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Flat plates and cylindrical shells are commonly used in large equipment. To locate the low-velocity impact points in these
structures, this study proposes an error-index-based algorithm for impact localization. �e time of arrival of an impact-generated
A0 Lamb waves was �rst estimated based on the energy of the signal. Equations for calculating the error indices were proposed for
�at-plate and cylindrical shell structures, and the probability distribution functions of the impact points are constructed for visual
localization.�e impact test results on a �at plate and cylindrical shell indicated that, compared to the Morlet wavelet method, the
proposed algorithm improved the mean relative error of impact point localization on the �at plate by 0.22%, 15.64%, and 15.26%
under three di�erent noise conditions, respectively (i.e., no noise, and SNR� 5 and 0 dB). For the cylindrical shell, the mean
relative error of impact localization improved by 1.8%, 3.97%, and 28.12% under the three conditions, respectively. �e results
indicated that the proposed localization algorithm can accurately locate the impact points on a �at plate and cylindrical shell, even
under strong background noise conditions, providing a reference for future research on locating low-velocity impact points in
large equipment.

1. Introduction

In recent years, impact localization in large equipment has
become a research hotspot in the �eld of structural health
monitoring. Impact events, including high- and low-velocity
events, often damage equipment. In general, the damage
caused by high-velocity impact events is visible impact
damage, whereas low-velocity impact can cause barely
visible impact damage (BVID), posing a serious threat to the
operational safety of the equipment [1, 2]. Events, such as the
sudden fall of a component or an unexpected hit from a
foreign object, can cause impact damage to the equipment.
�erefore, it is critical to �nd the impact location in time to
detect the impact damage, facilitate timely inspection and
repair, reduce economic loss, and prevent major accidents
[3, 4].

Current research mainly adopts two approaches for low-
velocity impact localization in large structures. �e �rst
approach is based on feature extraction, such as using the

time of arrival (TOA) or amplitude of the signal received
from the sensor, for impact localization [5, 6]. �e most
common method utilizes trigonometric identities, where the
impact location is determined based on the distance, TOA,
and wave velocity [7, 8]. Ciampa and Meo [9] proposed an
improved trigonometry-based algorithm for impact locali-
zation in isotropic materials, which does not require the
wave velocity but only the TOA. Some of the common
methods for TOA estimation include threshold selection
[10], wavelet transform [11–13], and cross-correlation
[2, 14, 15]. In addition, beamforming [16] and the time-
reversal focusing technique [17] have been used for impact
localization. Papulak [18] proposed a one-dimensional
beamforming localization algorithm. Impact tests were
performed on a large structure (6.04m2) using a one-di-
mensional sensor array, and good localization results were
achieved. He et al. [19] located the impacts from dual sources
using both beamforming and singular value decomposition.
Qiu et al. [20] extracted the phase velocity of a stress wave
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through wavelet transform and achieved visual localization
of a reinforced plate with the time-reversal focusing tech-
nique. Pang et al. [21] estimated the TOA by extracting stress
waves through wavelet transforms and achieved localization
using the centroid method.

-e second approach is data-driven, in which a known
set of features of the impact signal are generally mapped to
the impact locations using a training algorithm. Such
methods include database matching [22, 23] and machine-
learning-based methods [24, 25]. -e database matching
method requires impact testing at different locations on the
structure surface in advance to build a characteristics da-
tabase of elastic waves generated at different impact points.
-e elastic wave characteristics generated by the actual
impact are matched with the database, and the location with
the highest matching degree is selected as the impact lo-
cation. Many studies have used artificial neural networks for
impact localization. -e best localization performance was
achieved when the TOA features were applied as input to the
neural network [26]. Other frequently used features include
the signal amplitude and the time corresponding to the
signal amplitude [27].

