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Among various methods proposed for health monitoring of structures, deep learning-based techniques with their powerful
performance have attracted considerable attention in recent years. However, a major problem with these methods is that they
usually need large amounts of data in the training phase, while such data may not be available in real applications. In this study,
compact one-dimensional (1D) convolutional neural networks (CNNs) are utilized that require less data for training. The study is
comprised of two parts: the first stage aims to develop a compact CNN that can recognize damages in a structure with high
accuracy, when data are provided to some extent. The problem of inadequate training data in health monitoring of experimental
and real-life structures is then investigated in the second part. Transfer learning is used to deal with this problem. A compact CNN
is utilized as the source domain network and the target domain network receives all of its knowledge from this source. Ac-
celeration time histories from a numerical model, an experimental structure, and a full-scale bridge are utilized to validate the
proposed methodology. According to the results, the compact CNN can reach 100% accuracy when data are available for training.
Also, for the case of insufficient data, using a compact network as well as transfer learning causes considerable improvement

(about 95%) in the accuracy of damage detection.

1. Introduction

Damage is unavoidable in civil structures during their
service lives and can lead to vast human and economic losses
if not repaired on time. Civil structures need to be monitored
regularly in order to detect damages in initial stages; this can
be done automatically through structural health monitoring
(SHM) methods; therefore, much research has been devoted
to developing these techniques in recent years.
Vibration-based SHM techniques aim to detect, localize,
and quantify damages in a structure using vibration signals
acquired from it by a network of sensors. These techniques
can be categorized into two types: model based and response
based. In model-based methods, the numerical model of a
structure is created using its vibration responses and damage
detection is conducted by monitoring changes in modal

parameters obtained from the model [1]. These methods
have been widely used in literature [2-4]; however, the
efficiency of model-based approaches relies on the accuracy
of the numerical model, while it is impractical to establish a
totally accurate fine-tuned model to represent the structure
of interest, due to structural and environmental uncer-
tainties, among other factors [5]. Thus, the main focus of
vibration-based SHM researches has recently been on re-
sponse-based methods. These methods use various signal
processing tools to extract damage indices directly from the
measured vibration responses.

The health state of civil infrastructures can be effectively
monitored using machine learning algorithms. As a subset of
artificial intelligence, machine learning has proven its high
efficiency in many engineering applications and has been
growing rapidly with great advances in sensor and computer
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technologies. Over the last decades, many machine learning
algorithms have been utilized in the field of SHM, including,
but not limited to, artificial neural network (ANN) [6-9],
fuzzy neural network [10-12], support vector machine
(SVM) [13-15], genetic algorithm (GA) [16-18], and fed-
erated learning [19, 20].

Deep learning is the latest achievement of machine
learning that has attracted so much attention from re-
searchers, due to its ability to extract features from raw data
automatically. CNNs are currently the most popular algo-
rithm of deep learning, thanks to their great feature ex-
traction capabilities that enable them to outperform other
algorithms.

Abdeljaber et al. [21] utilized 1D CNNs to localize
damage in a grid structure using raw acceleration signals
recorded by sensors installed on the joints of the structure.
Lin et al. [22] proposed a new method for automatic feature
extraction and structural damage detection. A CNN was
designed to extract features and identify damage locations.
The performance of the proposed method was tested on both
noise-free and noisy datasets. Khodabandehlou et al. [23]
proposed the use of CNNs to extract features from accel-
eration responses and reduce their dimension to be able to
classify the damage state. The applicability of this technique
was demonstrated using signals obtained from a scaled
model of a concrete bridge. Puruncajas et al. [24] presented a
method for SHM of jacket-type foundations of offshore wind
turbines using acceleration data and CNNs. The acceler-
ometer data were converted into gray scale images and the
test set error of the CNN was diminished using a data
augmentation technique. Yang et al. [25] employed a parallel
CNN and bidirectional gated recurrent unit framework for
structural damage detection. Vibration data from IASC-
ASCE benchmark structure and TCRF bridge were utilized
to evaluate the proposed methodology. Rastin et al. [26] used
CNNs as generators and discriminator parts of generative
adversarial networks to identify damages in civil structures
using only healthy state data to train the networks.

Although CNN-based techniques can successfully be
employed for accurate structural damage detection, the main
problem with these methods is that they need a large amount
of data to train the network, which is not usually accessible in
many cases. Transfer learning is one of the most effective
methods, developed in the field of deep learning to address
this issue. The idea behind this method is that the knowledge
obtained by a network with a special dataset (source domain
network) can sometimes be transferred to another network
with a different dataset (target domain network). This
strategy allows for training the target domain network with
less amount of data and is particularly effective for sharing
knowledge between different classification tasks [27]. Col-
lecting large amounts of data for SHM and damage detection
applications is often time and resource consuming, moti-
vating researchers to employ transfer learning techniques to
solve this problem.

