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Considering that it is easily disturbed by various engineering factors such as weather, hydrology, and construction during
engineering monitoring, the collected subsidence data contain various noises. In order to reduce the in�uence of engineering
noise on the accuracy of subsidence prediction, it is proposed to use the Daubechies (DB) wavelet to decompose the original
subsidence time series; the items with the low-frequency trend, after decomposition, are predicted using long short-termmemory
(LSTM) model, items with high-frequency noise used the autoregressive (AR) time series model to make predictions, and the
prediction results of the low-frequency trend term and the high-frequency noise term are summed to obtain the total time series
predicted value. Combining the actual engineering subsidence monitoring data of the old goaf, compared with the prediction
results of the LSTM and RNNmodels without DB wavelet decomposition and the gray model GM (1,1), the results show that the
DB wavelet has an obvious improvement e�ect in reducing the in�uence of measurement data noise on prediction error.
Compared with the single prediction model LSTM, RNN, and GM (1,1), the proposed prediction model has higher prediction
accuracy, smaller error, and better trend. It can be used as a calculation method to improve the prediction accuracy of surface
subsidence in old goaf.

1. Introduction

In the untreated goaf, the overlying rock layer gradually
collapsed and compacted over time. �e voids in the col-
lapsed rock mass, the separation and cracks of the overlying
rock, and the voids at the boundary of the goaf are the
remnants of the old goaf main source of subsidence. �e
subsidence prediction methods of old goafs mainly include
traditional theoretical analysis methods, physical numerical
simulation methods, and intelligent prediction methods
based on arti�cial intelligence and big data. Traditional
theoretical analysis methods mainly include the in�uence
function method, empirical method, and pro�le function
method [1–4], and this kind of analysis method assumes that
the goaf is of regular shape, so it is only applicable to the
regular goaf. At the same time, traditional theoretical
analysis methods require a large amount of actual mea-
surement data. When the actual measurement data are

insu�cient, accurate prediction parameters cannot be ob-
tained, and the analysis process of the prediction method is
relatively complicated. It is necessary to make certain im-
provements to the prediction method according to the
speci�c situation, and the prediction e�ciency is low;
physical numerical simulation methods mainly include
model experiments, �nite element, �nite di�erence, and
discrete element methods [5–9], and this kind of analysis
method needs to be able to accurately restore the three-
dimensional structure of the old goaf. At the same time,
physical numerical simulation methods have high require-
ments for rock mass parameters. In the absence of measured
data, the results of the physical numerical simulation often
have large deviations and cannot be accepted by the project.
Intelligent prediction methods mainly include time series
models, gray prediction, and neural network methods
[10–15], and this kind of analysis method has been widely
used, but there are still some defects.�e time series and gray
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prediction methods in intelligent prediction cannot make a
rolling prediction of subsidence, and the widely used back-
propagation neural network and recurrent neural network
(RNN) are prone to gradient disappearance and gradient
explosion problems when the derivative is small or large,
which causes nonconvergence of the prediction results [16];
through the improved long short-termmemory (LSTM), the
gradient is solved, and disappearance and gradient explosion
problems can make high-precision predictions on the time
series of geotechnical engineering stress and deformation
[17].

However, the above prediction methods do not consider
the impact of noise on the prediction. When monitoring the
subsidence of actual project monitoring points, owing to the
interference of various random factors such as weather,
hydrology, and construction, the collected subsidence data
contain various noises. *e existence of these noises will
make the prediction results inaccurate.

Wavelet noise reduction has been successfully applied
in many fields [18–28]; however, its application in the field
of surface subsidence prediction in old goafs is relatively
rare. Consequently, this study proposes a combined
prediction model of wavelet decomposition and noise
reduction considering engineering noise (hereinafter re-
ferred to as the combined model LSTM-AR). In this model
using the DB wavelet, the measured subsidence data of the
old goaf are decomposed into low-frequency trend items
and high-frequency noise items. LSTM is suitable for the
prediction of stepped and trending data; thus, low-fre-
quency trend items are predicted using LSTM, and
autoregressive (AR) models are suitable for the prediction
of stationary time series, and high-frequency noise items
are predicted using AR models. *e combined prediction
model decomposes the noise in the original subsidence
data through the DB wavelet and fully considers the in-
fluence of noise on subsidence prediction.

