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In order to analyse the system spatial vibration of compound biaxial and inter-shaft bearings during unbalanced excitation, the
theory of rotor dynamics and bearing contact deformation are combined to establish a coupling system model of compound
biaxial and inter-shaft bearings. Considering the moment of inertia, gyro e�ect, and structural damping, a one-dimensional beam
model is used to perform the MATLAB numerical calculation of the coupling system to obtain the modal characteristics of the
system, and based on the ANSYS simulation analysis of the three-dimensional model, a modal test is used to obtain the system
modal shape and test frequency response function to verify the rationality of the coupling system model. Based on the Runge-
Kutta iterative method and Hamilton’s principle, the nonlinear amplitude-frequency response of the system is calculated while
taking into account the in�uence of the compound biaxial eccentricity, as well as the sti�ness and radial clearance of the inter-shaft
bearing. �e results show that the changes in the eccentricity of the compound biaxial and the structural parameters of the inter-
shaft bearing cause the unbalanced excitation of the system, additional external load changes, and di�erent coupled vibrations
between the composite compound biaxial and inter-shaft bearings. �erefore, it is reasonable to match the structural parameters
of the coupling system and improve the dynamic performance to avoid system resonance.

1. Introduction

In order to improve the measurement accuracy and struc-
ture compactness, a compound biaxial dual-axis and dual-
drive structure has been widely used in high-precision angle
metering turntables [1–3]. Due to machining accuracy, in-
stallation eccentricity, and mechanical wear, when the main
shaft is running, the inertia centre line is not on the rotation
centre line of the main shaft, and furthermore, there is an
imbalance phenomenon. At the same time, the unbalanced
force is proportional to the square of the speed. During
operation, the slight �uctuation of the unbalanced amount
of the system will also produce a certain centrifugal force,
which will cause the unbalanced vibration of the spindle
[4, 5]. In order to produce a reliable and stable angle
metering turntable, it is very necessary and important to
predict the dynamic characteristics of the system and to

study the vibration characteristics. For the main structure of
the angle metering turntable, the multi-frequency unbal-
anced excitation force and the vibration coupling caused by
the compound biaxial and inter-shaft bearings make the
system vibration problem more complicated in the coupling
system [6, 7]. However, due to the structural complexity of
the compound biaxial system, it is a challenge to use the
traditional methods (such as transfer matrix method and
modal synthesis method) to obtain the dynamic charac-
teristics [8]. With the rapid development of computer
technology, digital co-simulation analysis has become an
e�ective method for obtaining the dynamic characteristics of
complex shafting. In order to achieve the high-precision
system control and angle measurement of an angle mea-
surement turntable [9–11], scholars around the world have
conducted research on the dynamic characteristics of a
complex shaft system.
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A team from Isfahan University of Technology per-
formed a full dynamic analysis of a high-speed rotor with
certain geometrical and mechanical properties. /e analysis
was carried out using a 3D finite element model, a 1D beam-
type model, and an experimental modal test. /e Campbell
diagram, critical speeds, operational deflection shapes, and
unbalanced response of the rotor were obtained in order to
completely investigate the dynamic behaviour of the rotating
system [12]. /e French Centre National Recherche de la
Scientifique (CNRS) calculated the dynamic characteristics
of the corresponding rotating system by using the overall
nonrotating mode of a flexible blaster-axis assembly, and
CNRS verified the accuracy of the nonrotating mode for-
mation by using the finite element cyclic symmetry method
[13]. Northeastern University established a new dynamic
model of rotor-blade systems considering the lateral and
torsional deformations of a shaft. /e following phenomena
were revealed by the functional relationship between the
natural frequency and the rotational speed of the rotor-blade
system, and the complicated coupling modes of the rotor-
blade system were obtained [14]. A team at Taiwan Uni-
versity studied and drew diagrams of the coupling mode
shapes. In addition, the influence on the coupling vibrations
of the shaft-torsion and blade-bending coupling vibrations
of a multi-disk rotor system was investigated analytically
[15]. Dalian Jiaotong University studied the rigid motion of
the shaft of an aero-engine fan rotor system, the elastic
deformation of the support structure, and the transverse
motion of the shaft caused by the unbalanced mass, and the
university analysed the influence on the spectrum in the
subcritical and supercritical ranges [16]. /e Korea Aero-
space Research Institute developed the rotordynamic model
of a fuel turbopump and performed a dynamic analysis to
predict the rotating natural frequencies, critical speeds, and
system instability [17]. Beihang University considered the
intermediate bearing offset, and proposed the cross coor-
dinate system modelling method for a dual-rotor system to
address the issue that the high- and low-pressure rotors
could not be modelled in the unified coordinate system due
to their different motion forms, and to accurately simulate
the influence law of the axial deviation of the intermediate
pivot on the dynamics of the dual-rotor system [18].

In the abovementioned literature, scholars have paid
more attention to the dynamic characteristics of single shaft
systems and high-speed systems with double rotors and
inter-shaft bearings [18–20]. /ere is not much theoretical
research into the dynamic characteristics of high-precision
composite compound biaxial and inter-shaft bearings sys-
tems. /e compound biaxial structure of a high-precision
angle metering turntable is an innovative configuration to
ensure detection accuracy and a compact structure. /e
main difference between the compound biaxial structure and
the traditional single shaft structure is the inter-shaft bearing
used to support the external and internal shafts [3].

In this paper, we present the structure of the compound
biaxial and inter-shaft bearings for high precision angular
metrology turntable [1]. In Section 2, we establish the
mathematical model of a coupling system for compound
biaxial and inter-shaft bearings. In Section 3, we describe the

numerical calculations, dynamics simulations, and modal
experiments of the compound biaxial system, which verify
the rationality of the coupling systemmodel. In Section 4, we
describe the research on the vibration characteristics of the
coupled system for compound biaxial and inter-shaft
bearings. Conclusions are provided in Section 5.