However, both methods have their own limitations. In
feature- extraction-basedmethods, it is difficult to accurately
extract the signal TOA due to dispersion effects [28] and
interference from noise and complex reinforced structures
during wave propagation. Data-driven methods require a
reference database; for large structures, this demands large
initial investment for building the database, and operation is
inconvenient.

To address the limitations of these methods, this study
proposes an impact localization method based on the error
index, which does not require a reference database and can
achieve localization even under the interference of strong
noise. A simple and fast dual-root mean square (RMS) al-
gorithm is first used to estimate the TOA, and the probability
distribution functions are established based on the time
difference of arrival (TDOA) for visualization. Impact tests
are performed on a flat plate and cylindrical shell, which are
commonly used in large equipment. -e test results indicate
that the proposed algorithm can accurately locate the impact
points on the flat plate and cylindrical shell under strong
background noise conditions.

2. Error-Index-Based Impact
Localization Algorithm

2.1. Localization on an Isotropic Plate. Elastic wave propa-
gation occurs when the equipment surface or internal
structure is impacted. -ese waves can be categorized into
longitudinal waves, transverse waves, Rayleigh waves, A0
Lamb waves, and others, and can be captured by various
sensors on the surface of the structure. As longitudinal,
transverse, and Rayleigh waves have small amplitudes
compared to A0 Lamb waves, many studies utilize the
properties of A0 Lambwaves for impact localization [29, 30].

Most of the materials used in the construction of large
equipment, such as nuclear power plants and ships, are steel.
Steel plates can be generally considered isotropic [31]. As

shown in Figure 1, multiple sensors are arranged on a flat
plate. When an impact event occurs, the A0 Lamb waves
generated by the collision propagate in all directions.-e A0
Lamb waves received by sensors at different distances from
the impact location contain different information. In this
figure, I denotes the impact point, Si, Sj, Sm, Sn denote the
sensors, and Li, Lj, Lm, Ln denote the linear distance from the
impact point to the respective sensors. -e features of the
signals received by the sensors are depicted in Figure 2. -e
signals reach the sensors at different time instants. As the
travel distance increases, the signal amplitude decreases, and
the waveform gradually changes, indicating dispersion ef-
fects during wave propagation [32].

It is assumed that an impact occurs at time t0; the
distance between the impact source and sensor is L; the
propagation velocity of the A0 Lamb waves along different
directions is V; the time of arrival of the A0 Lamb waves at
the sensor is the TOA. -e propagation process of the
impact-wave can then be expressed as follows:

Li � Vi × TOAi − t0( ,

Lj � Vj × TOAj − t0 ,

Lm � Vm × TOAm − t0( ,

Ln � Vn × TOAn − t0( .

(1)

It is difficult to determine when the impact exactly occurs
(t0). However, the wave propagation velocity is equal in
different directions in an isotropic plate [33]. -erefore, we
have

Vi � Vj � Vm � Vn � V. (2)

Based on equations (1) and (2), we obtain

Li − Lj � V × TOAi − TOAj ,

Lm − Ln � V × TOAm − TOAn( .
(3)

Hence,
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Figure 1: Wave propagation paths to the sensors on an isotropic
plate.
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V �
Li − Lj

TOAi − TOAj 
�

Lm − Ln

TOAm − TOAn( 
, (4)

where TOAi,TOAj,TOAm,TOAn, denote the TOA of the
A0 Lamb waves generated by impact on the different
sensors.

2.2. Morlet Continuous Wavelet Algorithm for TOA
Estimation. Morlet wavelet transform is a common signal
processing method, in which Morlet wavelet changes are
used to extract the arrival time of stress waves [21]. -e
complex Morlet continuous wavelet transform of signals is
defined as follows:

WT(a, b) �〈f,φa,b〉 � −
1
��
a

√ 
R
S(t)φ

t − b

a
 dt, (5)

where a is the stretching factor, b is the translation factor,
and φ(t) is the complex Morlet mother wavelet function
given by

φ(t) �
1
����
πfb

 e
2iπfct

e
− t2/fb , (6)

where fc and fb are the center frequency and bandwidth,
respectively, of the female wavelet.

