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Accordingly, the mass unbalance of the rotors is usually the major cause of excessive vibration. �e information extracted at the
fundamental frequency is often employed to �x the unbalance issue. However, other rotor faults like rotor bending and bearing-
failure e�ect also generate additional components to the characteristics. �us, it is necessary to isolate the corresponding features
and obtain the intrinsic causes of the multiple failures. In this paper, a productive hybrid method is successfully developed to deal
with the root mass unbalance problem with additional force interference by integrating the superiority of di�erent methods,
including Ensemble Empirical Mode Decomposition (EEMD) and Nonnegative Matrix Factorization (NMF), where EEMD is
used to obtain sensitive IMFs andNMF is employed to acquire the inherent source signal, respectively. Meanwhile, a root dynamic
balancing and implemental framework is also developed to accomplish the task of vibration reduction. For veri�cation, a serial of
simulations and experimental investigations have been analysed to demonstrate the preferable potentialities of the proposed
method. In particular, a standard Bently Nevada rotor rig with a speci�cally designed device was employed to simulate appended
faults by adjusting the additional forces during the experimental steps. �e analysis results show that the proposed method can
isolate and extract the unbalance faults from the raw vibration signals and achieve accurate correction balancers, where a nearly
identical correction angle has been achieved, which indicates that the optimal installation position has been successfully
�gured out.

1. Introduction

As one of the most vital apparatuses, rotating machinery of
great signi�cance in defensive and civil �elds is the fun-
damental infrastructure and key to national economic
production equipment. Unfortunately, these oscillatory
systems are easily susceptible to unwanted vibrations, where
some negatives and factors like excessive vibration, struc-
tural noise, and thermal deformation will be generated and
signi�cantly enhanced with the increase of rotational speed
[1–4].

In reality, a rotor system may su�er from di�erent types
of failures during long-term operating. �e most common

causes including unbalance, misalignment, fatigue crack,
thermal deformation, rotor-stator friction, and benting may
further induce sudden breakdowns and make undesired
vibrations arise during operation [3–5]. Among the
abovementioned causes, unbalance failures represent 35% of
the mechanical problems of rotating machines and account
for more than 75% of the rotating machine vibration fault
[1, 6, 7]. �erefore, it is critical and reasonable to investigate
e�ective and reliable techniques to eradicate this issue and
further achieve reliable operation.

In addition, it is cumbersome to �x the mass unbalance
issue under multifault condition, in which another aspect of
the rotor system vibration behaviour can also be traced to
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initial deformations like rotor bending and contact friction.
In particular, the coupling misalignment and the thermal
bowing can also change the unbalance distribution [8]. Once
the preliminary deformation of a rotor shaft couples with the
unbalance issue, the synchronous vibration response, which
only differs from the mass unbalance, can be extracted [9]. In
this case, the characteristics extracted from analysis sources
like vibration and acoustics become ambiguous and unin-
tuitive.'us, to identify and isolate the inherent features that
directly reflect the rotor faults and achieve reliable main-
tenance strategies and practical operations, more effective
and in-depth investigations should be established to address
the above issues.

Nowadays, lots of literature has accumulated and
documented many investigations on rotor systems such as
base motion, vibration resonance, friction, and contact [10].
In particular, in situ rotor balancing has attracted consid-
erable attention from industry and academia [3, 11–13].
Meanwhile, the research and development on the efficient
dynamic balancing method have been treated as a decisive
technology for fault recovery and vibration reduction [10].
Specifically, representative methods used to address the
rotor unbalance issue involve the influence coefficient
method (ICM), modal balancing, Holo-balancing, and
autobalancing [2, 10, 14–17]. As a data-driven method, ICM
that only requires machine runs with trial weights can be
simply implemented without any prior knowledge of the
rotor model. ICM has been widely employed and intensively
applied in the industry and experimental environment, and
the corresponding theory and applications are matured after
years of development and refinement [15]. On the other
hand, if the full-model parameters of the rotor system are
known in advance, the modal balancing method can be
highly competent to account for rotor unbalance using the
modal shapes. In this method, the intrinsic mechanism relies
heavily on adding trial weights to N balance surfaces to
counteract the corresponding N modal unbalance responses
[10, 15]. Generally, to achieve a satisfactory result using
modal balancing, one should rely on an accurate numerical
model and prior knowledge of the entire rotor dynamics or a
highly skilled engineer. As for the Automatic Ball Balancer
(ABB), it can be used to reduce rotor vibrations by com-
pensating for mass unbalance of the rotor. 'is method is
better adapted to applications where the amount of im-
balance varies with the operating conditions. However, due
to its inherent nonlinear properties, on some occasions,
especially during the run-up and shutdown stage, ABB may
enhance the original vibration level rather than eliminating
the vibration response [17]. Owing to the advantages of easy
implementation and high efficiency, ICM has become the
most commonly used balancing method in industries.