2. Modelling of Compound Biaxial
Coupling System

2.1. Structural Model of Compound Biaxial Coupling System.
/e high-precision angular metrology turntable mainly
adopts the compound biaxial structure of the inner-outer
ring with reciprocal roll angles [1]. /e inner shaft is sup-
ported by bearing A and inter-shaft bearing C, and the outer
shaft is supported by the high-precision turntable bearing
B. /e turntable is mainly composed of a rigid turntable, a
rigid transition turntable, a rigid outer shaft, and an elastic
inner shaft. /e inter-shaft bearing C is used to achieve the
double shaft coupling of the inner shaft and the outer shaft,
and the inner-outer double shafts are independently driven
by a torque motor A and a torque motor B. In actual op-
eration, the compound biaxial structure cannot achieve
complete balance. Assuming that the initial phase angle of
the unbalanced force is zero, there are two eccentricities at
different positions, and the driving torques of the inner and
outer shafts are defined as T1 and T2, respectively. /e
simplified compound biaxial system of the high-precision
angular metrology turntable is shown in Figure 1.

It is assumed that the stiffness of the bearings is isotropic,
and the influence of the cross-coupling stiffness of the
bearing is ignored./e bearing stiffness parameter values are
shown in Table 1. /e mass matrix and the stiffness matrix
are necessary conditions for analysing the dynamic char-
acteristics of the system, which depends only slightly on the
damping matrix. /erefore, the bearing damping terms can
be ignored. /e system geometric parameters and the
turntable parameters are shown in Tables 2 and 3,
respectively.

2.2. Mathematical Modelling of Compound Biaxial Coupling
System. Considering the support of the inter-shaft bearing,
the coupling system model of the compound biaxial and
inter-shaft bearings is established, as shown in Figure 2. It is
assumed that the inner shaft is a flexible shaft and the outer
shaft is a rigid shaft, the two shafts continuously rotate
forward and backward, and the turntable has rigid turntables
I and II (only the radial vibration of the rotor is considered,
and the torsion and axial vibration of the rotor are ignored).
/e system is described by three degrees of freedom, the
model bearings A, B, and C are rolling bearings and are
elastically supported, and bearing C is an inter-shaft bearing.
/e inner shaft is supported by bearing A and bearing C./e
outer shaft is independently supported by bearing B./us, o-
xyz is the coordinate system of the component to be
inspected that is affixed to the inner axis, and O-XYZ is the
fixed coordinate system of the base (ground) of the
turntable.
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2.2.1. Motion Equation of Compound Biaxial Coupling
System. By using the coupling system of compound biaxial
and inter-shaft bearings, combined with the classical
Lagrange equation (20)–(22):

d
dt

zL

z _r
[ ] −

zL

zr
+
zD

z _r
� F(t). (1)

where L is the Lagrange function of the system (the dif-
ference between the kinetic energy and the potential energy
of the system), D is the dissipated energy of the system, r is
the generalized coordinate vector (the displacement vector
of the system), and F(t) is the generalized external force
acting on the system for which the centrifugal force function
is caused by the unbalanced excitation.

After substituting the kinetic energy, potential energy,
and dissipated energy of the compound biaxial rotating disk
into the Lagrange equation, in the system coordinate system,
the di�erential equation of motion of the rotating disk of the
compound biaxial coupling system is as follows:

Mi€ri + ΩGi + Ci + Ca,i( ) _ri + Ki + _ΩKi + Ka,i( )ri
� Fu,i + Fg,i + Fc,i + Fa,i.

(2)

In the above equations, Mi, Ci, Gi , and Ki are the mass
matrix, damping matrix, gyro matrix, and structural sti�-
ness matrix of the rotating disk of the compound biaxial
system, respectively, the e�ects of the variable speed of
rotationΩ are considered in the sti�ness matrix, Fu,i and Fg,i
are the mass unbalance force and the gravity force vector
acting on the rotating disk, respectively, the external force
vector Fc,i represents the bearing contact forces. Ca,i, Ka,i,
and Fa,i are the additional damping matrix, additional
sti�ness matrix, and additional excitation load force vector
generated on the rotating disk when the turntable rotates,
respectively.
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Figure 1: Structural model of compound biaxial system. Rotating disk I is a polyhedron. Rotating disk II is the circular dividing part to be
inspected. Bearing A is a ball bearing and Bearing B is a turntable bearing. Bearing C is a dense ball bearing. Motor A andMotor B are torque
motors.

Table 1: Bearing radial sti�ness.

Bearing A B C
Radial sti�ness(N/m) 6.11× 108 5.02×106 6.03×108

Table 2: Geometric properties of the biaxial shaft.

Geometric properties Length (mm) Inner diameter (mm) Outer diameter (mm)
Inner shaft 198 0 20
Outer shaft 146 24/160 40/180

Table 3: Rotating disk data.

Data properties I II
Mass (kg) 0.2 0.2
Jd (kgm2) 4.0×10–5 1.0×10–4
Jp (kgm2) 2.0×10–5 5.0×10–5
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Figure 2: Coupling system model of compound biaxial and inter-
shaft bearing.�e blue shaft is the inner shaft.�e green shaft is the
outer shaft. O is the mass centre of the item to be inspected. O1 is
the mass centre of the turntable. O2 is the mass centre of the inter-
shaft bearing. O3 is the mass centre of rotary table bearing. O4 is the
mass centre of the inner shaft ball bearing. O5 is the mass centre of
the polyhedron.
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/is expression is combined with the coupling system of
the compound biaxial and inter-shaft bearings, in which,
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.

(3)

In addition, mi is the mass of the rotating disk; Id,i and
Iρ,i are the diameter moment inertia and the polar moment
inertia of the rotating disk, respectively; and ct,i and cr,i are
the translational damping and rotational damping of the
rotating disk relative to the shaft, respectively. ωi is the speed
of the rotating disk relative to the shaft, ki is the stiffness of
the rotating disk relative to the shaft, ei is the eccentricity of
the rotating disk, and φi,0 is the initial phase angle of the
unbalance of the rotating disk. _θa,x, _θa,y, and _θa,z are the
additional angular velocity of the rotating disk relative to the
x, y, and z axes in the system coordinate system, respectively.
€θa,x, €θa,y, and €θa,z are the additional angular acceleration of
the rotating disk relative to the x, y, and z axes in the system
coordinate system, respectively, the external force Fc,i rep-
resent the bearing contact forces.