-e Fourier transform of the complexMorlet continuous
wavelet is

Φa,b(ω) �
��
a

√
e

− iωb
e

(− 1/2) ωb/4π( ) aω− wc( )
2

. (7)

Based on equation (7), the complex Morlet continuous
wavelet transform of the signal S(t) represents the time-
frequency component of the signal for time t � b, frequency
ω � ωc/a, and frequency band ω1,ω2 ∈ [ωc/a − ωb/2a,

ωc/a + ωb/2a]. -e scale factor a and wavelet bandwidth fb

are adjusted.-e complex Morlet wavelet transform extracts
the narrowband Lamb wave signal from the impact stress-
wave signal, and then the modulus of the extracted signal is
calculated. Subsequently, the peak value of the mode is taken
as the arrival time of the impact stress wave.

However, this method needs to adjust the frequency
parameters ω according to the positioning results, and the
parameter Settings varies greatly for different scenes and
materials, which complicates the actual positioning process.
Moreover, while calculating for the TOA of the signal,
Morlet wavelet transform is susceptible to noise interference,
which is detrimental to impact positioning under actual
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Figure 2: Impact signals received from the sensors.
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conditions. -erefore, this study proposes TOA extraction
based on the RMS algorithm.

2.3. Dual-RMSAlgorithm for TOAEstimation. Although the
determination of the TOA of a A0 Lamb waves is crucial, the
determination of the exact TOA requires complex signal
processing considering the dispersion effects of the A0 Lamb
waves and the interference of background noise. To auto-
matically estimate the TOA of a A0 Lamb waves, this study
proposes a simple and fast dual-RMS algorithm, which is
described next.

First, the RMS of the signal is calculated as follows:

RMSSi
(n) �

��������


n
k Si(k)

2

n



(n � 1, 2, . . . , N), (8)

where N is the number of samples of signal Si, Si(k) is the
amplitude of the k-th sampling point of signal Si, and
RMSSi

(n) is the RMS value of signal Si at the n-th sampling
point.

-e RMS curve of each signal is normalized, and the
energy of each signal is calculated by taking the RMS of the
signal. -en, the RMS curves for each signal are drawn, as
shown in Figure 3. It can be observed that the RMS curve
increases rapidly when the signal reaches the sensor. -e

traditional TOA extraction method involves the use of a
fixed threshold. -e time when the signal energy exceeds the
predetermined threshold is considered the moment of ar-
rival [29]. To a certain extent, the fixed-threshold approach is
only suitable for certain working conditions, and when the
external conditions change, it is difficult to accurately de-
termine the TOA using this method. In this study, the
statistical characteristics of the RMS curve of the signal are
analyzed for adaptive TOA estimation. For signal Si, the
TOA is determined using the following procedure:

-e signal energy curve is randomly divided into two
parts, RMSSi

(1: m) and RMSSi
(m + 1: N), with the m-th

sampling point as the splitting point.
-e empirical estimates (rms) of the two parts are

calculated:

rmsSi
(1: m) �

1
m



m

n�1
RMSSi

(n) 
2
,

rmsSi
(m + 1: N) �

1
N − m



N

n�m+1
RMSSi

(n) 
2
.

(9)

-e total residual error is calculated by accumulating the
deviation from the empirical estimate for each point in each
part [34]:

JSi
(m) � 

m

a�1
RMSSi

(a) − rmsSi
(1: m) 

2
+ 

N

b�m+1
RMSSi

(b) − rmsSi
(m + 1: N) 

2
. (10)

-e position of the splitting point is changed until the
total residual JSi

(m) reaches a minimum, and this splitting
point is considered the predicted time of arrival (PTOA).