In general, the vibration frequencies of the rotor im-
balance are synchronous, i.e., one times the shaft rotational
speed (1X rpm), and the imbalance forces cause the shaft
rotation frequency (1X) dominating its harmonic frequen-
cies [18]. 'e core issue of the dynamic balancing procedure
is to precisely extract the 1X frequency components from the
raw vibration signal. However, it could be a daunting task to
obtain the pure unbalance components of 1X, especially for

multiple faults, since other rotor failures such as cracks,
bends, looseness problems, and misalignments also intro-
duce disturbances to the balancing characteristics of the
rotor system [2, 3, 19]. 'at is, the evidence 1X commonly
calculated from the original signal should be treated as the
superposition of different frequency responses that are
closely associated with the external forces generated by the
rotor failure. In field operations, however, many technicians
indiscriminately use the mixed amplitude and phase in-
formation at 1X to handle the mass unbalance without
considering the superposition of unbalance and other rotor
faults. Sometimes, promised results may be achieved with
the entire vibration level decreasing to the allowable range or
even better. However, vibration symptoms may reappear or
even increase within a short period of time once the fault
coupling force changes, i.e., oil-film force and blade force.
'e reason for the phenomenon is briefly induced by the
root cause misjudgment. 'us, fault coupling and isolation
procedures should be on the agenda and systematically
investigated to reach the root response characteristics and
further improve the maintenance effect.

In this paper, we focus on identifying the inherent
unbalance parameters of the rotor system using blind source
separation (BSS) and Ensemble Empirical Mode Decom-
position under multiple fault conditions. 'e two signal
processing methods are introduced in Section 2. As a rep-
resentative and prevalent BSS technique, Nonnegative
Matrix Factorization (NMF) is delivered to accomplish the
fault isolation task. EEMD is employed to calculate the most
valuable intrinsic mode functions (IMFs). 'ereafter, the
fundamental principle of ICM is described and the main
framework of the proposed method is illustrated. 'e ef-
fectiveness of the new method is verified using different
simulations and experiments, and some relevant discussions
are presented in the next section. Finally, some conclusions
are presented in the last section.

2. Basic Concepts of the Involved Signal
Processing Approaches

To figure out the root response that corresponds to the
inherent fault, in the current section, a new fusion approach
is established by combining Ensemble Empirical Mode
Decomposition (EEMD) with Nonnegative Matrix Factor-
ization (NMF) to accomplish the ultimate target of inherent
unbalance extraction. 'e principles of the two methods are
briefly introduced. 'ereafter, the core framework is given.

2.1. Nonnegative Matrix Factorization. Blind source sepa-
ration (BSS) is widely used to extract underlying information
from a mixture of different behaviours, i.e., multifault re-
sponse and mixed sound signals. 'e main task of BSS for
signal decomposition relies on inferring and estimating the
most probable sources[20], i.e., fault signals and speech
components from the acquired signals. 'e ideal model of
BSS can be formulated as

X(t) � AS(t) + E, (1)
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where X(t) ∈ RP×N is the so-called observed matrix that can
be expressed as [x1(t), x2(t) · · · xP(t)]T;S(t) ∈ Rn×N is the
separated matrix that consists of unknown source signals,
i.e., S(t) � [s1(t), s2(t), · · · sn(t)]T; A ∈ RP×nstands for the
mixing matrix and E ∈ RP×N denotes the additive Gaussian
noise with zero mean.