It is assumed that the mass of the compound biaxial
system is concentrated, the influence of the radial vibration
(that is, the displacement and velocity in the x and y di-
rections) is considered, and the influence of the axial vi-
bration is ignored. /e inner shaft is a flexible shaft and the
outer shaft is a rigid shaft. Based on the analysis and ar-
rangement of the differential equation of the motion of the
rotating disk in the system coordinate system, the dynamics
equation of the coupled system of the compound biaxial
rotating shaft can be obtained:

M€S + C + G + Ca(  _S + K + Ka( S � Fu + Fg + Fa. (4)

In the expression,
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where M, C, G, and K are the generalized mass matrix,
damping matrix, gyro matrix, and stiffness matrix of the
flexible axis of the inner shaft of the compound biaxial
system, respectively, S is the generalized coordinate vector of
the internal flexible axis, Fu and Fg are the unbalanced force
and the generalized force vector acting on the internal
flexible axis, Ca, Ka, and Fa are the additional damping
matrix, additional stiffness matrix, and additional excitation
load force vector, respectively, which are generated on the
rotating disk of the internal flexible axis or the bearing
fulcrum when the inner and outer shafts rotate.

2.2.2. Displacement and Energy Equation of Compound Bi-
axial System. Using the dynamics equation of the com-
pound biaxial coupling system, the displacement equation of
the rotation axis of inner shaft at any point in the x and y
directions is established:

X1(z, t) � σ1(z)x1(t),

Y1(z, t) � σ1(z)y1(t),
 (6)

where σ1(z) is the displacement function of the inner ro-
tation axis and it represents the functional relationship
between the displacement at a point on the inner rotating
axis and the rotating disk.

/e bending angle equation of the inner rotation axis at
any point in the x and y directions:

ϕ1(z, t) ≈
zY1

zz
�
dσ1(z)

dz
y1(t) � χ1(z)y1(t),

ψ1(z, t) ≈
zX1

zz
�
dσ1(z)

dz
x1(t) � χ1(z)x1(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where χ1(z) is the curvature change function of the inner
rotation axis.

/e displacement equation of the outer rotation axis at
any point in the x and y directions is established:

X2(z, t) � σ2(z)x2(t),

Y2(z, t) � σ2(z)y2(t),
 (8)

where σ2(z) is the displacement function of the outer ro-
tation axis and it represents the functional relationship
between the displacement at a point on the outer rotating
axis and the rotating disk.

/e bending angle equation of the outer rotation axis at
any point in the x and y directions:

ϕ2(z, t) ≈
zY2

zz
�
dσ2(z)

dz
y2(t) � χ2(z)y2(t),

ψ2(z, t) ≈
zX2

zz
�
dσ2(z)

dz
x2(t) � χ2(z)x2(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where χ2(z) is the curvature change function of the outer
rotation axis.

/e rigid rotation axis is always in steady motion, and
the total kinetic energy T of the system is composed of the

kinetic energy TD of the rotating disk and the kinetic energy
of the rotation axis TS, that is, T � TD + TS.

Kinetic energy TD1 of the inner rotating disk:

TD1 �
1
2
m1 v

2
x1 + v

2
y1  +

1
2
JD1 v

2
x1 + v

2
y1 χ21 L11( 

+
1
2
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2
1 L11( 

�
1
2
m1 _x

2
1 + _y

2
1  +

1
2
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2
1 + _y

2
1 χ21 L11( 

+
1
2
Jρ1ω

2
1 − Jρ1ω1 _x1y1χ

2
1 L11( .

(10)

Kinetic energy TS1 of the inner rotation axis:

TS1 �
ρ1πR

2
1

2
v
2
x1 + v

2
y1  

L12

0
σ21(z)dz

+
ρ1I1
2

v
2
x1 + v

2
y1  

L12

0
χ21(z)dz + ρ1I1L12ω

2
1

− 2ρ1I1ω1vx1y1 
L12

0
χ21(z)dz

�
ρ1πR

2
1

2
_x
2
1 + _y

2
1  

L12

0
σ21(z)dz +

ρ1I1
2

_x
2
1 + _y

2
1 


L12

0
χ21(z)dz + ρ1I1L12ω

2
1 − 2ρ1I1ω1 _x1y1 

L12

0
χ21(z)dz .

(11)

where m1 is the mass of the inner rotating disk, vx1 and vy1
are the linear velocities of the inner rotating disk in the x and
y directions, JD1 and Jρ1 are the diameter moment of inertia
and the polar moment of inertia for the inner rotating disk,
ω1 is the rotation speed of the inner rotation axis, ρ1 is the
density of the inner rotation axis, R1 is the radius of the inner
rotation axis, and I1 is the inertia moment of the inner
rotation axis relative to the theoretical central axis. L11 is the
distance from point O to point O5, and L12 is the distance
from point O1 to point O in the system frame.

/e kinetic energy TD2 of the outer rotating disk is:

TD2 �
1
2
m2 v

2
x2 + v

2
y2  +

1
2
JD2 v

2
x2 + v

2
y2 χ21 L21(  +

1
2
Jρ2ω

2
2

− Jρ2ω2vx2y2χ
2
2 L21( 

�
1
2
m2 _x

2
2 + _y

2
2  +

1
2
JD2 _x

2
2 + _y

2
2 χ21 L21( 

+
1
2
Jρ2ω

2
2 − Jρ2ω2 _x2y2χ

2
2 L21( .

(12)

/e kinetic energy TS2 of the outer rotation axis is:
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TS2 �
ρ2π R2

22 − R
2
21( )

2
v2x2 + v

2
y2( ) ∫

L23

L22
σ22(z)dz

+
ρ2I2
2

v2x2 + v
2
y2( ) ∫

L23

L22
χ22(z)dz + ρ2I2 L23 − L22( )ω2

1

− 2ρ2I2ω2vx2y2 ∫
L23
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�
ρ2π R2
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2
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+
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2
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1

− 2ρ2I2ω2 _x2y2 ∫
L23

L22
χ22(z)dz .