Taking sensors Si, Sj, Sm, Sn as an example, the RMS
curve of each signal is shown in Figure 3(a), and the residual
error J(m) of each point is obtained using equation (10), as
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Figure 3: RMS curves of the signals received from the sensors. (a) RMS curves of different signals. (b) -e total residual error J(m) of
different signals.
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shown in Figure 3(b). -e minimum position of the J(m)
curve in the figure represents the abrupt position change of
the RMS curve, namely, the signal PTOA, which is mainly
consistent with the signal TOA shown in Figure 3(a).

With the obtained PTOAi, PTOAj,PTOAm, PTOAn, we
have

V �
Lm − Ln

Li − Lj

�
TOAm − TOAn( 

TOAi − TOAj 
�

PTOAm − PTOAn( 

PTOAi − PTOAj 
.

(11)

Based on equations (4) and (11), the error index (E) is
introduced for each pair of sensors as follows:

E � Li − Lj  × PTOAm − PTOAn(  − Lm − Ln( 

× PTOAi − PTOAj .
(12)

In the detection area, assuming that the coordinates of
the impact source I are (X, Y), and the number of sensors is
M, the error function E(x, y) for any mesh point (x, y) in
the detection area is

E(x, y) � 
M

i�1


M

j�1


M

m�1


M

n�1
Li − Lj  × PTOAm − PTOAn( 



− Lm − Ln(  × PTOAi − PTOAj |,

(13)

Li �

�����������������

x − xi( 
2

+ y − yi( 
2



,

Lj �

�����������������

x − xj 
2

+ y − yj 
2



,

Lm �

������������������

x − xm( 
2

+ y − ym( 
2



,

Ln �

�����������������

x − xn( 
2

+ y − yn( 
2



,

(14)

where Li, Lj, Lm, Ln denote the distance from mesh point
(x, y) to different sensors.

-e error is calculated for each mesh in the detection
area, and a smaller error implies that the mesh point is closer
to the actual impact source.-e probability P(x, y) that each
mesh point is the impact source is calculated as follows:

P(x, y) �
1

E(x, y)/min(E(x, y))
× 100%. (15)

From the above equation, the mesh point with the largest
P(x, y) value is determined as the location of the impact
source.

2.4. Localization on a Cylindrical Shell. Compared with the
flat-plate structure, the cylindrical shell structure has the
problem of multipath arrival signal superposition [35]. As
shown in Figure 4, the impact-generated A0 Lambwaves will
reach the sensor through multiple paths. -erefore, the
shortest path from the impact signal to the sensor needs to be
considered for impact localization in a cylindrical shell.

In cylindrical coordinates, the shortest path is calculated
using equation (16). When calculating the distance between
the mesh point of the cylindrical shell and the sensor, it is
necessary to determine whether the angle difference |θi − θs|

between the two points is greater than π. If it is greater than
π, the angle difference between the two points is
|2π − |θi − θs||. -e calculation is as follows:

L �

����������������������

θi − θs


 × r 

2
+ Zi − Zs( 

2
,



θi − θs


≤ π,

���������������������������

2π − θi − θs





 × r 

2
+ Zi − Zs( 

2
,



θi − θs


> π,

⎧⎪⎪⎨

⎪⎪⎩

(16)

where θi and θs denote the angular coordinates of the i-th
mesh point of the cylindrical shell and sensor S, respectively;
Zi and Zs denote the axial coordinates of the i-th mesh point
of the cylindrical shell and sensor S, respectively; and r is the
radius of the cylindrical shell.

-e impact localization algorithm for the cylindrical
shell is consistent with that for the flat plate. -e dual-RMS
algorithm is used to determine the PTOA of the A0 Lamb
waves for each signal, and the impact points are located
using equations (14) and (15).