Chakraborty et al. [27] used transfer learning to identify
cracks in an aluminum lug joint. The source domain net-
work was trained utilizing a large number of data points and
the knowledge obtained by this network was transferred to
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another network with insufficient data. Gao and Mosalam
[28] employed the pretrained VGGNet as the source domain
network to identify structural damage from images, using a
target domain network. Feng et al. [29] adopted a deep CNN
with transfer learning for damage detection in a hydro-
junction infrastructure. The Inception-V3 network, which
has a great feature extraction power, and is trained on
ImageNet data, was utilized as the source domain network.
Han et al. [30] presented a transfer learning framework to
diagnose unseen machine conditions. Three strategies were
adopted to study feature transferability in diagnosis tasks. In
a study by Azimi and Pekcan [31], a new CNN-based ap-
proach was introduced for SHM that exploited a form of
compressed data through transfer learning. Han et al. [32]
proposed a new fault diagnosis framework (deep transfer
network) and a joint distribution adaptation scheme to
reduce the discrepancy between training and testing data
distributions and eliminate the need for a great deal of data
for diagnosis models. Zhang et al. [33] used a universal
domain adaptation method for fault detection in rotating
machines with no obvious presumption on target labels. Han
et al. [34] utilized a novel transfer learning-based method for
wind turbine and bearing fault diagnosis with extremely
limited fault data.

Transfer learning-based SHM techniques presented in
the literature employ complex networks that usually have so
many layers and are trained using special hardware and
millions of samples, which are not always available in real
applications. Also, source and target domain networks
utilized in these techniques have different objectives causing
the target domain network to receive only a part of its
knowledge from the source.

The aim of this study is health monitoring of structures
using compact 1D CNNs, which use less data for training.
Health monitoring is carried out in two stages: the first stage
aims to develop a compact 1D CNN that can recognize
damages in a structure with high accuracy, when sufficient
data from the structure are available. The problem of in-
adequate training data in health monitoring of experimental
and real-life structures is then investigated in the second
stage via using transfer learning. A compact 1D CNN is
utilized as the source domain network and the target domain
network receives all of its knowledge from the source. The
two stages in this study are applied on a bridge health
monitoring (BHM) benchmark model, an experimental grid
structure, and a full-scale bridge, for validation.

The rest of the study comprises 6 sections: an overview of
CNNs and transfer learning is provided in Section 2, Section
3 introduces the proposed methodology, the presented
method is validated in Section 5, how to utilize data from the
structures is described in Section 4, conclusions are drawn in
Section 6, and references are presented in references section.

2. Overview of Convolutional Neural Networks
and Transfer Learning

2.1. Convolutional Neural Networks. In the history of deep
learning, few algorithms have been as influential as CNNs.
They have exhibited their great performance in many fields
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including face recognition, speech processing, medical sci-
ence, and SHM. CNNs employ convolution and pooling
layers to extract features from raw signals; fully connected
layers are then employed to classify the input data. Figure 1
shows an example of a CNN that consists of two convo-
lution, two pooling, and two fully connected layers and is
used to classify 128 x 1 signals into two classes. The success of
CNNss is mainly the result of using convolution layers. Each
neuron in a convolution layer is connected to only a small
part of the previous layer, reducing the computational
burden and increasing the efficiency of the network to a large
extent. CNNs are employed in this study to detect damages
in civil structures, in the manner discussed in Section 3.

2.2. Transfer Learning. Transfer learning is a method de-
veloped in the field of deep learning that focuses on applying
the knowledge obtained by working out a problem to an-
other related problem [35]. The aim of this technique is to
compensate for data shortage in solving the new problem. A
source domain network is first trained on a source database
and task; then, the learned features are transferred to a target
domain network that should be trained on a target database
and task [36]. Learning low-level features using a large
dataset will improve the performance of the target domain
network and the speed of learning is greatly increased. These
features are minor details that can be shared across different
related machine learning-based tasks, such as lines or edges
in image data.

In general, there are two approaches to transfer learning:
the first one includes selecting a related task for which there
is an abundance of data, developing a source network for this
task, and using all or parts of the source model as a base for a
network for the target task. In the second approach, a
pretrained source model trained on a related task is first
selected. All or parts of this model are then used as a starting
point for the target domain network. In both cases, the
model may need to be tuned on the target dataset. The first
approach is adopted in this study.