(13)

where m2 is the mass of the outer rotating disk, vx2 and vy2
are the linear velocities of the outer rotating disk in the x and
y directions, JD2 and Jρ2 are the diameter moment of inertia
and the polar moment of inertia for the outer rotating disk,
ω2 is the rotation speed of the outer rotation axis, ρ2 is the
density of the outer rotation axis, R21 and R22 are the inner
radius and outer radius of the outer rotation axis, and I2 is
the inertia moment of the outer rotation axis relative to the
theoretical central axis. L21 is the distance from point O to
point O1, L22 is the distance from point O to point O4, and
L23 is the distance from point O to point O2 in the system
frame.

According to the theory of elastic potential energy, the
generalized coordinates of the inner and outer shafts are
(x1, y1) and (x2, y2), and the linear sti�ness coe¨cients of
the system are k1 and k2. �e elastic potential energies at the
positions of the inner and outer rotating disks are:

V1 �
1
2
k1 x

2
1 + y

2
1( ),

V2 �
1
2
k2 x

2
2 + y

2
2( ).




(14)

According to the Ruili dissipated energy function, the
damping coe¨cients of the inner and outer shafts are c1 and
c2, respectively, and the dissipated energies of the system at
the positions of the inner and outer rotating disks are:

D1 �
1
2
c1 v

2
x1 + v

2
y1( ) �

1
2
c1 _x21 + _y21( ),

D2 �
1
2
c2 v

2
x2 + v

2
y2( ) �

1
2
c2 _x22 + _y22( ).




(15)

2.2.3. Bearing Force Equation of Inter-Shaft Bearing. �e
function of the inter-shaft bearing is to connect the “inner-
outer” double shaft. �e inner raceway of the inter-shaft

bearing is in contact with the outer ring of the inner shaft,
and the outer raceway is in contact with the inner ring of the
outer shaft. Since the inter-shaft bearing is a dense ball
bearing, the balls are arranged equidistantly between the
inner and outer raceways of the cage. It is assumed that there
are n supporting points between the raceways of the cage of
the inter-shaft bearing (there are n balls in a single row). �e
force diagram of the inter-shaft bearing is shown in Figure 3.

According to the theory of the Hertz contact defor-
mation, the bearing support reaction equation is:

F � Kδη, (16)

where K is the contact sti�ness, δ is the elastic deformation
at the contact point of the inner and outer rings of the ball
bearing, and η is the type of correlation coe¨cient of the
bearing. �e type of the correlation coe¨cient of the ball
bearing is η � 3/2 and the type of the correlation coe¨cient
of the roller bearing is η � 10/9.

In the inter-shaft bearing, the elastic support force of the
ball i is expressed as:

Fi � Kδ
η
i H δi( ), (17)

where δηi is the elastic deformation at the contact point i of
the inner and outer rings of the inter-shaft bearing, and the
inter-shaft dense bead bearing is the ball bearing, namely,
the coe¨cient η � 3/2,H(δi) is the Heaviside function at the
contact point i of the inter-shaft bearing, and

H(δi) �
0 (δi ≤ 0)
1 (δi > 0)

{ .

It is assumed that the contact deformation between a
single ball and the inner and outer ring raceways of the inter-
shaft bearing satis«es the theory of small deformation, and
the radial elastic contact deformation of the ball i is as
follows:

δi � xi − x0( )cos θi + yi − y0( )sin θi − δ0, (18)

where xi, x0, yi, and, y0 are the vertical and horizontal
displacement components of the inner and outer raceways of
the inter-shaft bearing, δ0 is the radial clearance of the inter-
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o0
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ω1ωc
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Figure 3: Force diagram of inter-shaft dense ball bearing. Solid
lines are ideal bearings. Dotted lines are actual bearings with radial
clearance (�ere is radial clearance).
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shaft bearing, and θi is the angle at the supporting point i of
the inter-shaft bearing.

At a certain point, the angle at the supporting point i of
the inter-shaft bearing is:

θi � ωc · t +
2π
n

(i − 1), (19)

where ωc is the dynamic speed between the ball of the inter-
shaft bearing and the cage for the ball rotation speed of the
inter-shaft bearing, where i � 1, 2, . . . n.

Ball rotation speed of inter-shaft bearing:

ωc � ω
Rz

RD + Rz

, (20)

where ω is the relative speed of the inner shaft relative to the
outer shaft for the compound biaxial structure, RD is the

radius of the outer ring raceway for the inter-shaft bearing,
and Rz is the radius of the inner ring raceway for the inter-
shaft bearing.

Since the inner and outer shafts of the compound biaxial
structure are in continuous rotation, one clockwise and one
counter clockwise, the rotation speed of the inner shaft
relative to the outer shaft is:

ω � ωD + ωz � ω1 + ω2, (21)

where ωD is the absolute speed of the cage, ωz is the absolute
speed of the ball, ω1 is the speed of the inner shaft, and ω2 is
the speed of the outer shaft.

In the coordinate system of the inter-shaft bearing
system, the force of the inter-shaft bearing during the ro-
tation of the compound biaxial structure is:

Fx � KH 

n

i�1
δi( 

3/2
H xi − x0( cos θi + yi − y0( sin θi − r0(   · cos θi,

Fy � KH 

n

i�1
δi( 

3/2
H xi − x0( cos θi + yi − y0( sin θi − r0(   · sin θi,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

where KH is the Hertz contact stiffness of the inter-shaft
bearing, r0 is the radius of the raceway ring, and
r0 � RD − Rz.

3. Model Verification of Compound Biaxial
Coupling System

3.1. Discretization of Compound Biaxial Structure.
According to the actual structure of the high-precision
angular metrology turntable, a one-dimensional beam
model and a three-dimensional solid model are used to
discretize the biaxial structure. /e beam model uses nine
Timoshenko beam elements for modelling, and considers
the rotational inertia, gyroscopic effect, and structural
damping for two turntable units and five support units, as
shown in Figure 4(a).

