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�e helical planetary transmission system (HPTS) is widely used in wind power, hydropower, and shield machine, which
operating conditions are extremely complicated, and the existence of component installation errors will result in response
deviations to the theoretical design. A dynamic model for slice type bending-torsional-pendulum of the HPTS is established in
the lumped parameter method considering the installation error of shaft (IEOS) for the 1st planet gear, helical meshing
characteristics, and bearing support characteristics. �e vibration response characteristics of the HPTS under the IEOS for the
1st planet gear are studied. �e results have shown that the FFTamplitudes for the horizontal vibration acceleration of the sun
gear increased by 8.3%, and the axial vibration acceleration of the ring gear increased by 11.5%, respectively. �e maximum
magnitude increase of FFTamplitude for the vibration acceleration under a positive 0.13mm IEOS for the 1st planet gear is the
axial direction of the ring gear. �e results indicate that the IEOS needs to be thoroughly introduced into the HPTS to simulate
the actual operating conditions of the system.

1. Introduction

Based on the inevitably various errors that existed in the in-
stallation and debugging of mechanical parts, the existence of
installation errors will cause deviations in the vibration,
meshing force, and dynamic response characteristics of the
gear transmission system, resulting in a linear decrease in
system reliability and operational stability. �e helical gear
planetary transmission system is widely used in wind power
generation, hydropower generation, and nuclear power gen-
eration. Its operating conditions are extremely complex, and
the existence of component installation errors will produce
response deviations to the theoretical design system, and its
dynamic characteristics are economical and reliable for the
whole machine. Sex and longevity have an important impact.

At present, many scholars investigated the component
errors and response characteristics of the planetary gear
transmission system. A dynamic model of wind turbine

gearbox containing sti�ness of bearing, sti�ness of gear
meshing, and �exibility of structure in multibody dynamic
method was established by Helsen et al. [1, 2], and the
dynamic responses of high-power wind turbine gearbox
were studied. Zhao et al. [3] established a pure torsional
dynamic model of wind turbine gearbox transmission, and
the in�uences of transmission errors, input load, and mesh
sti�ness of gear pair on vibration responses of system
components were studied. �e e�ects of the position errors
and eccentricity errors for planet gear on load characteristics
and motion locus were researched by Velex et al. [4, 5].

A bending-torsional-pendular dynamic model of spur
planetary transmission system considering the in�uences of
the elastic deformation for ring gear, gyro e�ect, and cen-
tripetal acceleration was established by Wang et al. [6], the
in�uence inherent characteristics of the system were ana-
lyzed, and the results showed that the nonstability of system
parameters is determined by the multiscale method.
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Tatar et al. [7] proposed a dynamic model of the
planetary gear transmission system on the influences of the
gyro effect and the rotating shaft. 'e studies show that the
vibration modes of the helical planetary transmission system
are divided into torsion-axial, lateral, and gearbox coupling.
Shen et al. [8] built a pure torsional dynamic model of the
planetary transmission system considering the wear of the
tooth surface. 'e wear of the tooth surface is characterized
by the static transmission error and time-varying mesh
stiffness. 'e time-domain and frequency-domain response
characteristics of the system vibration were analyzed. 'e
results pointed out that the tooth surface wear will cause
a significant difference between the time-domain and fre-
quency-domain response of the system vibration.

Liu et al. [9] established a bending-torsional-pendular
coupled dynamic model for herringbone tooth planetary
transmission of wind turbine gearbox considering tooth
separation and tooth profile error, and the influence of tooth
error on mesh forces of gear pairs and vibration responses
was studied. Mbarek et al. [10] analyzed the spectrum
characteristics of the planetary transmission system under
different loads and changes in the meshing stiffness of gear
pair, and the results showed that the grid stiffness change has
a certain degree of influence on the natural frequency of the
system. A translational-torsional dynamic model of the
planetary transmission system considering the time-varying
transmission path factors was established by Zghal et al. [11].
'e time-domain and frequency-domain responses of the
system vibration were investigated, and the theoretical
analysis results were verified with experiments.