In order for transfer learning to be effective, three
conditions need to be satisfied:

(1) The type of data should be the same on both source
and target domain networks

(2) The amount of the training data for the source
domain network must be much greater than that for
the target domain network

(3) The low-level features obtained for the source task
should be suitable for the target task as well

As the insufficient amount of data is one of the main
problems when employing deep learning-based SHM tech-
niques for real-life civil structures, this study proposes a
transfer learning-based approach to overcome this issue.
Further explanations in this regard are presented in Section 3.2.

3. Methodology

As previously stated, this study investigates the health
monitoring of civil structures in two stages. The method

proposed for this purpose is explained in the following
subsections:

3.1. Stage 1. In this stage, a CNN is designed and trained on
sufficient acceleration data from a structure, gathered by the
sensors installed on it, to detect the presence of damage in
the structure. Seven sensors with a random placement are
considered for this purpose to record acceleration data in the
healthy and damaged states. The output for each sensor is an
array of acceleration data. Samples of these arrays are shown
in Figures 2—4. Data from these sensors are first normalized
between 0 and 1 and then concatenated to form a 7-column
matrix. This matrix is divided into 1000 x 7 matrices, which
are shuftled before being inputted to the network.

The architecture of the CNN and its hyperparameters are
determined through trial and error to gain an optimal
network with the best possible performance. The study
conducted to find optimal network parameters is further
elaborated in Section 5.1. Figure 5 shows the architecture of
the network. The 1D convolution layers have one filter of
sizes 32, 16, and 8, respectively. The stride size in these layers
is equal to 2, 1, and 1, and the exponential linear unit (ELU)
activation function is employed for all of them. The softmax
function is used as the activation function of the output
layer; also, cross-entropy and adaptive moment estimation
(Adam) are chosen as loss function and optimizer, re-
spectively. The learning rate, the number of epochs, and the
batch size are set equal to 0.005, 30, and 64, respectively.

The designed CNN network is trained on an equal
number of 1000 x7 matrices from the healthy and the
damaged state, and the validation data are used to verify the
performance of the network during training. The trained
CNN is then utilized to detect the presence of damage re-
ceiving the test data as input. The test dataset also consists of
an equal number of healthy and damaged state data. About
75% of the available samples (1000 x 7 matrices) from each
state are used in the training phase, and 20% of them are
employed as validation samples. The remaining 25% of the
samples are employed to check the ability of the network to
detect structural damages.

3.2. Stage 2. This stage presents a transfer learning-based
solution to deal with the lack of data in deep learning-based
health monitoring of civil structures. As a large amount of
data can always be obtained from a numerical model, data
from the model of a BHM benchmark structure were utilized
to train the source domain network. A simple CNN is used
as the source domain network, whose details are the same as
those of the network described in stage 1; the only differ-
ences are that the number of filters in the three convolution
layers of the new network is increased to 32, 64, and 128, and
the number of epochs is set to 100. Similar to stage 1, these
numbers were chosen by trial and error to reach the most
optimal performance possible.

After training, the knowledge obtained by this network
can be utilized to compensate for the lack of data in ex-
perimental and real-life structures. The target domain net-
works, which are trained on inadequate experimental and
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FIGURE 1: An example of a CNN.
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FIGURE 2: The acceleration data from the BHM benchmark model in (a) the healthy and (b) the damaged state.
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FIGURE 3: The acceleration data from QU grandstand simulator in (a) the healthy and (b) the damaged states.

real-life data, have the same structure as the source domain
network. A comparison between source and target domain
data is shown in Figures 2-4.

The convolution and the pooling layers of the target
domain networks receive their knowledge completely from
the source domain network through transfer learning, so
weights and biases are not updated in these layers. In the
end, a fully connected layer classifies the input data as
healthy or damaged, and the health state of the structures is
evaluated.

4. Investigated Structures

4.1. A Bridge Health Monitoring Benchmark Model. The grid
structure located at the University of Central Florida and its
numerical model were developed by Burkett [37] to provide
a test bed for researchers to evaluate their SHM techniques.
A scheme of this structure and its dimensions are depicted in
Figure 6. S3 x 5.7 and W12 x 26 profiles are used for beams
and columns, respectively. The numerical model of the
structure is used to validate the proposed methodology.
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FIGURE 4: The acceleration data from the Tianjin Yonghe bridge in (a) the healthy and (b) the damaged states.
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F1GUre 5: The architecture of the CNN employed in stage 1.