Unlike most BSS algorithms that learn holistic represen-
tations, e.g., independent component analysis (ICA), principal
component analysis (PCA), and sparse component analysis
(SCA), Nonnegative Matrix Factorization (NMF) only learns
partial features with nonnegative constraints to better de-
compose the objective matrix. 'e output of NMF is to figure
out an approximate factorization into two nonnegative factors.
Since NMF was first proposed by Lee and Seung in nature, it
has attracted widespread interest at the intersection of many
scientific and engineering disciplines, such as face recognition,
blind source separation, speech enhancement, fault diagnosis,
pattern recognition, and data mining [21, 22].

Given a matrix V with nonnegative observationsvij,
NMF is used to factorize matrix V into two main parts: the
basis matrix Wand component matrix.

V ≈WH
s.t. vij ≥ 0, wik ≥ 0, hkj ≥ 0, i � 1, . . . , n; j � 1, . . . m; k � 1, . . . , r

,

(2)

where V ∈ Rn×m is a nonnegative mixed matrix constructed
and formed from vibration vectors, W ∈ Rn×k is the basis
matrix that is considered as a set of basis vectors, and
H ∈ Rk×m is so-called coefficient matrix (or component
matrix) that is treated as the coordinates of each sample with
respect to these basis vectors [22, 23].

To accomplish the factorization ofV ≈WH as accurately
as possible, a robust and effective objective function should
be designed to quantify the approximation quality. Herein,
the commonly used squared error (Euclidean distance)
function and the Kullback–Leibler divergence are intro-
duced as the objective functions for factorization.

'e objective function of NMF is formulated by the
Euclidean distance; namely,

D(V‖W,H) � ‖V − WH‖
2

� 
i,j

vij − (WH)i,j 
2

s.t.Wia ≥ 0,Hbj ≥ 0,∀a, b, i, j

, (3)

where D(V‖W,H) stands for the distance between the data
matrix and the two factorized matrixes.

Correspondingly, the objective function constructed in
terms of Kullback–Leibler divergence is given as follows:

minD(V‖W,H) � 
i,j

vij log
vij

(WH)ij

  − 1  + (WH)i,j 

s.t.Wia ≥ 0,Hbj ≥ 0, ∀a, b, i, j

. (4)

As can be noticed in (4), the core values of NMF can be
recognized as the optimal linear combination using the basis
matrix to approximately recover the original data matrix.

'e objective function of the NMF optimization model
based on Euclidean distance is a bit simpler to implement
and achieve good performance.

'eoretically, it is scarcely possible to find the global
minima of the objective function, since the convexification
of the two terms (W,H) together could be a long-belea-
guered task. To minimize the cost function, Lee and Seung
presented efficient multiplicative elementwise update for-
mulae for these two minimization problems and proved
their convergence [22, 23].

'e alternation and iterative operations are utilized for
matrix updating, i.e., the nth updated resultW(n) is fixed and
employed for the further renewable process on H(n+1).
'ereafter, a new iterative result W(n+1) can be calculated
using the unvaried item H(n+1). 'e regeneration formulae
for the Euclidean distance are written as

wik←wik

VHT
 

ik

WHHT
 

ik

hkj←hkj

WTV 
kj

WTWH 
kj

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

For the Kullback–Leibler divergence model, the corre-
sponding updated role is

wik←wik

jhkjvij/(WH)ij

uhku

hkj←hkj

ihikvij/(WH)ij

vhvk

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

'e steady states of the two matrices W and H can be
achieved and the iteration is terminated when the iteration
number of NMF algorithm reaches its threshold. More
details can be found in [21, 23].

For source separation or dimension reduction, the
number of rows r is supposed to satisfy the inequal-
ityr(m + n)<mn. Note that the key parameter r is related to
the expected number of faults in the rotor system in our
following application.

2.2. Ensemble Empirical Mode Decomposition. Empirical
Mode Decomposition (EMD) method has attracted con-
siderable attention and has been widely investigated in the
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fields of condition monitoring and fault diagnosis. EMD-
based research and application have become an important
branch for handling nonlinear and nonstationary data. 'is
technique can decompose the analysis signal into a serial of
intrinsic mode functions (IMFs) or monocomponent
functions. Meanwhile, each IMF satisfies the following
prerequisites and definitions [24–26].

Firstly, in the whole data set, the number of extrema and
the number of zero-crossings must be equal or differ by at
most one.

Secondly, at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the
local minima must be equal to zero.

'rough the standard procedure, the final decomposi-
tion result can be gained accordingly.