Taheri et al. [12] presented a dynamic model of the
planetary gear transmission system considering the de-
formation of the elastic ring gear and studied the meshing
force response and vibration response characteristics of the
system.'e results showed that the meshing of gear pair has
a strong influence on the system response. Park et al. [13]
established a universal dynamic model of planetary gear
transmission system considering the factors of the planet
gear variability in transmission load and gear tooth de-
formation and studied the vibration response characteristics
of the system under fault conditions.

Due to the comprehensive influences of the gear pro-
duction technique, machining, installation, and debugging,
manufacturing and installation errors exist in the gear
transmission process. 'erefore, the influences of the
manufacturing and installation errors for the gear on the
vibration characteristics of the HPTS must not be neglected.
Kahraman et al. [14, 15] represented a manufacturing error,
then the influence of random tooth pitch error on the vi-
bration behavior of spur gear pairs was analyzed, and the
effect of the gear roughness and rotational speed on the
galling load was studied.

According to the bearing load characteristics and
working conditions, Parker et al. [16, 17] established a dy-
namic model of the gear system considering the time-
varying bearing support stiffness and studied the response
characteristics of the system. 'en, the vibration modal
characteristics of the planetary gear transmission system
containing an elastic body were investigated under the

condition of the flexible ring gear. 'e results show that the
elastic resonance phenomenon of the system will lead to
fatigue or stress concentration in the core components of the
transmission system.

Ren et al. [18] established a dynamic model of the
herringbone planetary gear system considering the factors of
the gear manufacturing error, time-varying meshing stiff-
ness, and bearing deformation, focused on the gear tooth
profile error and manufacturing eccentricity error, and
studied the effect of the manufacturing error on the plan-
etary transmission system. 'e results show that the
manufacturing error has a great influence on the vibration
characteristics of the system. Liu et al. [19] studied the
changes in the pressure angle and overlap ratio for the sun
gear during the floating process of the planetary trans-
mission system and explored the phase modulation through
the dynamic response of the system.

A lumped parameter dynamic model of a 5-slice type
HPTS is established considering the factors of the IEOS for
planetary gear and the time-varying meshing characteristics
of gear pairs. Furthermore, the IEOS of the 1st planet gear
was considered as the design variable.'e effects of the IEOS
on the system vibration characteristics were investigated.

2. Structure and Transmission
Principle of HPTS

An HPTS is composed of 5 evenly distributed planet gears,
carrier, ring gear, and sun gear as shown in Figure 1. 'e
carrier of the HPTS is the input part, and the sun gear of the
HPTS is the output part. 'e parameters for the HPTS are
listed in Table 1.

'e whole teeth of spur gear planetary transmission enter
into meshing or exit meshing, which has a large meshing
impact force. 'e gear meshing of the HPTS is an asymptotic
meshing process along the space meshing contact line,
causing the meshing contact is relatively stable. Meanwhile,
due to the existence of a helix angle for the helical gear, the
helical gear has transverse and overlap contact ratios, and the
bearing capacity of the HPTS is relatively high. 'erefore, the
HPTS can effectively homogenize the impact load and reduce
the impact of the load on the transmission system, which has
good meshing stability, transmission stability, and large
bearing capacity [20, 21].

'e existence of the IEOS will lead to the instability of
the actual operating characteristics of the HPTS, and even
cause the system to fail to meet the design requirements and
cause unexpected damage. Based on the meshing charac-
teristics and conditions of the internal and external gear
pairs of the HPTS considering the constituent factors and
structural characteristics of the slice-type gears, each
transmission component of the system is divided into five
equal slices according to the material mechanics’ relation-
ship. 'e influence of directional stiffness and damping
(horizontal direction, vertical direction, axial direction, and
torsion direction) is shown in Figure 2.

Based on the ISO 1328-1-2013 cylindrical gear tooth
surface deviation, ISO 6331 spur gear helical gear load ca-
pacity calculation, and GB/T 19073–2018 wind turbine
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gearbox design requirements, the influence of the IEOS on
the meshing gear pair was considered to refer to the upper
and lower deviation of the involute cylindrical gear axis
angle.'e axis angle deviation is set at 0.130mm as shown in
Figure 3. 'e K represents the connection stiffness of the
component. 'e C characterizes the connection damping of
the component.'e subscript stxk (styk, stzk, stk) represents
the kth position for the sun gear along the x (y, z, θ)
direction.