2.5. Relative Localization Error. Apart from the absolute
error, the relative error is often established based on the
dimensions of the structure under impact. Hence, for a large
structure, the absolute localization error may be large, but as
long as the relative localization error is within a reasonable
range, the requirements for impact localization can be
satisfied. -erefore, for the flat-plate structure, the relative
error is defined as follows:

L Error �
ΔL

�������
X

2
+ Y

2
 × 100%, (17)

where ΔL is the absolute distance between the predicted
impact point and the actual impact point, and X and Y are
the length and width of the flat plate, respectively.

For the cylindrical shell structure, the relative localiza-
tion error is defined as

Impact

Sensors

Figure 4: Multipath propagation of the impact signal to a sensor on a cylindrical shell.
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C Error �

�������������

(Δθ × r)
2

+ Δz2


��������������

(2 × π × r)
2

+ Z
2

 × 100%, |Δθ| ≤ π,

�������������������

(|2π − |Δθ|| × r)
2

+ Δz2


(2 × π × r)
2

+ Z
2 × 100%, |Δθ| > π,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

whereΔθ andΔz denote the difference in the circumferential
angle and axial length between the predicted and actual
impact points, respectively, and r and Z are the radius and
axial length of the cylindrical shell, respectively.

2.6. Impact Test Setup. To evaluate the localization perfor-
mance of the proposedmethod, impact tests were performed

on the flat plate and cylindrical shell. -e test setups used are
described next.

2.6.1. Impact Testing on a Flat Plate. A 1300× 800× 8-mm
flat plate composed of Q235m steel was used for the test.
Figure 5(a) shows the data acquisition device and the
computers used in the test. A signal generator (B&K 3050)
with the sampling rate set to 65536Hz was used. As shown in
Figure 5(b), multiple acceleration sensors (B&K 4534) are
connected to the steel plate using a magnetic base. To avoid
direct contact between the steel plate and ground, rubber
mats were placed under the corners of the plate for vibration
isolation.

-e impact source was simulated by hitting the plate
with a force hammer. -e locations of the impact points and
the sensors are depicted in Figure 6, where the x- and y-axes
are the length and width directions of the plate, respectively,
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Rubber mat Steel plate
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Figure 5: Setup for impact testing on a flat plate. (a) Data acquisition system. (b) Arrangement of the flat plate and sensors.
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in mm. S1–S8 are the acceleration sensors, denoted by “○”;
I1–I7 are the impact points, denoted by “×.” -e coordinates
of the sensor and impact points are marked in the figure

(e.g., the coordinates of sensor S1 are (175, 575)). In the test,
the impact points were set on the middle and edges of the
plate.
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Spring washer

(a)

B&K 3050

Computers

(b)

Figure 7: Setup for impact testing on a cylindrical shell. (a) Arrangement of the cylindrical shell and sensors. (b) Data acquisition system.
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2.6.2. Impact Testing on a Cylindrical Shell. A cylindrical
shell with a length of 2750mm and radius of 550mm,
composed of 304 stainless steel, was used for impact testing.
As shown in Figure 7(a), acceleration sensors (B&K 4534)

were placed on the outer-surface of the cylindrical shell
using a crystal base for connection. -e upper part of the
cylindrical shell was connected to the test bench through a
spring washer to avoid direct contact with the ground.
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Figure 7(b) shows the data acquisition device and the
computers used in the test. A signal generator (B&K 3050)
with the sampling rate set to 65536Hz was used.

As shown in Figure 8, the cylindrical shell was flattened
to form a rectangular solid. -e horizontal coordinate is the
z-axis, which indicates the direction of the length of the
cylindrical shell in mm. -e vertical coordinate is the θ-axis,
which indicates the circumferential angle of the cylindrical
shell in degrees. -e impact source was again simulated by
hitting the shell with a force hammer. -e locations of the
impact points and sensors are shown in Figure 8. S1–S8 are
the acceleration sensors, denoted by “○”; I1–I3 are the
impact points, denoted by “×.” -e coordinates of the
sensors and impact points are marked in the figure (e.g., the
coordinates of I1 are (550, 225°, 1900), where 550, 225°, and
1900 refer to the radius, circumferential angle, and axial
length, respectively).