Y(t) � 
n

i�1
ci(t) + rn(t). (7)

According to the theory of EMD, the relevant center
frequency for each IMF component gradually reduces,
where the first IMF owns the highest frequency bandwidth
while the last IMF is associated with the low-frequency
components. Conventionally, for the sake of fault diagnosis,
the usual practice relies on the features extraction from the
first few IMFs since localized fault characteristics are usually
displayed in the high-frequency bands. However, as for
further information utilization, different IMF components
have abilities in which the discarded low-frequency IMFs
may contain beneficial effects that can be further utilized to
treat other applications.

EMD also suffers from several inherent drawbacks, i.e.,
the choice of a relevant stopping criterion, mode-mixing
problem. Mode-mixing that can be arbitrarily split into two
groups, including oscillations of dramatically disparate
scales and similarly scaled components residing in different
IMFs, is the major drawback of EMD, sometimes causing
severe aliasing or inducing unpredictable and inexplicable
results.

By means of adding a finite white noise to the raw signal,
EEMD was successfully developed to improve the EMD
algorithm [26, 27]. It can be seen that EEMD is a noise-
assisted data analysis method. Here, the two parameters, the
ensemble number and the noise level, play an important role
in determining the decomposition effect. Some background
theories and applications can be found in [25, 27]. 'e
corresponding flow of EEMD can be briefly listed as follows.

Step1 Collect the original noise signal Z(t) from the
experiment platform or field industry.
Step2 Set the initial parameters of the noise compo-
nents and the number of ensembleM.
Step3 Construct loops for each IMF extraction and
perform M times of standard EMD steps for the signal
with white noise while the loop is repeated.
Step4 Calculate the ensemble average of M trials to
obtain the related IMFs during this loop.
Step5 Compute the residualRm(t) � Z(t) − IMFi(t).

Step6 Consider the residual signal as the original signal
and repeat the whole process until a constant residual is
achieved.

If necessary, it is suggested for the reader to view [25] for
more details of EEMD algorithm.

2.3. Brief Summary of Rotor Balancing. 'e influence coef-
ficient, which can reflect the linear relationship between the
trial weight and characteristics, is relevant to the sensor/
balancer position and the rotating speed (see Figure 1).

Once the trial weight is installed into the correction
plane, the characteristic response of 1X from the output end
is obtained.'e influence coefficient in Figure 1 briefly relies
on two assumptions: (1) the rotor synchronous response is
proportional to the imbalance; (2) the effects of individual
imbalances can be superimposed to obtain the effect of a set
of imbalances [19, 28].

'e general formulation of the influence coefficient
method is

V � V0 + PD, (8)

where V ∈ Cr×1 is the complex vector representing the rotor
synchronous vibration (1X) measured at r locations,
V0 ∈ Cr×1 denotes the synchronous vibration at the r sensor
position caused by the system inherent imbalance, P ∈ Cr×s

is the influence coefficients matrix, and D ∈ Cs×1 is the
imbalance weight provided by the balancer in the balancer
coordinate system.

'e matrix P can be obtained after a series of trial runs.
Assume that the vibration characteristic is Vi when the
imbalance of the balancer Di is installed into the correction
plane. 'en, the influence coefficient is estimated using (2)

P
ij

�
V

i
1 − V

i
2

D
j
1 − D

j
2

, (9)

where Pij is the ijth element of P, Vi represents the vibration
at the ith measurement location, and Dj is the imbalance
provided by the jth balancer.

'e optimal imbalance weights can be obtained using the
least squares solution:

D � − PTP 
− 1
PTV0. (10)

For more detailed information about ICM, the readers
can be referred to [19, 28].

2.4. 9e Proposed Procedure for Dynamic Rotor Balance.
With the assistance of NMF and EEMD, a hybrid method
named BSS-ICM is developed to accomplish the multiple
fault identification and isolation tasks. Meanwhile, a root
dynamic balancing and implemental framework is also
proposed to realize vibration reduction, in which the main
goal is to find the root inherent balancing causes and to
further operate with safety, stability, and long-term
runnings.

'e sketch of the proposed main framework can be seen
in Figure 2.
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As can be viewed in Figure 2, the new method mainly
consists of five portions, i.e., observed signal selection, signal
decomposition, blind source matrix construction, fault
number determination, blind source separation, and ICM-
based rotor balancing.

