surface, and this technology cannot directly detect
information at greater depths. Most of the oceanic processes
have sea surface features, through which dynamic

phenomena can be re¢ected [4], such as the thermohaline
structure, which largely depends on surface ocean dynamics
[5].

With the development of satellite observation systems
and Argo data sets, an increasing number of studies are
attempting to retrieve and reconstruct signi�cant ocean
information, such as the sound speed pro�le, by establishing
dynamic models, empirical statistical models, or data as-
similation [6]. Previous research had established the rela-
tionship between sea surface parameters and internal SSP
based on the �rst baroclinic mode [7–10], and it was shown
that the calculation accuracy was very stable in deep sea
areas. Carnes’ method of circulation over statistics in the
Gulf of Mexico proved that remote sensing parameters had
functional relations with empirical orthogonal functions
(EOFs) [11], and LeBlanc proved that the EOF was the basis
function with the minimum error in SSP reconstruction
[12]. Based on the functional relationship between remote
sensing parameters and EOF projections, Carnes
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successfully predicted the temperature profile in the
northwestern Pacific and northwestern Atlantic Oceans.
-is method was referred to as single empirical orthogonal
function regression (sEOF-r) [13]. It was continuously
supplemented and applied to different sea areas through the
modular ocean data assimilation system (MODAS) to obtain
dynamic climate profiles and, subsequently, the underwater
structures [14, 15]. However, the marine environment is a
complex nonlinear system, and ensuring accuracy, when
describing it as a linear system, is particularly challenging.

In recent years, as machine learning algorithms have
been increasingly developed, they have also been applied to
this field. In addition to the traditional regression method,
Ali et al. used a neural network to predict temperature
profiles based on sea surface parameters [5], and Wu et al.
used a self-organizing map (SOM) neural network to re-
construct the subsurface temperature distribution from
multiple surface observation data [16]. Based on remote
sensing parameters, Su and Li used a classical machine
learning method of support vector regression (SVR) pre-
dicting the global ocean temperature profile above 1000
meters [17, 18]. Subsequently, Su proposed an integrated
learning algorithm, known as the extreme gradient boosting
(XGBoost), which could predict the thermohaline profile of
the global ocean above 2000 meters [19]. Chen successfully
reconstructed the SSP over 1000meters in the northwestern
Pacific Ocean using the SOM method [20, 21], and Li et al.
further improved the SOM neural network and successfully
reconstructed the SSP in the northern South China Sea [22].
It can be concluded that the nonlinear model based on
machine learning performs well in terms of solving problems
related to nonlinear ocean dynamics.

In this study, a model based on the random forest (RF) for
SSP estimation with satellite surface observations is proposed.
-e RF model was used to fit a large number of decision trees
to different data subsets through the random resampling of
training data [23]. -e cross-validation method was adopted
to improve the accuracy, and the overfitting was controlled by
pruning and tuning the decision trees.-e RF is an integrated
learning model widely used in data classification and re-
gression, whose advantage is that it is suitable for remote
sensing research [24]. It has been effectively applied to various
remote sensing studies, and it usually performs very well
[25–27]. Based on the RF machine learning model, the sea
surface height anomaly (SSHA) and sea surface temperature
anomaly (SSTA) were combined to estimate the SSP in the
South China Sea area. -e model performance was evaluated,
and the RF model had been proved to effectively improve the
performance of SSP estimation.

2. Methods

2.1. Dimension Reduction Based on EOF. -e SSP, C(z) at a
particular depth z, can be represented by one column vector.
Each element of the vector represents a sampling point of
depth z. C(z) is usually expressed as

C(z) � C0(z) + 􏽘
5

s�1
αsks(z), (1)

where C0(z) is the constant component in the SSP, and also
the background profile, representing the long-term stable
ocean background, ks(z), is the empirical orthogonal
function (EOF), αs is the projection coefficient of the EOF,
and the subscript s is its order. In general, taking the re-
construction accuracy and noise suppression into consid-
eration, orders 3 to 5 of the EOF are used to reconstruct the
profile. Based on previous studies on profile reconstruction
in the sea areas, five-order mode EOFs were selected to
reconstruct the SSP.