3. Test Results and Analysis

3.1. Impact Localization on the Flat Plate

3.1.1. Localization Results. Figure 9 shows the normalized
impact signal received by acceleration sensors S1–S8 when
point I1 is impacted. Equation (8) is used to calculate and
normalize the RMS value of each signal. Figure 10 shows the

RMS curves and PTOA values of signals received by sensors
S1–S8. It can be seen that when the signal does not arrive, the
RMS curve of the background noise is in a stable state, and
its RMS value is less than 0.0005. Conversely, when the
curved wave arrives, its RMS curve starts to rise rapidly and
maintains the same growth rate in a short time. PTOA was
determined using the dual-RMS algorithm.

All seven impact points (i.e., I1–I7) were located using
the proposed algorithm. -e results are shown in Figure 11,
where the absolute error in the localization distance for each
impact point is depicted on top of each image; for example,
in Figure 11(a), the absolute localization error is 1.4142 cm.
Among the seven points, the localization error is the least at
Point I1, with a relative error of only 0.92%; the relative error
is maximum (6.58%) at Point I5. In addition, the localization
accuracy in the middle of the plate (I1–I3) is significantly
higher than that near the edge (I5–I7). -is is because when
an impact point is located at the edge of the plate, the stress
wave generated by the impact is received by the sensor after
reflection from the edge. As the waves propagate rapidly,
they may overlap at the moment of arrival, resulting in a
certain deviation in the PTOA value, degrading the locali-
zation accuracy.

Complex background noise is often present in an actual
impact monitoring environment. Figure 12 shows the
spectrum of the background noise in a real environment,
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Figure 10: RMS and J(m) values of the signals received from sensors S1–S8.
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Figure 11: Impact localization results for (a–g) Points I1–17 on the flat plate.
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which mainly contains the 50Hz line spectral frequency and
broadband white noise. To further simulate the background
noise in a real environment, the impact signals from a real
environment were simulated by superimposing background
noise. Figure 13(a) displays the signal of sensor S1 super-
imposed with background noise for Point I1, with a signal-
to-noise ratio (SNR) of 5 dB. After adding background noise,
it becomes difficult to accurately obtain the initial signal
TOA by separating the signal from the noise using the
conventional threshold-based approach.

Figure 13(b) shows that the RMS curve of the signal has
more energy and fluctuates more when background noise is
added. PTOA estimation error will occur if the signal TOA is
determined using the fixed-threshold method alone.

Figure 14 shows the localization results for impact points
I1–I7 at an SNR of 5 dB. Among these points, the relative
localization error is minimum at I3 (0.92%) and maximum
at I5 (6.58%). -e average localization error for I1–I7 is
3.84%. Furthermore, it can be observed that given the

reflection from the boundaries, the localization error for
points located in the boundary area is generally greater than
that for points farther from the boundary.

According to equation (13), the localization error is
directly affected by the PTOA difference between the signals
received from different sensors. Table 1 lists the PTOA
difference between four pairs of sensors (S1 & S2, S3 & S4, S5
& S6, and S7 & S8) at different SNRs. -e PTOA difference
between each sensor pair is very small at different SNRs; for
example, for S1 & S2, the difference is only 1.5%. -ese
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Table 1: PTOA difference for each sensor pair for different SNRs at
I1.