Damage is simulated by releasing the major moment of a
beam-to-girder connection. To obtain the data needed for
SHM, the structure is excited by a dynamic load of 10KkN,
and its vibration response in the healthy and the damaged
state is recorded by 7 sensors with a random placement.
Figure 2 shows samples of the data recorded by one of these
sensors in the healthy and the damaged state. Also, the
damaged connection and excitation location are depicted in
Figure 7.

4.2. Qatar University Grandstand Simulator. The main steel
frame of Qatar University (QU) grandstand simulator is
considered as an experimental structure to test the perfor-
mance of the proposed method. This structure is shown in
Figure 8. It has footprint dimensions of 4.2m x4.2m and
consists of 8 girders of length 4.6 m and 25 filter beams
supported on 4 columns. The 5 filter beams in the canti-
levered part are 1 m long, while the remaining 20 have a
length of 77 cm.

About 30 damage scenarios were considered for this
structure, in which each of the damages was introduced to
the frame by loosening the bolts at a specific beam-to-girder
connection. A sensor was installed on each of these con-
nections to record the acceleration response of the frame in
the healthy and the damaged states under random shaker
excitation [38]. Data from 7 randomly selected sensors are
utilized in this study. Here, data gained by each sensor when
its corresponding joint is damaged are employed to form the
damaged state input samples by concatenating the array of
data points from each sensor and dividing the resulted
matrix into 1000 x 7 matrices. Samples of acceleration sig-
nals recorded by one of these sensors in both states are
depicted in Figure 3.

4.3. Tianjin Yonghe Bridge. The Tianjin Yonghe bridge is an
old cable-stayed bridge located in mainland China (Fig-
ure 9). The main span of the bridge is 260 m long. It also has
two side spans of the length of 125m and two 60.5m tall
towers. The total width of the deck is 11 m (9 m for vehicles
and 2m for pedestrians). After 19 years, the bridge was
opened to traffic, and serious damages were observed in the
midspan girder, so the bridge was repaired and rehabilitated.
Meanwhile, the Center of Structural Monitoring and
Control (SMC) at the Harbin Institute of Technology
designed an SHM system and installed it on the bridge. This
included 14 accelerometers on the deck and 1 accelerometer
on top of the south tower. The sensor placement on the
bridge is depicted in Figure 10 [39].

A while after the bridge was reopened to traffic, new
damage patterns were observed in the side spans and piers.
During this period, the acceleration time histories of the
bridge under traffic and environmental loads, from the
healthy to the highly damaged state, were recorded by the
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FIGURE 8: The main steel frame of QU grandstand simulator [38].
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FiGure 9: The Tianjin Yonghe bridge [41].
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F1GURE 10: The considered sensor placement for the SHM system installed on the Tianjin Yonghe bridge [42].

installed SHM system [40]. In this study, data from 7
randomly chosen sensors, recorded on January 17, 2008, and
July 31, 2008, are used as the healthy and the damaged state
data, respectively. Samples of signals from one of the sensors
recorded on these dates are depicted in Figure 4.

5. Validation of the Proposed Methodology

To validate the performance of the proposed method, it is
applied to the three structures shown in Section 4. For this
purpose, Python 3.8.2 is utilized on a computer with an Intel
Core i5-5200U processor and 4GB installed memory
(RAM). The results obtained in each of the two stages are
presented in this section.

5.1.Stage 1. The CNN described in Section 3.1 is used here to
detect the presence of damage in the three structures. A total
of 4096, 1048, and 17280 samples (1000 x 7 matrices) are

available for the BHM benchmark model, QU grandstand
simulator, and the Tianjin Yonghe bridge, respectively.
About 60% of the available samples from each structure are
used to train the network, 15% of them are used to validate
the training process, and the remaining 25% are employed to
test its ability to detect damages.

The sensitivity analysis conducted to determine network
parameters includes checking the accuracy, loss, and total
training time of the network, for varying optimizers,
learning rates, and epochs, when receiving data from the
three structures. About 12 cases were considered for this
purpose (Table 1). Figure 11 shows the results of the training
process considering these cases. It is obvious from the figure
that choosing case (b) results in the best performance, so this
case was considered in the proposed method.

Accuracy and loss graphs of the CNN when trained on
data from the three structures are depicted in Figure 12.
Also, the number of the utilized samples and the results of
the training process are presented in Table 2. As can be seen



Shock and Vibration

TaBLE 1: The cases considered in the sensitivity analysis to find optimal network parameters.