In order to consider the influence of more complex
geometric structures on the dynamic characteristics of the
biaxial structure, the finite element model of the biaxial
system is established in ANSYS Workbench using the solid
element model, as shown in Figure 4(b). /e elastic mod-
ulus, Poisson’s ratio, and mass density of both shafts (alu-
minium 7A04 B) of the biaxial structure are 70GPa, 0.3, and
2700 kg/m3, respectively. /e finite element model of the
biaxial structure uses Combin14 elements to simulate the
bearing and the motor, which contain 13,549 elements and
55583 nodes in the 3Dmodel. However, the 1Dmodel has 16
elements and 11 nodes, as shown in Figure 4(a).

3.2. Modal Analysis of Compound Biaxial Structure.
Based on the dynamic equations of the compound biaxial
coupling system, the 1D beammodel and the 3D solid model

of the compound biaxial structure are adopted, and the
modal analysis of the biaxial structure is carried out using
MATLAB and ANSYS Workbench. /e numerical calcu-
lation for the 1Dmodel and the simulation analysis of the 3D
model for the modal shapes for the first six orders, are shown
in Figures 5 and 6, respectively.

According to the first six orders of the modal formation,
the vibration shapes of the two models are the same, and the
change law of the overall shape formation is the same.
However, due to the existence of the dense ball bearing in the
middle, there is a phenomenon of coupling vibration be-
tween the inner shaft and the outer shaft, which prelimi-
narily verifies the rationality of the coupling system model.
/e MATLAB numerical calculation of the coupling system
model and the Workbench simulation of the 3D model are
compared with the first six orders of the natural frequencies.
/e relative error of the fourth order of the natural frequency
is the largest (the error is less than 8%). /e main reason for
this is that the simulation analysis ignores the coupling effect
of the compound biaxial and inter-shaft bearings, which
leads to an increase in the contact stiffness between the
shaftings, and compared with the 1D model, the 3D model
has higher stiffness characteristics.

/e numerical calculation and the dynamic simulation
analysis of the coupling system model are carried out under
relatively ideal boundary conditions in order to consider the
accuracy of the numerical calculation and the modal test
under real working conditions. /erefore, in this research, a
scanning laser vibrometer PSV-500-1D combined with a
single-point laser vibrometer OFV-5000 is used to carry out
modal tests on the compound biaxial structure, and the
frequency response, unbalanced vibration, and response
phase of the biaxial structure are obtained. /e recording
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and the display of the data are achieved with a PSV-500-
DMS data acquisition system. �e modal test is shown in
Figure 7.

�e excitation is applied to the end of the biaxial
structure by using the turntable control system, combined
with the reference signal of the single-point laser vibrometer
OFV-5000.�e amplitude-frequency curve of the modal test
is shown in Figure 8.�e amplitude-frequency curve and the
natural frequency (see Table 4) are compared. �e results of
the modal test, numerical calculation, and «nite element
simulation are in good agreement, which again veri«es the
rationality of the coupling systemmodel with the compound
biaxial structure.

4. Vibration Characteristic Analysis of
Compound Biaxial System

It is assumed that the sti�ness of the bearing is isotropic, and
the in�uence of the cross-coupling sti�ness and the damping

of the bearing are ignored under ideal conditions. �e ec-
centricity of the compound biaxial is e0� 0, the sti�ness and
the radial clearance of the inter-shaft bearing are
KH0� 6.03×108N/m and δ0� 0, respectively. According to
the di�erential (2) of motion of the rotating disk of the
compound biaxial coupling system, the excitation of the
mass unbalance force and the gravity force are applied to the
inner and outer rotating disks, respectively, and the exci-
tation of the additional damping matrix, the additional
sti�ness matrix, and the additional load force generated on
the corresponding disks are taken into account. By changing
the parameters of the compound biaxial eccentricity, the
sti�ness and the radial clearance of the inter-shaft bearing,
the vibration characteristics of the compound biaxial system
are analysed.

4.1. Amplitude Frequency Response Analysis of Compound
Biaxial System. In order to investigate the amplitude-fre-
quency response of the compound biaxial system without
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Figure 4: Finite element model of the compound biaxial system. (a) Beam model and (b) Solid model.
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taking the in�uence of the dynamic load of the system into
account, the di�erential motion (2) of the rotating disk and
the dynamic (4) of the rotation axis for the compound bi-
axial system are numerically solved with the fourth-order
Runge-Kutta iterative method. Taking the system speed as
the abscissa with the amplitude-frequency curve of the
compound biaxial system, the amplitude-frequency curves
of the start-up and stop-down of the compound biaxial
system are compared and analysed. �e amplitude-fre-
quency response curve of the compound biaxial system is
near the «rst-order critical speed, as shown in Figure 9.

�e comparative analysis of the amplitude-frequency
curve of the system shows that the “inner-outer” shaft of the
compound biaxial system is a continuous rotation of positive
and negative reciprocals, and there are two excitation res-
onance peaks near the «rst-order critical speed during the
increasing speed and decreasing speed phases of the inner
and outer shafts (Increasing speed phase: the excitation
resonance peak points AO1 and AO2 of the outer shaft, and
the excitation resonance peak points AI1 and AI2 of the
inner shaft. Decreasing speed phases: the excitation reso-
nance peak points BO1 and BO2 of the outer shaft, and the
excitation resonance peak points BI1 and BI2 of the inner
shaft). �e «rst excitation resonance is caused by the main
excitation resonance of the outer shaft, the second excitation
resonance is caused by the main excitation resonance of the
inner shaft, and the resonant peak-peak value of the outer
shaft is higher than the resonant peak-peak value of the inner
shaft in the amplitude-frequency curve. Between the ac-
celeration mutation point A and the deceleration mutation
point B of the two main excitation resonance peaks of the
inner shaft and the outer shaft, the double steady-state in-
terval of the compound biaxial system is correspondingly

formed due to the existence of the coupling contact force
and the nonlinear vibration characteristics of the rolling
of the inner and outer of the inter-shaft bearing. At the
same time, the double steady-state interval caused by the
main excitation resonance of the inner shaft is signi«-
cantly larger than that of the outer shaft. In addition, due
to the coupling of the “inner-outer” shafts of the com-
pound biaxial system, the overall trends of the two ex-
citation resonances and the amplitude-frequency curves
of the system remain the same.