(1) Signal collection and analysis source selection: the
observed signal is simultaneously collected by the
acquisition system and selected for further analysis
according to the magnitude level. Note that the
comparison must be applied to signals of the same
direction.

(2) Signal decomposition: EEMD is utilized to decom-
pose each selected signal into a serial of IMFs.
Sensitive IMFs are identified according to the

similarity between the extracted IMF and the original
signal. 'e basic idea of IMF selection relies on the
use of representative IMFs to replace the raw signal
for precise balancing calculation.
Herein, the cosine similarity measure metric is in-
volved in enhancing the effectiveness and automa-
tion of IMF selection. 'is metric is originally
defined as the inner product of two vectors
X � [x1, x2, . . . , xN] and Y � [y1, y2, . . . , yN] di-
vided by the product of their lengths [24], which can
be written as

Simcos(X,Y) � cos (α)

�


N
k�1 xkyk




����


N
k�1



x
2
k × 

N

k�1
y
2
k

. (11)

Note that the symbol α in (11) represents the in-
cluded angle between the two vectors. Herein, we a
little more focus on the cosine similarities than the
angle itself. It can be observed that the magnitude
range of the similarity starts from [0, 1], where the
more extensive the cosine value is, the higher the
similar degree of two vectors would be and vice
versa.

(3) Blind source matrix construction: the source matrix
is constructed using the sensitive IMFs. 'e popular
Singular Value Decomposition (SVD) is employed to
calculate the fault number in the rotor system.
Number estimation is considered as a crucial step in
most BSS circumstances. 'e main principle behind
this strategy is that the dominant and nondominant
singular values obtained by SVD correspond to the
faulty and normal component, respectively. 'us,
the largest decline ratio of adjacent eigenvalues can
be delivered as a criterion to distinguish the faults
from normal (or noise).

(4) Nonnegative matrix factorization is utilized to de-
compose the source matrix to acquire the inherent
source signal.

(5) Depending on the signal characteristics, fault diag-
nosis and isolation results can be demonstrated from

Influence Coefficient

Trail
Weight

Bearing 1 Bearing 2

Test
Mass 1

Vibration
Response 1

Vibration
Response 2

Balanced
Mass 2

Characteristic
Changes of 1X

Figure 1: 'e influence coefficient calculation model.

Balancer Calculation by ICM

Ensemble Empirical Mode Decomposition

Observed Signal
Selection

x1 x2

y1 y2

Max ( x1, x2,y1, y2)

Signal 
Decomposition

xmax ymax

Comp_x1…Comp_xm Comp_y1…Comp_xn

Blind Source Matrix 
Constructed by 
Sensitive IMFs

Comp_xk
…

Comp_x1

Comp_yp
…

Comp_yq

Sensitive IMFs

Fault Number 
Determination and

Blind Source 
Separation (BSS)

Singular value decomposition (Fault Number)

Non-negative Matrix Factorization (BSS)

Rotor Balancing 
using Influence 

Coefficient Method
(ICM)

Orignial 
Vibration using

EEMD-BSS

Trail Vibration 
using

EEMD-BSS

Figure 2: 'e framework of BSS-ICM.
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the inherent source signal. Signals with dominated
amplitudes at 1X and very small amplitudes at other
harmonics will be treated as the vibration responses
related to the mass unbalance failure.

(6) ICM is introduced to accomplish the balancing task
once the original and the trial signals are processed
using the above steps.

3. Case Studies for Performance Verification

To evaluate the performance of the proposed approach, in
this section, different verifications using simulations and
experiments have been concerned and demonstrated by
means of BSS-ICM. Note that all simulations and experi-
ments were performed on a computer with the Intel Core i7-
8565u@1.80GHz 1.99GHz and 16.0GB (15.7GB usable)
memory by 64 bit MATLAB 2010b on Windows 10.

3.1. 9e Main Comparison Flowchart. To make a systematic
comparison, three groups of analyses are involved in this
section. 'e main comparison flowchart is shown in Fig-
ure 3. For illustration purposes, the studies related to these
three groups are named case 1 (conventional ICM without
other faults), case 2 (conventional ICM with additional
force), and case 3 (BSS-ICM with additional force).

According to Figure 3, some important descriptions are
briefly given.

(1) Conventional ICM is employed to address the rotor
balancing issue under different conditions, i.e., with
and without other failures. In this case, the balancing
parameters calculation of the rotor system without
other faults is regarded as the reference.