*e combined prediction model is applied to the surface
subsidence prediction of the old goaf in the reconstruction
and extension project of the Jixi section of the national
highway Dan-A to test the practical application effect of the
combined prediction model. Engineering examples show
that the combined model LSTM-AR has high prediction
accuracy, the prediction trend is in line with reality, and the
engineering practicability is good.

*e rest of this study is structured as follows. Section 2
proposes a combined model LSTM-AR and introduces the
specific steps of the combined model LSTM-AR. Section 3
introduces the engineering overview of the project, on which
the study is based, and the layout of on-site monitoring
points. Section 4 uses the proposed combined model LSTM-
AR for subsidence prediction and compares it with the
prediction results of LSTM, RNN, and GM (1,1). Section 5
gives the conclusion of this study.

2. Combined Prediction Model

*e application of the combined model LSTM-AR in the
subsidence prediction of goaves of many years old can be
established according to the following steps:

(1) Wavelet decomposition measured subsidence time
series. Wavelet analysis converts the time-series
function to the time-frequency domain. *rough
the expansion, translation, and calculation of the
function, the function can be gradually refined in
multiple scales, and the time and frequency sub-
divisions of high and low frequencies can be
achieved, respectively. Not only it can better ob-
serve the local characteristics of the function but
can also observe the time and frequency informa-
tion of the function simultaneously. DB wavelet is a
member of the wavelet function family and has a
wide range of applications in various fields, in-
cluding but not limited to mechanical fault diag-
nosis in the mechanical field [29], deformation
detection of the bored pile in the civil field [30],
radar signal denoising in the signal field [31], de-
composition of heart signal in the medical field [32],
two-dimensional plane elastic problem in the
mathematical field [33], and transient power dis-
turbance detection in power grid field [34].*e time
series is decomposed by selecting different de-
composition levels of the DB wavelet basis function
to obtain the low-frequency trend item and high-
frequency noise item, respectively. *e signal-to-
noise ratio (SNR) of the high-frequency noise term
(the larger the value, the better the decomposition
effect) and the root mean square error (RMSE) of
the low-frequency trend term (the smaller the value,
the better the decomposition effect) are calculated
and the optimal decomposition level is chosen.
*rough wavelet decomposition, the original time
series function is decomposed into a superposition
of various subfunctions:

z(i) � cj,k 
k

φj,k + dj,k 
k

ψj,k, (1)

where φj,k andψj,k are the approximate function and
detail function, respectively; cj,k and dj,k are the
coefficients corresponding to the function, respec-
tively. *e approximate function represents the low-
frequency part of the original time series, and the
detailed function represents the high-frequency part
of the original time series. *rough multilayer de-
composition of the original time series function, a
low-frequency function and a high-frequency
function can be obtained at each layer.
*e low-frequency trend item and high-frequency
noise item after the decomposition of the original
time series are shown in Figure 1. *e original time
series can be obtained by adding the values of the
low-frequency trend item and the high-frequency
noise item, as shown in Figure 1.

(2) Low-frequency trend items are predicted using the
LSTM models. LSTM is an improvement of a simple
RNN [35]. LSTM creatively adds a cell state Ct to the
hidden layer to record long-term information and
hidden state ht to record short-term information.
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Meanwhile, the “gate” structure of the forget gate,
input gate, and output gate is set up to update and
discard information at all times during the network
training process. *is setting enables the LSTM
model to solve the problem of gradient disappear-
ance and explosion perfectly. It is excellent in the
prediction performance of the long-term series [36].
*e schematic diagram of LSTM model is shown in
Figure 2.
[xt−1, xt, xt+1, . . .] represents the input value of the
sequence, and the meanings of the other letters are as
follows:
it is the input gate, which is calculated as follows:

it � σ Wi × ht−1, xt  + bi( , (2)

ot is the output gate, which is calculated as follows:

ot � σ WO × ht−1, xt  + bo( , (3)

ft is the forget gate, which is calculated as follows:

ft � σ Wf × ht−1, xt  + bf , (4)

ct is the candidate value of the cell state, which is
calculated as follows:

ct � tanh Wc × ht−1, xt  + bc( , (5)