Because each component of the helical planetary
transmission system is divided into 5 equal slices, according
to the meshing principle of the helical planetary

transmission gear pair, the gear shaft installation error factor
is considered, as shown in the following equation:

Δespi,erpi � ± KiEp, (1)

where Δespi,erpi is the IEOS of the HPTS sun-planet (ring-
planet) gear pair along the meshing line direction; Ki is the
error ratio corresponding to the ith slice; Ep is the deviation
of the IEOS.

According to the movement relationship and trans-
mission characteristics of the transmission components, the
helical gear meshing principle, and the bearing support

Helical planetary transmission system

Input Output

Carrier

Ring gear

Planet gear

Sun gear

Figure 1: Structure and transmission principle of the HPTS.

Table 1: Gear parameters of the HPTS.

Gear date Ring gear Sun gear Planet gear Carrier
Number of teeth 91 29 31 —
Module (mm) 23 23 23 —
Pressure angle (°) 25 25 25 —
Helix angle (°) 5 5 5 —
Mass (Kg) 4400 1190 1070 7140
Moment of Inertia (N·m/rad) 5560 75.44 96.10 3730
Addendum coefficient 1
Dedendum coefficient 1.5
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Figure 2: 'e mechanical model of a 5 equal slicing type gear.
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characteristics, the dynamic model of the slice type for the
HPTS is established as shown in Figure 4.

Each transmission of the system is considered as a rigid
body with 4 degrees of freedom (horizontal x, vertical y, axial
z, and torsion θ). 'e center of the sun gear is set as the static
coordinate origin, and the sun gear, planetary gear, and ring
gear are set as static coordinate systems, respectively. 'e 5
moving coordinate systems are set as the each planet gear
(u, v, w) correspondingly and the center of the each planet
gear is set as the moving coordinate origin. 'e z-axis
counterclockwise is set as positive. 'e subscripts s, c, r, and
pi represent the sun gear, planet carrier, ring gear, and the ith
planet gear. 'e K represents the spring stiffness of the
components. 'e C characterizes the damping of the
components. 'e subscript spi (rpi) represents the gear
meshing of the ith sun-planet (ring-planet) gear pair.

'e total transmission errors of the SP and RP meshing
gear pairs for the HPTS along the meshing line considering
the influence of the IEOS are as follows:

Sun-planet ring-planet

Δspi,rpi � δspi,rpi + Espi,rpi ± Δespi,erpi, (2)

where Δspi,rpi is the total transmission error of the sun-planet
(ring-planet) gear pair; δspi,rpi is the static transmission error
of the sun-planet (ring-planet) gear pair.

According to the Lagrange energy method, the motion
equation of the 5-slice type helical planetary transmission
system can be obtained as follows:

Kinetic equations of the 1st stage sun gear
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Figure 3: Influence of installation shaft error on helical gear meshing gear pair.
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Kinetic equations of the 1st stage ring gear
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Figure 4: Dynamic model of slice type HPTS.
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Kinetic equations of the 1st stage planet gear (ith)
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Kinetic equations of the 1st stage carrier
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'e equations of motion for the above transmission
components are sorted out, and the dynamic equation
matrix form of the HPTS considering the influence of the
installation shaft error is

[M][€q ] +[C][ _q] +[K][q] � [Q], (7)

where M, C, K, and Q are system mass matrix, damping
matrix, stiffness matrix, and external load matrix, re-
spectively, and €q, _q, and q are system vibration acceleration
matrix, vibration velocity matrix, and vibration displace-
ment matrix, respectively. 'e system has 160 DOFs of
which the planet carrier, sun gear, and ring gear have 60
DOFs, respectively, and the 5 evenly distributed planetary
gears have 100 DOFs.

3. Dynamic Responses of the HPTS

'e input torque of the system is 4.88e6 Nm, and the load
torque is 1.18e6 Nm. 'e mesh stiffnesses of gear pairs are
calculated from the Romax according to the ISO6336-2008
standard, and the Fourier series was used to calculate the
stiffness excitation harmonics. 'e stiffnesses of the HPTS
are listed in Table 2.