-e EOF is the most commonly used perturbation
function to solve SSP inversion problems [28]. To provide
constraints on the search space in the SSP inversion
problem, it is, therefore, necessary to apply dimensionality
reduction techniques to model refined SSPs. By extracting
the principal components of the SSP sample matrix, the
main modes of sound speed perturbation can be identified,
and the noise can be reduced. -e SSP anomaly matrix W,
obtained by subtracting the background mean SSP from the
SSP sample matrix, is a q × p matrix, where q refers to q
discrete depths in each profile, and p refers to the total
number of samples.-e EOF vector can be obtained through
principal component analysis, as follows:

R � W × W′,

R × k � k × λ,
(2)

where R is the covariance matrix of W, λ is the eigenvalue,
and k is the EOF vector. By regressing k and W, the pro-
jection coefficients αs can be obtained.

2.2. SSP Estimation Based on Remote Sensing Parameters

2.2.1. sEOF-r Model. Based on the remote sensing param-
eters and the SSP samples obtained at the same time and at
the same location, the linear relationship between surface
and subsurface parameters can be determined. Based on the
linear function relation among SSHA, SSTA, and EOF co-
efficients, the projection coefficients of the EOF of all orders
can be calculated as [29]

αi(t) � Ai,0 + Ai,1 × SSHA(t) + Ai,2 × SSTA(t)

+ Ai,3 × SSHA(t) × SSTA(t), i � 0, 1, 2 . . . 5,
(3)

where Ai is the coefficient obtained from the linear re-
gression, i is the EOF order, and α0(t) is the constant term
coefficient. After obtaining the relation coefficient from the
training dataset, the EOF coefficients αs can be inverted
using the SSHA and SSTA as input parameters, and then SSP
can be reconstructed through (1). Obviously, the sEOF-r
model is based on the linear regression between remote
sensing parameters of the sea surface and the projection
coefficient of EOFs. -is linear relationship was in turn
based on statistical results obtained from a large number of
samples in a specific sea area, hence the difference between
individual characteristics and statistical characteristics may
lead to errors.
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2.2.2. Random Forest Model. Figure 1 shows the flow chart
of SSP estimation using the RF model. -e whole estimation
process was divided into four steps.

First, a training data set was established, which included
the remote sensing parameters SSTA, SSHA, and corre-
sponding SSP data (from 2009 to 2017 in this paper).-e SSP
longitude and latitude were input as their cosine value (LON
and LAT) and the date of data was input as the ordinal day of
a year (DATE). All the training datasets were input into the
RF model for training. -ere were six projection coefficients
αs separated from the Argo SSP that were used as the
training and the test label, whereA0 was corresponded to the
0-order constant term, and A1 − A5 were the selected total
orders of the principal components.

In the second step, the RF model was trained. -e RF
model parameters were optimized one by one using the
learning curve optimization method, and then a grid was
established to search the area around a single optimal pa-
rameter. -e optimal parameter combination was obtained
after multiple screenings. -e RF model was established
based on this combination. In the third step, the test dataset
was input into the RF model to obtain the projection co-
efficient A0 − A5. Finally, in the fourth step, the SSP was
reconstructed based on the projection coefficient, and the
accuracy of the model was evaluated using the root mean
square error (RMSE).

3. Data

-e satellite remote sensing data used in this study were
SSTA and SSHA data. -e former was obtained from the
National Oceanic and Atmospheric Administration
(NOAA) data center and the latter from the Archiving,
Validation, and Interpretation of Satellite Oceanography
(AVISO) data. -eir temporal and spatial resolutions were 1
day and 0.25° × 0.25°, respectively [30].

-e background profile adopted was the climatic profile
data from the world ocean atlas (WOA13) (https://www.
nodc.noaa.gov/0C5/woal3/), which contained temperature,
salinity, density, and other information related to global sea
areas, as well as the average climate state of measured data.
-ese can be divided into annual, seasonal, and monthly
average data with three spatial resolutions of 0.25°, 1°, and 5°
[31]. In this study, the annual average data from 2009 to 2018
were selected at a spatial resolution of 1° × 1°.