ct is the cell state, which is calculated as follows:

ct � ft × ct−1 + it × ct, (6)

ht is the state value of the hidden layer, which is
calculated as follows:

ht � ot × tanh ct( , (7)

where σ represents the sigmoid function, tanh is the
activation function, and W and b represent the
weight and bias, respectively.
It is necessary to construct neural network training
samples before predicting the trend items obtained
by the decomposition. Table 1 lists the construction
method of the training samples, where x represents
the trend item in the trend sequence.
*e network input item represents the number of
samples needed in the prediction, and the network
output represents the number of items that need to
be predicted from the input. For example, when
n � 3, k � 3, it means that the 3 input items predict
the 3 output items. Different values of n and k will
result in different results, and the accuracy of the
prediction results will also change accordingly. In
this study, the rolling prediction method is used; that
is, x(1), x(2), . . . , x(n) is used to predict x(n+1), x(n+2),

. . . , x(n+k), and x(2), x(3), . . . , x(n+1) is used to predict
x(n+2), x(n+3), . . . , x(n+k+1), etc. Every first n item
predicts the last k item, and finally, realizes the
prediction of multiple trend items.

(3) High frequency noise items were predicted using the
AR(p) method. AR is a model used in predicting a
stationary time series.When this method is applied, the
data must have autocorrelation. *us, before using the
AR model to make predictions, the autocorrelation of
the time series should be calculated first, and the au-
tocorrelation is represented by the autocorrelation
coefficient R. In the time series, set R1, R2, . . . , Rm as
the autocorrelation coefficient; thus, the autocorrela-
tion coefficient Rm with a time delay of m can be
expressed by the degree of correlation between the time
series value zt in period t and the time series value zt+m

in period t + m. Rm is calculated as follows:

Rm �


n−m
t�1 zt − z(  zt+m − z( 


n
t�1 zt − z( 

2 , (8)

where z is the average value of the time series.
*e predicted value of the AR model consists of a
constant term, a random error term, and a numerical
value in the time series.*e specific expression of the
AR model is as follows:

zt � c + 

p

i�1
φizt−i + εt, (9)

where cis a constant term, εt is the assumed random
error value, the average value of εt equals zero, the
standard deviation is σ, and the value of σ is assumed
to remain unchanged at any time t.

(4) Total Subsidence Prediction. *e predicted values of
the low-frequency trend item and the high-fre-
quency noise item are summed to obtain the total
subsidence predicted value, and the predicted value
is compared with the actual monitoring value to
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Figure 1: Schematic diagram of the low-frequency trend item and
the high-frequency noise item.
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calculate the error value and the prediction accuracy.
*e average absolute error (MAE) was used as an
evaluation indicator of the prediction accuracy:

MAE �
1
n



n

i�1
zi − zi


, (10)

where zi is the actual monitoring value, zi is the predicted
value, n is the number of prediction periods, and i is the
number of observation periods.

*e prediction flowchart is shown in Figure 3. After
summing the low-frequency trend term predicted by LSTM
and the high-frequency noise term predicted by AR, the
combined model prediction result can be obtained. *e
prediction results of the combined model are compared with
the LSTM prediction model, the RNN prediction model, and
the gray prediction model GM (1, 1) to evaluate the com-
bined prediction model are compared with a single pre-
diction model and traditional time series to evaluate the
prediction accuracy of the prediction model.

3. Engineering Overview

*e reconstruction and expansion project of the Jixi section
of the national highway Dan-A highway is a Class I highway.
Its design speed is 80km/h and the width of the pavement is
25.5 m. *e starting and ending points of this project are
K1600 + 000−K1651 + 498.739; the length of the route is
51.478 km. *e scope of the old goaf is
K1605 + 000−K1628 + 660 and K1631 + 985−K1647 + 100,

with a total length of 38.775 km. *e schematic diagram of
the planned route is shown in Figure 4.