Sensor pair No noise SNR� 5 dB SNR� 0 dB
S1 & S2 67 68 68
S3 & S4 14 9 13
S5 & S6 8 7 8
S7 & S8 136 136 140
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ActualLoc (500, 400), PredictedLoc (530, 410), Error = 3.1623 cm
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ActualLoc (750, 400), PredictedLoc (740, 410), Error = 1.4142 cm

S1 S2 S3 S4

S5 S6 S7 S8

I3

0

100

200

300

400

500

600

700

800

Y-
co

or
di

na
te

 (m
m

)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
X-coordinate (mm)

40

30

20

50

60

70

80

90

100

Pr
ob

ab
ili

ty
 o

f I
m

pa
ct

 L
oc

at
io

n 
(%

)

(c)

ActualLoc (450, 700), PredictedLoc (400, 730), Error = 5.831 cm

S1 S2 S3 S4

S5 S6 S7 S8

I4

0

100

200

300

400

500

600

700

800

Y-
co

or
di

na
te

 (m
m

)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
X-coordinate (mm)

40

30

20

10

50

60

70

80

90

100

Pr
ob

ab
ili

ty
 o

f I
m

pa
ct

 L
oc

at
io

n 
(%

)

(d)
ActualLoc (900, 700), PredictedLoc (910, 800), Error = 10.0499 cm

S1 S2 S3 S4

S5 S6 S7 S8

I5

0

100

200

300

400

500

600

700

800

Y-
co

or
di

na
te

 (m
m

)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
X-coordinate (mm)

40

30

20

50

60

70

80

90

100

Pr
ob

ab
ili

ty
 o

f I
m

pa
ct

 L
oc

at
io

n 
(%

)

(e)

ActualLoc (600, 600), PredictedLoc (580, 680), Error = 8.2462 cm

S1 S2 S3 S4

S5 S6 S7 S8

I6

0

100

200

300

400

500

600

700

800

Y-
co

or
di

na
te

 (m
m

)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
X-coordinate (mm)

40

30

50

60

70

80

90

100

Pr
ob

ab
ili

ty
 o

f I
m

pa
ct

 L
oc

at
io

n 
(%

)
(f )

ActualLoc (900, 100), PredictedLoc (980, 120), Error = 8.2462 cm

S1 S2 S3 S4

S5 S6 S7 S8

I7

0

100

200

300

400

500

600

700

800

Y-
co

or
di

na
te

 (m
m

)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
X-coordinate (mm)

40

30

20

50

60

70

80

90

100

Pr
ob

ab
ili

ty
 o

f I
m

pa
ct

 L
oc

at
io

n 
(%

)

(g)

Figure 14: Impact localization results for (a–g) Points I1–I7 with added background noise (SNR� 5 dB).
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results suggest that the proposed method for PTOA esti-
mation is accurate and reliable under background noise
interference.

Figure 15 shows the localization error of the proposed
algorithm and that of the algorithm for TOA estimation with
Morlet wavelet transform [21]. Both algorithms show good
localization performance for flat-plate structures without
background noise. However, as shown in Figures 15(a) and
15(b), the localization error of our proposed algorithm is
significantly less than that of the Morlet wavelet transform
algorithm under noisy conditions. At an SNR of 5 and 0 dB,
the average localization errors of the proposed algorithm are
15.64% and 15.26% less, respectively, than that of the Morlet
wavelet transform algorithm. -is suggests that it is difficult
to extract the signal TOA using Morlet wavelet transform
under noise interference, whereas the proposed algorithm is
not affected by background noise interference and can
eliminate the influence of noise on TOA estimation utilizing
the statistical characteristics of the signal. Furthermore, the
proposed algorithm can adapt to different working

conditions because the threshold does not need to be pre-
determined based on empirical experience.

3.2. Impact Localization on the Cylindrical Shell

3.2.1. Impact Localization Results. Figure 16 shows the
impact localization results for the cylindrical shell structure
using the proposed algorithm described in Section 2.2. -e
maximum localization error is at Point I1 (7.24%), and the
minimum localization error is at Point I2 (1.75%), with an
average localization error of 3.25%. -ese results demon-
strate that the proposed impact localization algorithm can be
used to accurately locate the impact points on cylindrical
shell structures.