4.2. Amplitude-Frequency Response Analysis of Di�erent
Eccentricity. In order to analyse the amplitude-frequency
response of the di�erent eccentricities of the compound
biaxial system, the eccentricities of the inner shaft and the
outer shaft are taken as e1� 0.2 μm, e2� 0.4 μm, e3� 0.6 μm,
and e4� 0.8 μm. Regardless of the in�uence of the dynamic
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Figure 6: �e modal shapes plotted with Workbench.

Optical vibration
isolation platform

Acquisition laser head

Reference laser head

Turntable

Turntable control system

Acquisition &
processing system

Figure 7: Modal test platform.

Shock and Vibration 9



load of the system, the equations of displacement and energy
of the compound biaxial system are numerically solved by
Hamilton’s principle.�e speed is taken as the abscissa of the
amplitude-frequency curve of the compound biaxial system,
and then the amplitude-frequency curve of the compound
biaxial system is compared and analysed. �e amplitude-
frequency curves of the compound biaxial bearing for dif-
ferent eccentricities are shown in Figure 10.

�rough the comparative analysis of the amplitude-
frequency curves of di�erent eccentricities, it is determined
that when the “inner-outer” shaft of the compound biaxial
system has an eccentricity, this will cause an unbalanced
excitation of the system and additional external loads,
resulting in the compound biaxial system resonating in the
main excitation zone of the inner-outer axis, and changing
the natural frequency and vibration characteristics of the
system. Near the «rst-order critical speed, as the eccentricity
of the inner shaft continues to increase, the amplitude-
frequency of the main excitation area of the outer shaft is
smaller, the resonance peak-peak response amplitude of the
main excitation area of the inner shaft increases accordingly,
and the critical speed of the system increases. Furthermore,
as the eccentricity of the outer shaft continues to increase,
the amplitude-frequency of the main excitation area of the
inner shaft is smaller, the resonance peak-peak response
amplitude of the main excitation area of the outer shaft
increases accordingly, and the critical speed of the system
increases. However, with the change in the amplitude of the
abrupt points of acceleration and deceleration, the double
steady-state interval (corresponding between the accelera-
tion mutation point A and the deceleration mutation point
B) of the compound biaxial does not change signi«cantly.

Compared with not considering the e�ect of eccentricity,
the vibration amplitude and its relative change are shown in
Tables 5 and 6 under the condition of di�erent eccentricity
between the inner-outer axis. At the corresponding accel-
eration abrupt point A and deceleration abrupt point B, with
the change of the eccentricity of the inner-outer axis, the
amplitude of the main excitation zone changes signi«cantly.
In the acceleration and deceleration stages of the system, the
relative changes of the inner axis and outer axis amplitudes
are 17%–70% and 10%–130%, respectively. �e system
resonance peak in the main excitation region moves to the
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Table 4: Comparison of natural frequency.

Order Test (Hz) MALAB results (Hz) Workbench results (Hz) Error (%)
1 1420 1310.266 1373.3 4.59
2 1492 1308.037 1373.7 4.78
3 2206 2085.994 2191.4 4.81
4 2264 2018.222 2191.1 7.89
5 3322 3102.026 3259.8 4.84
6 3612 3431.008 3604.0 4.89
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high frequency about 8 μm–16 μm and 4 μm–12 μm, re-
spectively, and the overall response trend of the inner-outer
axis is consistent.

4.3. Amplitude-Frequency Response Analysis of Nonlinear
Factors of Inter-Shaft Bearing. �e inter-shaft bearing is a
key component to connect and support the “inner-outer”
shaft, and it is also a main reason for the additional coupled
vibration of the compound biaxial system. �erefore, it is
very important to analyse the in�uence of the structural
parameters (sti�ness and radial clearance) of the inter-shaft
bearing on the vibration characteristics of the system [23].

�e in�uences of the di�erent sti�nesses of the inter-shaft
bearing on the amplitude-frequency response of the com-
pound biaxial system are analysed, and the dynamic sti�-
nesses of the inter-shaft bearing are KH1� 0.8 KH0,
KH2�KH0, and KH3�1.2 KH0. �e amplitude-frequency
curves of the di�erent sti�nesses of the inter-shaft bearing
regardless of the in�uence of the dynamic load of the system
are shown in Figure 11.

�rough the comparative analysis of the amplitude-
frequency curves of the di�erent sti�nesses, the change in
the sti�ness of the inter-shaft bearing of the compound
biaxial system causes the bearing reaction force and the
change of the contact deformation of the bearing balls and
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Figure 10: Amplitude-frequency curves of di�erent eccentricities of shaft. Blue: eccentricities 0.2 μm; Green: eccentricities 0.4 μm; Pink:
eccentricities 0.6 μm; Orange: eccentricities 0.8 μm (Corresponding excitation resonance peak, inner shaft: BIe1, BIe2, BIe3, BIe4, outer shaft:
BOe1, BOe2, Boe3, BOe4). (a) Inner shaft. (b) Outer shaft.

Table 5: Vibration amplitude and its relative change for inner shaft.

Eccentricity (μm)
Speed up Speed down

Amplitude (μm) Relative change (%) Amplitude (μm) Relative change (%)
0.2 8.42 17.76 4.62 10.80
0.4 8.93 23.17 5.23 25.42
0.6 9.31 28.41 5.89 41.01
0.8 10.28 41.79 6.56 57.73

Table 6: Vibration amplitude and its relative change for outer shaft.