*e proposed project passes through KQ1 (Muling
Mine), KQ2 (Pinggang Mine), KQ3 (Laodagou Mine), KQ4
(Hengshan Mine), and KQ5 (Lixin Mine) from south to
north, each with a long history of mining. *e phenomenon
of private digging and randommining is serious, andmining
in various mining areas has basically stopped. *e route
traverses or is adjacent to 16 working faces in 5 major mines
and 21 local coal mines, with a total length of 22.722 km
across working faces or coal mines. Muling Mine is located
in a low mountain and hilly area. *e ground elevation is
230–360m. *e overall terrain is low in the north and high
in the south. *e inclination of the coal seams is 10–30°, and
the average thickness of each coal seam is 0.5–2.0m. *e
illegal mining point adopts the lane and pillar type, and the
recovery rate is 30%–60%; the Pinggang and Laodagou
Mines are located in the low mountain and hilly areas. *e
ground elevation is 360–510m. *e overall terrain increases
from north to south and then decreased. *e inclination
angle of the coal seams is 30–40°, and the average thickness
of each coal seam is 0.8–2.0m. Longwall mining with a
recovery rate of 60%; the Hengshan Mine is located in a low
mountain and hilly area.*e ground elevation is 220–456m.
*e overall terrain is higher in the north and lower in the
south. *e inclination angle of the coal seams is 14–25°. *e
average thickness of each coal seam is 0.5–1.7m.*e mining
point adopts the road and pillar type, and the recovery rate is
30%–50%; *e Lixin Mine is located in a low mountain and
hilly area. *e ground elevation is 230–270m. *e overall
terrain is higher in the north and lower in the south. *e
inclination angle of the coal seams is 25–35°, and the average
thickness of each coal seam is 0.3–2.0m. *e mining point
adopts the lane and pillar type, and the recovery rate is 30%–
50%.

After multiple exploration methods such as geophysical
prospecting and drilling, it is determined that most of the old
goaf areas along the road have collapsed, and there is no
possibility of large-scale sudden subsidence; however, sub-
sidence and deformation are continuing. In order to find out
the subsidence deformation trend of old goaf and its impact
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Figure 2: Schematic diagram of the LSTM model.

Table 1: Input and output of the neural network.

Network entry Network output
x(1), x(2), . . . , x(n) x(n+1), x(n+2), . . . , x(n+k)

x(2), x(3), . . . , x(n+1) x(m), x(m+1), . . . , x(m+n+1)

. . . . . .

. . . . . .

x(n+2), x(n+3), . . . , x(n+k+1) x(m+n+2), x(m+n+3), . . . , x(m+n+k)
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Figure 3: *e prediction flow chart.
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Figure 4: Schematic diagram of the reconstruction and expansion project route of the Jixi section of the national highway Dan-A highway.
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on the subgrade and pavement. A total of 78 reference points
and 135monitoring points were arranged along both sides of
the road. After one and a half years of monitoring, 135
groups of 25 phases of subsidence and deformation data
were obtained. *is study selects the monitoring points
KQ1-Z, KQ2-Z, KQ3-Z, KQ4-Z, and KQ5-Z near themiddle
of each mining area for the training of the subsidence
prediction model and the test of the prediction effect of the
model. *e pile numbers of different monitoring points and
the distances from the mined-out areas in the mining area
are listed in Table 2.

4. Engineering Case Analysis

By analyzing the KQ1-Z subsidence monitoring data, the
establishment of the combined model LSTM-AR is
explained. *e KQ1-Z subsidence monitoring data are
presented in Table 3.

4.1. Decomposition of Subsidence Monitoring Data. When
the DB wavelet denoises the subsidence data, it can better
decompose the subsidence data into low-frequency trend
items and high-frequency noise items, and the denoising
effect is better than other wavelets [37]; in this study, the DB
wavelet function is used to decompose the subsidence data.
By selecting different DB functions, the subsidence data are
decomposed into different layers. After the low-frequency
trend term and high-frequency noise term are obtained,
RMSE and SNR are calculated. *e calculation results are
presented in Table 4.

Because the prediction result of the subsidence data is
reconstructed from the low-frequency trend term and the
high-frequency noise term decomposed by the DB wavelet
function, too many decomposition layers will lead to the
accumulation of prediction errors [38], which will lead to a
decrease in prediction accuracy. *erefore, when calculating
RMSE and SNR, this study only selects the number of de-
composition layers 1 and 2 for calculation.