3.2.2. Influence of Background Noise on Impact Localization.
-e same background noise is superimposed on the sensor
receiving signals arranged on the cylindrical shell. When the
impact point is far from the sensor, the impact signal rapidly
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Figure 15: Comparison of the localization errors using the proposed and Morlet wavelet transform algorithms for a flat plate. (a) No noise.
(b) SNR� 5 dB. (c) SNR� 0 dB.
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attenuates. Figures 17 and 18 show the impact localization
results under different noise conditions (SNR� 5 and 0 dB,
respectively). Under both conditions, the localization error
does not exceed 5%, demonstrating that the localization

algorithm for the cylindrical shell is not highly affected by
noise interference and can achieve good localization results.
For the cylindrical shell structure, the proposed and Morlet
wavelet algorithms were compared in terms of the relative

50

60

70

80

90

100

Pr
ob

ab
ili

ty
 o

f I
m

pa
ct

 L
oc

at
io

n 
(%

)

Z-coordinate (m)

330
300
270
240
210
180
150
120
90
60
30

0
0 300 600 900 1200 1500 1800 2100 2400 2750

360

�
et

a-
co

or
di

na
te

 (º
)

ActualLoc (550, 180º, 1750), PredictedLoc (550, 180º1740), Error = 7.7443 cm

S6

S4

S5

S1

S7

S2

S8

S3
I1

(a)

50

40

30

60

70

80

90

100

Pr
ob

ab
ili

ty
 o

f I
m

pa
ct

 L
oc

at
io

n 
(%

)

Z-coordinate (m)
0 300 600 900 1200 1500 1800 2100 2400 2750

330
300
270
240
210
180
150
120

90
60
30

0

360

�
et

a-
co

or
di

na
te

 (º
)

ActualLoc (550, 180º, 950), PredictedLoc (550, 194º900), Error = 14.339 cm

S6

S4

S5

S1

S7

S2

S8

S3
I2

(b)

Figure 16: Impact locations on the cylindrical shell. (a) I1. (b) I2.
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Figure 18: Impact locations on the cylindrical shell for SNR� 0 dB. (a) I1. (b) I2.
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Figure 17: Impact locations on the cylindrical shell for SNR� 5 dB. (a) I1. (b) I2.
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localization error; the results are depicted in Figure 19. -e
proposed algorithm has lesser localization error compared to
the Morlet wavelet algorithm. Under different noise con-
ditions (i.e., no noise, and SNR� 5 and 0 dB), the mean
relative error is improved by 1.8%, 3.97%, and 28.12%, re-
spectively, with the proposed algorithm. -ese results
suggest that the proposed algorithm can achieve satisfactory
results for impact localization on cylindrical shell structures.

4. Conclusions

-is article presents an error-index-based low-speed impact
location algorithm, which is suitable not only for a flat plate
but also for cylindrical shell structures. First, a dual-RMS
algorithm based on signal energy characteristics is proposed
to estimate the TOA of signals. -is algorithm is adaptive
and does not require complex signal processing and artificial
threshold setting. -e probability function is constructed by
introducing an error index to map the impact location. -e
percussion test results on a flat plate and cylindrical shell
demonstrate the following:

(1) -e dual-RMS algorithm can accurately and stably
estimate the TOA difference of bending waves under
noise interference.

(2) -e proposed positioning algorithm has a good
positioning effect on both flat plate and cylindrical
shell structures. Under no noise conditions and for
SNR� 5 and 0 dB, the average relative error ratio of
the Morlet wavelet algorithm is improved by 0.22%,
15.64%, and 15.26%. For the cylindrical shell
structure, the average relative errors increase by
1.8%, 3.97%, and 28.12%. It can be seen that the
proposed algorithm has a good application value for
low-speed impact location on large structures under
low-SNR conditions.

(3) In the flat-plate test, it is verified that the location
error of the percussion point at the edge of the plate
structure is generally greater than that of the middle
position due to the influence of boundary reflection.

In future work, the edge location algorithm should
be improved to reduce the impact of boundary
reflection.
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