Eccentricity (μm)
Speed up Speed down

Amplitude (μm) Relative change (%) Amplitude (μm) Relative change (%)
0.2 11.43 24.92 7.32 39.96
0.4 12.35 34.97 8.36 59.85
0.6 13.92 52.13 10.34 97.71
0.8 15.56 70.05 12.01 129.64
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the inner-outer ring raceway, which in turn changes the
natural frequency and vibration characteristics of the
compound biaxial system. Near the «rst-order critical speed,
the change of the sti�ness of the inter-shaft bearing has little
e�ect on the amplitude-frequency e�ect of the inner shaft in
the main excitation zone of the outer shaft. However, with
the increase of the sti�ness of the inter-shaft bearing, the
resonance peak-peak value of the inner shaft in the main
excitation zone of the inner shaft increases accordingly, with
the increasing of the speed corresponding to the peak value,
and the critical speed of the system also increases. In ad-
dition, the change of the sti�ness of the inter-shaft bearing
has little e�ect on the amplitude-frequency e�ect of the outer
shaft in themain excitation zone of the inner shaft. However,
with the increase of the sti�ness of the inter-shaft bearing,
the resonance peak-peak value of the outer shaft in the main
excitation zone of the outer shaft increases accordingly, with
the increasing of the speed corresponding to the peak value,
and the critical speed of the system also increases. At the
same time, with the change of the amplitude of the abrupt
points of the acceleration and deceleration, the double
steady-state interval (Corresponding between the accelera-
tion mutation point A and the deceleration mutation point
B) of the compound biaxial decreases with the increase of the
sti�ness.

Compared with not considering the di�erent sti�nesses
of the inter-shaft bearing, the vibration amplitude and its
relative change are shown in Tables 7 and 8 under the
condition of di�erent sti�nesses of the inter-shaft bearing.
At the corresponding acceleration abrupt point A and de-
celeration abrupt point B, with the change of di�erent
sti�nesses of the inter-shaft bearing, the amplitude of the

main excitation zone changes signi«cantly. In the acceler-
ation and deceleration stages of the system, the relative
changes of the inner axis and outer axis amplitudes are 4%–
18% and 5%–8%, respectively. �e system resonance peak in
the main excitation region moves to the high frequency
about 5 μm–8 μm, and the overall response trend of the
inner-outer axis are consistent.

In order to analyse the in�uence of the di�erent radial
clearances of the inter-shaft bearing on the amplitude-fre-
quency response of the compound biaxial system, the radial
clearances of the inter-shaft bearing are taken as δ1� 2 μm,
δ2� 4 μm, and δ3� 6 μm. �e amplitude-frequency curves
of the di�erent radial clearances of the inter-shaft bearing
without the in�uence of the dynamic load of the system are
shown in Figure 12.

�rough the comparative analysis of the amplitude-
frequency curves of the di�erent radial clearances of the
inter-shaft bearing, the change of the radial clearance of the
inter-shaft bearing of the compound biaxial system causes
the changes of the bearing reaction force and the time of the
double-shaft contact, which leads to di�erent coupling vi-
brations between the “inner-outer” shaft and the inter-shaft
bearing, which in turn changes the natural frequency and
vibration characteristics of the compound biaxial system.
Near the «rst-order critical speed, the change of the radial
clearance of the inter-shaft bearing has little e�ect on the
amplitude-frequency e�ect of the inner shaft in the main
excitation zone of the outer shaft. However, as the radial
clearance of the inter-shaft bearing increases, the resonant
peak-peak value of the main excitation zone of the inner
shaft increases accordingly, with the speed corresponding to
the peak value decreasing accordingly, and the critical speed
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Figure 11: Amplitude-frequency curves of di�erent sti�nesses of the inter-shaft bearing. Green: �e coe¨cient of sti�ness is 0.8. Blue: �e
coe¨cient of sti�ness is 1. Pink: �e coe¨cient of sti�ness is 1.2 (Corresponding excitation resonance peak, inner shaft: BIK1, BIK2, BIK3,
outer shaft: BOK1, BOK2, BOK3). (a) Inner shaft. (b) Outer shaft.
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decreases accordingly. In addition, the change of the radial
clearance of the inter-shaft bearing has little e�ect on the
amplitude-frequency e�ect of the outer shaft in the main
excitation zone of the inner shaft. However, with the in-
crease of the radial clearance of the inter-shaft bearing, the
resonant peak-peak value of the main excitation zone of the
outer shaft increases accordingly, with the speed corre-
sponding to the peak value correspondingly decreasing, and
the critical speed of the speed therefore decreases. At the
same time, with the change of the amplitude of the abrupt
points of the acceleration and deceleration, the double
steady-state interval (Corresponding between the accelera-
tion mutation point A and the deceleration mutation point
B) of the compound biaxial increases with the increase of the
radial clearances.

Compared with not considering the di�erent radial
clearances of the inter-shaft bearing, the vibration ampli-
tude and its relative change are shown in Tables 9 and 10
under the condition of di�erent radial clearances of the
inter-shaft bearing. At the corresponding acceleration
abrupt point A and deceleration abrupt point B, with the
change of di�erent radial clearances of the inter-shaft
bearing, the amplitude of the main excitation zone changes
signi«cantly. In the acceleration and deceleration stages of
the system, the relative changes of the inner axis and outer
axis amplitudes are 3%–15% and 4%–12%, respectively. �e
system resonance peak in the main excitation region moves
to the high frequency about 5 μm–8 μm and 4 μm–10 μm,
respectively, and the overall response trend of the inner-
outer axis are consistent.
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Figure 12: Amplitude-frequency curves of di�erent radial clearances of the inter-shaft bearing. Blue: radial clearance 2 μm; Green: radial
clearance 4 μm; Pink: radial clearance 8 μm (Corresponding excitation resonance peak, inner shaft: BIδ1, BIδ2, BIδ3, outer shaft: BOδ1, BOδ2,
BOδ3). (a) Inner shaft. (b) Outer shaft.

Table 8: Vibration amplitude and its relative change for outer shaft.

Sti�ness KH
Speed up Speed down

Amplitude (μm) Relative change (%) Amplitude (μm) Relative change (%)
0.8 5.01 4.21 8.60 6.01
1.0 5.32 0 9.15 0
1.2 6.25 17.48 9.88 7.39

Table 7: Vibration amplitude and its relative change for inner shaft.