As listed in Table 4, when the wavelet function is DB6
and the decomposition layer is 1, the decomposition effect of
monitoring subsidence data was the best. At this time, the
SNR was 45.061, and the RMSE was 0.060. *e low-fre-
quency trend item and high-frequency noise item after
decomposition are shown in Figure 5.

As there are many kinds of decomposition algorithms,
wavelet decomposition is only one of them, so other de-
composition algorithms can be used to verify the effec-
tiveness of DB wavelet decomposition. Considering that the
variational modal decomposition (VMD) has a strict
mathematical theory and is an adaptive and completely
nonrecursive modal variation and signal processing method,
the adaptive decomposition of the target signal can be
achieved by iteratively searching for the optimal solution of
the variational model, the decomposition effect is good, and
this algorithm and its improved algorithm have been widely
used in many fields [39, 40], so the optimal decomposition
effect of VMD algorithm is compared with that of the al-
gorithms adopted in this study.

By constantly changing the size of the penalty factor α,
the subsidence time series is decomposed into low-frequency
trend item and high-frequency noise item by the VMD
algorithm, and the corresponding RMSE is calculated to
obtain the optimal decomposition effect. *e optimal de-
composition effect of the two algorithms is compared, as
listed in Table 5.

It can be seen from Table 2 that when the number of
decomposition layers is 1, the RMSE difference between the
two algorithms is only 0.002; when the number of de-
composition layers is 2, the RMSE difference between the
two algorithms is only 0.003. *erefore, the DB wavelet
decomposition algorithm used in this study is effective
enough.

Table 2:*e stake number of the monitoring point in the middle of
the mining area and the depth of the goaf.

Mining area Stake Goaf depth (m)
KQ1-Z K1645 + 946 32
KQ2-Z K1639 + 200 23
KQ3-Z K1632 + 100 40
KQ4-Z K1626 + 900 51.8
KQ5-Z K1622 + 035 58.2

Table 3: Subsidence monitoring data (mm).

Monitoring
period

Monitoring points
KQ1-Z KQ2-Z KQ3-Z KQ4-Z KQ5-Z

1 0 0 0 0 0
2 0.28 0.21 0.32 0.41 0.34
3 0.52 0.66 0.95 0.87 0.79
. . . . . . . . . . . . . . . . . .

33 9.13 8.59 8.42 7.36 7.90
34 9.65 8.89 8.82 7.41 8.13
35 9.99 9.23 9.15 7.86 8.32

Table 4: RMSE and SNR of different DB functions under different
decomposition levels.

DB function Decomposition layer SNR RMSE

DB2 1 39.062 0.092
2 35.891 0.157

DB3 1 39.790 0.081
2 37.988 0.122

DB4 1 41.289 0.073
2 42.169 0.098

DB5 1 43.691 0.063
2 37.232 0.119

DB6 1 45.061 0.060
2 37.040 0.115

DB7 1 43.678 0.065
2 41.029 0.090

DB8 1 41.810 0.071
2 39.395 0.105

6 Shock and Vibration



4.2. Low-Frequency Trend Item Prediction. Low-frequency
trend items were predicted using LSTMmodels. Regarding the
accuracy of the prediction results of different network input
and output items, some scholars indicated that the length of the
network input items is not as long as possible, and the more
distant subsidence information has a negligible correlationwith
the current subsidence prediction [41]. Under different net-
work input and output items (n-k), the average absolute error
of the prediction results is listed in Table 6.

As shown in Table 6, when the 5–5 model is used to
predict the subsidence, the average values of the absolute
errors are 0.187, which are the minimum values. Based on
the above analysis, the final prediction mode of LSTM
adopts the modes of n� 5 and k� 5; that is, the 6–10 items
are predicted through the 1–5 low-frequency trend items,
after updating the 6–10 low-frequency trend items, and the
1–10 items are used to predict the 11–15 items, and so on,
until the 31–35 items are predicted.

4.3. High-Frequency Noise Term Prediction. *e high-fre-
quency noise term was predicted using the AR model. *e p
value in the ARmodel was determined by calculating the size
of the criteria AIC for different p values, as listed in Table 7.
When p � 4, the values of the criteria AIC are the smallest,
indicating that the model order at this time is optimal.
*erefore, the AR(4) model is used to predict the high-
frequency noise term.