Figures 5 and 6 show the vibration acceleration re-
sponses and FFT transformations of the central position for

the sun gear and ring gear of the HPTS under the positive
0.13mm IEOS of the 1st planet gear.

As is shown in Figure 5, the maximum vibration
acceleration for the FFT amplitude of the sun gear under
the positive 0.13 mm IEOS of the 1st planet gear is
horizontal direction 3.66 m/s2, and the minimum vi-
bration acceleration for the FFT amplitude is axial di-
rection 1.84 m/s2. Compared with no IEOS condition, the
horizontal vibration acceleration amplitude increased by
8.3%, and the axial vibration acceleration amplitude
increased by 8.2%.

As is shown in Figure 6, the maximum vibration ac-
celeration for the FFT amplitude of the ring gear is vertical
direction 2.38m/s2, and the minimum axial vibration ac-
celeration for the FFTamplitude is 1.07m/s2 considering the
positive 0.13mm IEOS of the 1st planet gear. Compared with
no IEOS condition, the vibration acceleration amplitude for
the vertical direction of the ring gear increased by 11.2%, and
the vibration acceleration amplitude for the axial direction
increased by 11.5%.

In general, the vibration accelerations for the FFT re-
sponses of the sun gear and ring gear show three times the
gear meshing frequency of the system. Due to the IEOS of
the 1st planet gear, the FFT amplitudes in all directions for
vibration acceleration response of transmission components
are increased to a certain extent at the gear meshing

Table 2: Stiffnesses of the HPTS.

Subject Kx (N/m) Ky (N/m) Kz (N/m) Kθ (N/rad)
Ring support 3e11 3e11 1e11 5e11
Sun bearing 2.6e9 2.66e9 3.5e8 —
Planet bearing 3.0e9 3.0e9 4.6e8 —
Carrier support 4.8e10 4.8e10 8.4e9 —
Sun-planet gear meshing (N/m) 8.63e9
Ring-planet gear meshing (N/m) 10.9e9

Shock and Vibration 7
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Figure 5: Vibration acceleration responses for sun gear under the IEOS of the 1st planet gear. (a) Horizontal direction. (b) Vertical
direction. (c) Axial direction.
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Figure 6: Continued.
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frequency position. Compared with no IEOS of the 1st
planet gear, the maximum magnitude increase of the vi-
bration acceleration for the FFT amplitude under the IEOS
condition for the 1st planet gear is the axial direction of the
ring gear.

'e overall trend and characteristics for the influence of
the planetary gear IEOS on the responses of the gear pair
meshing force are consistent with the literature [9, 12]. 'e
influence situation and characteristics of the IEOS of the 1st
planet gear on the vibration accelerations for the trans-
mission components of the system are consistent with the
literature [13]. 'e results show that the IEOS of the 1st
planet gear has a significant influence on the vibration re-
sponse characteristics of the HPTS.

4. Conclusions

A lumped parameter dynamic model of a 5-slice type HPTS
is established considering the factors of the IEOS for the 1st
planet gear and the time-varying meshing characteristics of
gear pairs. 'e characteristics of the vibration influence for
the HPTS under the IEOS are analyzed. 'e main conclu-
sions are as follows:

(1) Compared with no IEOS condition, the FFT am-
plitudes for the horizontal vibration acceleration of
the sun gear increased 8.3% and the axial vibration
acceleration of the ring gear increased 11.5% con-
sidering the positive 0.13mm IEOS for the 1st planet
gear, respectively.

(2) 'e vibration accelerations for the FFT responses of
the sun gear and ring gear show three times the gear
meshing frequency of the system considering
a positive 0.13mm IEOS for the 1st planet gear. 'e
maximum magnitude increase of the vibration ac-
celeration for the FFT amplitude under a positive
0.13mm IEOS for the 1st planet gear is the axial
direction of the ring gear. 'e results show that the
IEOS of the 1st planet gear has a significant influence

on the vibration response characteristics of the
HPTS.

(3) In the modeling of a 5-slice type HPTS considering
the factors of the IEOS for the 1st planet gear, the
influence of the time-varying support stiffness for the
bearings on the system vibration needs to be taken
into account. 'e IEOS needs to be thoroughly in-
troduced into the HPTS to simulate actual operating
conditions.
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