-e SSP samples were derived from the Argo buoy data.
-ese data were taken from the world oceans Argo, a scatter
data set (http://ftp.argo.org.cn/pub/ARGO/global/), in-
cluding all the thermohaline profiles measured in the South
China Sea between 2009 and 2018. Each thermohaline
profile was converted into SSP by using the empirical for-
mula of sound speed [32], and linear interpolation was
carried out across the 0–1000m depth, with 5m as the
sampling interval to interpolate the data to the standard
depth.

-e experiment selected the South China Sea as the
reconstruction area. -e topography of the area is a basin.
Due to the monsoon season and the complex topography of
the South China Sea, ocean dynamic is complex, and the

effects of eddies and internal solitary waves make profile
inversions particularly difficult. -e combination of these
complex factors challenges the validity of the proposed
model. Furthermore, the experiment selected data covering
an area between 12° and 20°N and 110°–120°E. Figure 2
shows all samples calculated by the Argo data, with a total of
3881 SSPs values, spanning from 2009 to 2018. As shown in
Figure 3, a total of 3757 SSPs from 2009 to 2017 were used as
training sets for the training models. -e SSP data of 2018
were used as a test set to test the model, with a number of 124
in total.

-e EOFs are perturbation modes that can describe most
of the characteristics of the perturbation in the sound speed
profile. It can reduce the dimension of the perturbation in a
large number of samples and give them a simple and refined
description. Figure 4 shows the first five perturbation
functions after EOF normalization. Based on the EOF’s
amplitude distribution, the sound speed perturbation
mainly occurred above the depth range of 300m, and near a
depth of 1000m, the amplitude of the leading modes was
close to zero. -erefore, we focused on the reconstruction of
the SSP above 1000m.

Table 1 shows the variance contribution rate and error of
the first five EOF modes. -e first five-order modes
accounted for 96.5% of all the variances, indicating that the
five-order EOF modes could explain most of the data
changes. -e average reconstruction error of five-order EOF
modes was 0.60m/s, demonstrating that the five-order EOF
modes could reconstruct the profile accurately without in-
troducing too much noise. -erefore, those modes were
selected to reconstruct SSP in the subsequent comparison
between sEOF-r and RF models.

4. Results

In this study, by comparing the rootmean square error of the
RF model and the linear regression sEOF-r model, the
application effect of the two models in the South China Sea
was discussed. -e root mean square error of both was
calculated by the following equation:

Train data

Test data

Test label

Train label

SSTA SSHA
LON LAT DATE

SSTA SSHA
LON LAT DATE

A0–A5

A0–A5

Random
forest model

Random
forest model

Pruning
tuning

parameter

No Yes

Input
�e best

combination

Figure 1: Training prediction flowchart of the random forest
model.
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(4)

where CR
(i,j) is the reconstructed SSP matrix, CA

(i,j) is the
actual measured SSP matrix, S is the number of discrete
points of depth, and Y is the total number of samples. -e
results showed that the root mean square error of the sEOF-r
model was 2.34m/s, the root mean square error of the RF
model was 1.77m/s, and the reconstruction efficiency was
improved by 24.14%. By comparing the root mean square
error between the two models, it could be concluded that the
nonlinear RF model was more suitable for SSP inversion
than the linear sEOF-r one.

Figure 5 shows the errors of each SSP reconstructed in
the test set. It was found that the reconstruction accuracy of
the RF model was significantly higher than that of sEOF-r,
except for a few samples. -e maximum and average errors
of the single SSP in the sEOF-r model were 5.02m/s and

2.20m/s, respectively, while the same error values in the RF
model were 4.34m/s and 1.66m/s, respectively. -e RF
model eliminated the constraints of linear inversion, in-
troducing parameters related to position and time to reduce
reconstruction error. In addition, the SSP reconstruction
based on the sEOF-r model required linear regression
analysis of a large number of samples. -erefore, the larger
the differences between individual characteristics and sta-
tistical features, the larger the errors, which was the reason
for the large number of peaks observed in Figure 5. However,
the nonlinear RF model was obviously superior to the sEOF-
r model in SSP reconstruction for those with large differ-
ences between individual eigenvalues and statistical features.
-e RF model showed that the functional relationship be-
tween ocean parameters tended to be nonlinear through the
regression of decision trees, and there was no unified
transformationmode or linear constraint for the input ocean
parameters. -e results of this study showed that this model
had better robustness and could reconstruct the SSP better
than the linear regression.