4.4. Total Subsidence Prediction. By adding the prediction
results of the low-frequency trend term and the high-fre-
quency noise term, the total subsidence prediction result can
be obtained, as shown in Figure 6. In the mode that does not
use wavelet decomposition, the subsidence prediction results
of the LSTM, RNN, and GM (1, 1) prediction models are
shown in Figure 6. *e absolute value of the error between
the prediction results of the combined model and the single
model and the measured value is shown in Figure 7(the left
axis corresponds to the upper left data, and the right axis
corresponds to the lower right data, the same below).

Figures 6 and 7 show that the absolute value of the
combined prediction model LSTM-AR error is between 0.05
and −0.5mm, the prediction results are all within the 95%–
100% confidence interval of the actual monitoring results,
the predicted subsidence trend is almost the same as the
actual subsidence trend, and the predicted result is close to
the measured value; the absolute value of the single-model
LSTM prediction error is between 0.1 and −1.2mm. *e
prediction results are mostly within the 90%–95% confi-
dence interval of the actual monitoring results, the subsi-
dence prediction trend is roughly in line with the actual
subsidence trend, and the prediction result is too small; the
absolute value of the single-model RNN prediction error is

Table 5:*e comparison of optimal decomposition effects between
two algorithms.

Decomposition layer DB6 VMD
1 0.060 0.058
2 0.115 0.112

Table 6: Average error of prediction results under different
conditions.

Prediction mode 3–1 3–3 5–1 5–5
LSTM 0.258 0.355 0.232 0.187

Table 7: Different p value AIC sizes.

p 1 2 3 4 5
AIC −74.784 −82.265 −91.927 −98.539 −90.325

Low frequency trend term
High frequency noise term
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Figure 5: Low-frequency trend item and high-frequency noise item of KQ1-Z subsidence monitoring data.
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between 0.05 and −1.3mm.*e prediction results are mostly
within the 90%–95% confidence interval of the actual
monitoring results. *e subsidence prediction trend is
roughly in line with the actual subsidence trend, and the
prediction result is too small; the absolute value of the
prediction error of the GM (1,1) model is between 0.1 and
−3.0mm. Only part of the prediction result is within the
90%–100% confidence interval of the actual monitoring
result, and there is a significant difference between the
prediction subsidence trend and the actual subsidence trend.

*e above analysis only qualitatively judges that the
prediction accuracy of the proposed combined prediction
model is better than that of a single predictionmodel, and no
quantitative analysis is made. *e MAE between the pre-
dicted results and the measured values of different predic-
tion models can be calculated by formula (8), and the
prediction accuracy of different prediction models can be
quantitatively analyzed by it. *e calculation results are
listed in Table 8.

It can be seen from Table 8 that, for the same subsidence
time series, the MAE of combined model LSTM-AR is
0.206mm, and that of single models LSTM, RNN, and GM
(1,1) are 0.455, 0.511, and 1.013mm, respectively. *e
prediction accuracy of combined model LSTM-AR is ob-
viously better than that of single models LSTM, RNN, and
GM (1,1).In the effect of DB6 wavelet on reducing the
prediction error caused by measurement data noise, the
absolute value of the average prediction error of a single
model is used as the prediction error caused by measure-
ment data noise. Compared with the single model LSTM, the

DB6 wavelet in the LSTM-AR combined model reduces
54.73% of the prediction error caused by noise in the
measurement data; compared with the single model RNN,
the DB6 wavelet in the LSTM-AR combined model reduces
the prediction error caused by the noise of the measurement
data by 59.69%; compared with the single model GM (1,1),
the DB6 wavelet in the LSTM-AR combined model reduces
the prediction error caused by the noise of the measurement
data by 88.55%. Although the accuracy of the single-model
prediction results on some data is higher than that of the
combined prediction model, in terms of overall data and
prediction trends, the combined prediction model has
higher accuracy and better trends. In conclusion, the pre-
diction effect of the combined prediction model considering
engineering noise is more in line with the actual working
conditions.

4.5. Subsidence Prediction of Other Mining Areas. Using the
same method and steps to predict the subsidence of the
remaining four monitoring points, the effect is shown in
Figures 8–11.