Cases Optimizer Learning rate Epochs
Case (a) Adam 0.001 30
Case (b) Adam 0.005 30
Case (c) Adam 0.01 30
Case (d) Adam 0.001 100
Case (e) Adam 0.005 100
Case (f) Adam 0.01 100
Case (g) SGD* 0.001 30
Case (h) SGD 0.005 30
Case (i) SGD 0.01 30
Case (j) SGD 0.001 100
Case (k) SGD 0.005 100
Case (L) SGD 0.01 100
*Stochastic gradient descent.
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FIGURE 11: (a) Accuracy, (b) loss, and (c) total training time of the CNN for different cases considered in the sensitivity analysis to find

optimal network parameters.

from the figure and the table, for all structures, when 75% of
the available samples are used in the training phase, the
network reaches a very high classification accuracy and a
very low error. This means that the created model is well
trained and is able to accurately identify the class of the input
data.

However, according to the studies conducted in this
study, for all structures, when less than 50% of the available
data is used in the training phase, the test accuracy decreases
to less than 60%. Since the amount of available data from

experimental and real-life civil structures is often low, the
CNN by itself might be inadequate for the SHM of these
structures. The efficiency of the second stage of the proposed
methodology in dealing with this problem is validated in the
next subsection.

5.2. Stage 2. In this stage, it is assumed that only 45% and
10% of the available samples from QU grandstand simulator
and the Tianjin Yonghe bridge can be utilized in the training
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TaBLE 3: The number of the utilized samples and the results of the training process for the source domain network.

Number of training samples Number of validation samples Number of test samples Test accuracy Test loss Total training time
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FIGURE 13: (a) Accuracy and (b) loss of the source domain network.
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FIGURE 14: The target domain networks receive their knowledge from the source domain network and are trained on insufficient data from

the experimental and the full-scale structure.

phase, so the CNN by itself is not suitable for accurate SHM
of these structures. This problem is solved through transfer
learning. As mentioned earlier, data from the numerical
model of the BHM benchmark structure are used to train the

source domain network described in Section 3.2. Like in the
previous stage, 60% of the available samples from this
structure are used as training samples, 15% of them are
employed as validation data, and the remaining 25% are used
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Yonghe bridge.

TaBLE 4: The number of the utilized samples and the results of the training process for the target domain networks.

Number of training

Number of validation

Number of test Test Total training

Structure Test loss .
samples samples samples accuracy time

QU grandstand 337 95 576 09427  0.2042 0:37:04

simulator

gﬂzgz‘an’m Yonghe 1382 346 15552 0959748 01435182  0:02:15

as test samples. Accuracy and loss graphs of the source
domain network and the results of the training process are
shown in Figure 13 and Table 3 respectively.

The convolution and the pooling layers of the target
domain networks receive their knowledge completely from
the trained source domain network. These networks are then
trained and validated on 45% and 10% of the available
samples from QU grandstand simulator and the Tianjin
Yonghe bridge, respectively (Figure 14). The results of
employing transfer learning technique for the two structures
are shown in Figure 15 and Table 4. The obtained results
indicate that although the amount of data used to train the

target domain networks is quite low, and they can identify
the class of the input data with a high accuracy. Samples of
the predicted labels for a number of randomly selected
healthy and damaged state matrices from QU grandstand
simulator are listed in Table 5. In this table, 0 and 1 labels
represent healthy and damaged states, respectively. It can be
observed that the labels for all of the considered data samples
are predicted correctly. The results were similar for the other
structure. This proves that the proposed transfer learning-
based technique is efficient in health monitoring of these
structures, even when the amount of available data is very
low.
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TaBLE 5: The predicted labels for randomly selected matrices from
the BHM benchmark model.

Matrix number State Predicted label

Healthy

Healthy

Healthy

Healthy

Healthy

Damaged

Damaged

Damaged

Damaged

0 Damaged

(=)

= O 00N O\ U W=
— e = = - O O OO

6. Conclusions

The aim of this study was to provide a comprehensive
method for damage detection in civil structures, even when
the amount of available data is low. This aim was reached
through two stages using compact 1D CNNs, which need
much less data for training compared to complex networks.
In the first stage, a compact CNN was developed to recognize
damages in a structure with high accuracy, when provided
with sufficient raw acceleration data from the structure. The
problem of the lack of data in experimental and real-life
structures was then studied in the second stage. A transfer
learning-based technique was proposed to deal with this
issue. A compact CNN was used as the source domain
network to be trained on sufficient data from a numerical
model. The target domain networks, which were to be
trained on inadequate data from experimental and real-life
structures, would receive their knowledge completely from
the source domain network through transfer learning.

To validate the performance of the proposed method-
ology, it was applied on the numerical model of the BHM
benchmark structure, QU grandstand simulator, and the
Tianjin Yonghe bridge. The results demonstrated that the
proposed method can successfully be utilized for damage
detection in civil structures, even with a low amount of
acceleration data.

Data Availability
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