Sti�ness KH
Speed up Speed down

Amplitude (μm) Relative change (%) Amplitude (μm) Relative change (%)
0.8 6.93 4.41 3.92 5.60
1.0 7.25 0 4.17 0
1.2 7.91 9.10 4.48 7.43
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5. Experimental Verification

In order to verify the e�ectiveness of the numerical calcu-
lation for the coupling system model with the compound
biaxial vibration characteristics, in this research, a scanning
laser vibrometer PSV-500-1D combined with a single-point
laser vibrometer OFV-5000 is used to carry out modal tests
on the vibration characteristics of the compound biaxial
system with di�erent eccentricity (see Figure 7). In order to
maximally approach the ideal working condition, the pos-
sible in�uencing factors are strictly controlled. �e experi-
mental test is carried out under laboratory conditions with
constant temperature and humidity (temperature 20± 1°C,
relative humidity 50± 5%) and relatively excellent vibration
isolation conditions, the eccentric distance between the
inner shaft and the outer shaft is strictly adjusted by a dial
indicator. �e excitation is applied to the end of the biaxial

structure by using the turntable control system, combined
with the reference signal of the single-point laser vibrometer
OFV-5000. �e recording and the display of the data are
achieved with a PSV-500-DMS data acquisition system, and
compared with the numerical calculation results. �e nu-
merical calculation and experimental conditions (see Fig-
ure 13) are compared. �e relative changes of the inner axis
and outer axis amplitudes in the speed up and speed down
stages are within the range of eccentricity 0–1 μm, the
maximum error of the relative changes of the system am-
plitude is less than 9.4%. �e experimental and numerical
results of the vibration characteristics of the compound
biaxial system with di�erent eccentricity are in good
agreement, and the experimental results are reliable, which
veri«es the e�ectiveness of the dynamic numerical simu-
lation analysis of the coupling system model with the
compound biaxial structure.
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Figure 13: Comparison curves of the vibration amplitude relative change for inner shaft and outer shaft. Red line: Speed up-experimental
curve; Blue line: Speed down-experimental curve; Black line: the simulation curves of the Speed up and Speed down.

Table 10: Vibration amplitude and its relative change for outer shaft.

Radial clearance (μm)
Speed up Speed down

Amplitude (μm) Relative change (%) Amplitude (μm) Relative change (%)
2 5.41 3.44 9.52 4.04
4 5.62 7.46 9.75 6.56
8 5.93 13.38 9.96 8.85

Table 9: Vibration amplitude and its relative change for inner shaft.

Radial clearance (μm)
Speed up Speed down

Amplitude (μm) Relative change (%) Amplitude (μm) Relative change (%)
2 8.32 14.46 4.65 11.51
4 7.98 10.07 4.56 9.35
8 7.72 6.48 4.35 4.32
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6. Conclusions

In this research, the coupling system model of compound
biaxial and inter-shaft bearings is established based on the
theory of rotor dynamics and bearing contact deformation.
Based on the consideration of the moment of inertia, gyro
effect, and structural damping, the rationality of the coupling
systemmodel is verified through the analysis of the 1D beam
model, the simulation of the 3D model, and the modal test
for the coupling system. /e amplitude-frequency charac-
teristics are solved with consideration for the eccentricity of
the compound biaxial and the nonlinear effects of the
stiffness and radial clearance of the inter-shaft bearing, and
the vibration characteristics of the compound biaxial and
inter-shaft bearing coupling system are comprehensively
analysed. /e main conclusions are as follows:

(1) /ere are two excitation resonances and resonance
mutations in the coupling system of the compound
biaxial and inter-shaft bearings during the acceler-
ation and deceleration phases, correspondingly
forming the double steady-state interval of the speed
near the first-order critical speed. /e overall trends
of the amplitude-frequency curve for the stages of the
acceleration and deceleration are consistent.

(2) With the continuous increase of the eccentricity of
the compound biaxial bearing, the amplitude of the
main excitation zone corresponding to the “inner-
outer” shaft increases near the first-order critical
speed, and the critical speed increases, but the double
steady-state interval of the speed is unchanged.

(3) With the continuous increase of the rigidity of the
inter-shaft bearing, the supporting reaction force of
the bearing increases, and the deformation of the
contact becomes larger. /e position of the first-
order resonance peak of the system moves back, the
critical speed increases, the amplitude increases, and
the double steady-state interval of the speed de-
creases. At the same time, as the radial clearance of
the inter-shaft bearing continues to increase, the
supporting reaction force of the bearing decreases,
the amount of contact deformation becomes smaller,
and the contact time between the ball and the
raceway is delayed. /e position of the first-order
resonance peak of the system moves forward, the
critical speed decreases, the amplitude decreases, and
the double steady-state interval of the speed
increases.

(4) With the changes of the eccentricity of the com-
pound biaxial bearing, the amplitude of the main
excitation zone corresponding to the system changes
significantly, and the resonance peak-peak response
amplitude of the main excitation area of the system
moves about 4 μm–16 μm to the high frequency, and
the relative changes of the inner axis and outer axis
amplitudes are 10%–130%. As the stiffnesses and the
radial clearances of the inter-shaft bearing change,
the amplitude of the main excitation zone corre-
sponding to the system changes obviously, the

resonance peak-peak response amplitude of themain
excitation area of the system moves about
4μm–10 μm to the high frequency, but the relative
changes of the inner axis and outer axis amplitudes
are 3%–18%.

Due to the change of the eccentricity of the compound
biaxial bearing and the structural parameters of the inter-
shaft bearing, the unbalanced excitation and the additional
external load of the compound biaxial system are caused, as
well as the change of the contact deformation between the
balls and the raceway of the inter-shaft bearing, which leads
to the resonance of the compound biaxial system in the main
excitation zone, and there is a different coupling vibration
between the shaft and the bearing./erefore, combined with
the coupling system model and vibration characteristics of
the compound biaxial structure and the inter-shaft bearing,
the structural parameters and the dynamic characteristics of
the system are reasonably optimized, which can effectively
suppress the resonance of the system.
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