It can be seen from Figures 8–11 that the subsidence
prediction trend of the combined prediction model LSTM-
AR is almost consistent with the actual subsidence trend,
and the prediction result is close to the actual measured
value; the subsidence prediction trend of the single-model
LSTM is roughly in line with the actual subsidence trend; the
subsidence prediction trend of the single-model RNN is
roughly in line with the actual subsidence trend; the
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Figure 6: Comparison of prediction results of different models of KQ1-Z.
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subsidence prediction trend of the GM (1,1) model differs
significantly from the actual subsidence trend.

*e MAE of the predicted results and the measured
values of different prediction models are calculated by
formula (8), and the prediction accuracy of different

prediction models is further quantitatively analyzed by it.
*e calculation results are listed in Table 9.

It can be seen from Table 9 that for the other four
monitoring points, the MAEs of the combined model
LSTM-AR are 0.112, 0.151, 0.102, and 0.111mm,

MAE = 0.206
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Figure 7: *e absolute value of the error between the predicted value of the prediction model and the measured value.

Table 8: *e prediction accuracy of different models.

LSTM-AR LSTM RNN GM (1,1)
MAE 0.206 0.455 0.511 1.013
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respectively, the MAEs of the single model LSTM are 0.197,
0.226, 0.184, and 0.189mm, respectively, the MAEs of
single model RNN are 0.240, 0.244, 0.156, and 0.186mm,
respectively, and the MAEs of GM (1,1) are 0.734, 0.423,
0.709, and 0.740mm, respectively. *e prediction accuracy

of the combinedmodel LSTM-AR at each monitoring point
is better than that of the single model LSTM, RNN, and GM
(1,1). In the prediction of the subsidence monitoring data
from KQ2-Z to KQ5-Z, the effect of DB6 wavelet to reduce
the prediction error caused by the noise of the measure-
ment data is as follows: compared with the single model
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Figure 8: KQ2-Z prediction result.
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Figure 9: KQ3-Z prediction result.
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Figure 10: KQ4-Z prediction result.
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Figure 11: KQ5-Z prediction result.
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LSTM, the DB6 wavelet in the LSTM-AR combined model
reduces the prediction error caused by the noise of the
measurement data by 43.15%, 33.19%, 44.57%, and 39.67%,
respectively; Compared with the single model RNN, the
DB6 wavelet in the LSTM-AR combined model reduces the
prediction error caused by the noise of the measurement
data by 53.33%, 38.11%, 34.62%, and 40.32%, respectively;
Compared with the single model, the DB6 wavelet in the
LSTM-AR combined model reduces the prediction error
caused by the noise of the measurement data by 84.74%,
57.21%, 85.61%, and 85.00%, respectively. *rough com-
prehensive comparison, the combined prediction model
LSTM-AR is superior to the single prediction models
LSTM, RNN, and GM (1,1) in prediction trend and pre-
diction accuracy.

5. Conclusions

In this study, the DB wavelet is used to decompose the
subsidence data of the old goaf to reduce engineering noise,
the combination model LSTM-AR is used to predict the
subsidence data, and the application of the combination
model in the subsidence prediction of the old goaf is dis-
cussed by combined with practical engineering. Further, the
combined prediction results are compared with the single
model and the traditional model, and the following con-
clusions are drawn:

(1) Due to the interference of various factors during
engineering monitoring, the collected subsidence
data contain various engineering noises. *e exis-
tence of noise affects the accuracy of subsidence
prediction.

(2) For reducing the prediction error caused by the noise
of the measurement data, DB6 wavelet has obvious
effect. Compared with the single model LSTM, the
prediction error caused by the noise of measurement
data is reduced by 43.06% on average; compared with
the single model RNN, the prediction error caused
by the noise of the measurement data is reduced by
45.21% on average; compared with the traditional
model, the prediction error caused by the noise of the
measurement data is reduced by 80.22% on average.

(3) *e combined prediction model considering the
impact of measurement data noise exerts the pre-
diction advantages of each prediction model. *e
results of actual case prediction show that the pre-
dicted value of the combined prediction model has
higher accuracy, smaller errors, and better trends
than a single prediction model and traditional

prediction models. It can be used as a calculation
method to improve the prediction accuracy of sur-
face subsidence in old goaf.
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