-e reconstruction errors of the two models at different
depths are shown in Figure 6. Obviously, the RF model was
superior to the sEOF-r model at any depth. As the remote
sensing parameters could directly affect sound speed near
the surface, so the error was small near the surface. At a
depth of around 100m, the water column was greatly
affected by the mixing layer, season, day and night, and
internal waves leading to water temperature and other
parameters in this range that were not linear, therefore the
error was large. For water bodies below 200m, tempera-
ture and salinity changed smaller, so the error gradually
decreased with depth. -e error variation in Figure 6 is
consistent with the perturbation shape of the five-order
EOF modes in Figure 4. -e large errors were mainly in the
range of 50–200m.-e maximum errors of the sEOF-r and
RF models were 4.78m/s and 3.97m/s, respectively, and
the corresponding depth of these two values was exactly at
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the same discrete depth point. At this discrete depth point,
the accuracy of the RF model was improved by 0.81m/s
compared to that of the sEOF-r model, which was the
depth with the greatest accuracy improvement among all
the discrete depth points, indicating that the nonlinear
interval depth RF model was significantly superior to the
sEOF-r model.

Figure 7 shows the first SSP of each month in the
reconstructed SSP. -e errors of December, January, Feb-
ruary, July, and August were significantly greater than those
of the other months, because the change in the mixing layer,
which caused it to become shallower in summer and deeper
in winter, led to a large fluctuation of the nonlinear range of
reconstruction compared with the annual average, which in

Table 1: Variance contribution rate and error of the first five-order EOF reconstruction.

EOF modal Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Variance contribution rate (%) 70.72 16.24 4.67 3.30 1.57
Cumulative variance contribution rate (%) 70.72 86.96 91.63 94.9 96.50
Reconstruction error 1.7431 1.3397 1.1612 0.8218 0.6037
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turn produced a larger reconstruction error. -e results in
Figure 7 are consistent with those in Figures 5 and 6, in-
dicating that the calculated results of the RF model were in
line with the actual profile, while the sEOF-r model shows a
large error in many samples.

5. Conclusions

In this paper, an algorithm for SSP inversion based on the RF
model was proposed. -e remote sensing parameters SSHA
and SSTA, latitude and longitude (LAT and LON), and
measurement DATE data were used as input information for
the model, from which EOF coefficients were retrieved and
the SSP was reconstructed. In the South China Sea exper-
iment, by using RMSE to evaluate the model performance,
the RF model showed higher accuracy than the sEOF-r
model did. -e reconstruction error of the latter was
2.34m/s, while that of the former was 1.78m/s, with an error
reduction of 24.14%. In addition, the RF model proved to be
more effective and robust in reconstructing ocean SSP in-
formation compared to the sEOF-r model, regardless of
season and depth. -e analysis of the RF model also pre-
liminarily reflected the relationship between sea surface
parameters and SSP based on perturbation transfer. -e
experiment showed that the linear relationship, reflected in a
large amount of data, was not strictly applicable to certain
depths, thus limiting the sEOF-r model accuracy. In con-
trast, the RF model could reduce the limitation of the simple
linear fitting without the limiting of analytic expression,

detecting the relationship between the parameters more
accurately, and introducing additional parameters, such as
location, time, heat flow, and wind speed. -is research is
expected to reconstruct the SSP of the global ocean using
long time series and will provide effective technical support
for the underwater acoustic application.

Data Availability

SST data are obtained from the National Oceanic and At-
mospheric Administration of the United States and SSH data
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