(2) Without regard to the distinction between the two
methods (conventional ICM and BSS-ICM), the
whole signal comparison process is quite similar,
using the same signals and obtained results with the
same patterns.

(3) Since it is quite difficult to simulate the whole process
of rotor balancing, the final step in Subsection 3.3
using ICM is abruptly neglected in the simulation
case. Analysis results from the first five steps of BSS-
ICM will be used to validate the operating perfor-
mance in this case.

(4) For a common and united comparison, the simu-
lation and experimental parameters are identically
designed (see Table 1).

Note that, due to the space restraint, the rotor system
without fault using BSS-ICM is ignored in the experimental
case in Section 3.3.

3.2. Numerical Simulations and Discussions. In this section,
numerical simulation is introduced to verify the perfor-
mance of the proposed algorithm. 'e effectiveness of BSS-
ICM is validated by comparing the extraction results with
the simulated sinusoidal signal that only contains one fre-
quency component. 'e single frequency signal herein

denotes the vibration response generated by the mass
unbalance.

'e two-fault candidate can be considered as one of the
most prevalent and representative multiple fault patterns in
industrial applications, and multiple faults with more than two
sources rarely occur due to periodicalmaintenance and scientific
management. 'us, the mixed signal containing two sources is
employed to highlight the prominent properties of our method.

Let Q be the observed matrix composed of a white noise
term υi(t) and a superposition of two sources, i.e., S1(t) and
S2(t). 'e source and mixed signals are defined as follows,
respectively:

s1(t) � d1 sin 2πf1t + φ1(  + υ1(t)

s2(t) � d2 1 + sin 2πf1t + φ2(  sin 2πf2t + φ4(  + υ2(t)′

⎧⎪⎪⎨

⎪⎪⎩

(12)

Q �
Q1(t)

Q2(t)
  � AS �

a11 a12

a21 a22
 

s1(t)

s2(t)
 , (13)

where the corresponding parameters are illustrated in
Table 2.

During the simulating process, the mixing matrix A is
artificially designed as

A �
a11 a12

a21 a22
  �

0.8 0.6

− 0.7 0.1
 . (14)

'e signal is generated over a time of 0.5 s with a sample
frequency of 1 kHz. Figure 4 gives two time curves of the
observed signals Q1(t) and Q2(t). EEMD results related to
Q1(t) are shown in Figure 5.

Meanwhile, the cosine similarities between each IMF and
the observed signals are obtained by (11) and listed in Tables 3
and 4, respectively.'e IMFwith the most prominent similarity
is selected to achieve the source separation task, while the others
are discarded as irrelevant components. Here, IMF3 and IMF2
are, respectively, selected and utilized for further analysis as they
own the highest similarities compared to the others in each table.

By comparing the observed signal in Figure 4(b) with its
IMFs in Figure 5, significant evidence can be automatically
obtained and visually distinguished.

'ereafter, SVD is delivered to estimate the source
number and the first 20 decline ratios are plotted in Figure 6.

It can be noticed that the highest value of the decline
ratio shows up at the second position, which means that the
source number is equal to two accordingly.

'ereafter, the observed matrix and the selected IMFs
are treated as the new observed matrix and processed using
the NMF method to carry out the inherent sources. Fur-
thermore, to reflect the original sources S, i.e., s1(t) and
s2(t), the extracted sources are estimated by the charac-
teristics of frequency distribution. For better comparison,
the corresponding components for the same pattern are
intensively drawn in the single chart in Figure 7.

At first glance, analogous properties appear in each chart
in Figure 7, especially the phase information, where nearly
identical results have been achieved. On closer inspection, a
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slight difference can be noticed between these two charts. In
Figure 7(a), for the simulated mass unbalance components,
the estimated amplitudes coincide precisely with each
other, and a tiny phase shift phenomenon shows up. In
Figure 7(b), the fluctuation has increased between the
theoretical and the estimated sources. However, the phase
shift seems disappeared compared to the previous case.
Note that the difference between the theoretical and esti-
mated sources in each case is so slight that the spectrum
calculation and analysis are negligible considering the
space limitation.

It can be inferred from the above discussions that the
extracted information corresponding to the “mass unbal-
ance” obtained by the proposed method is perfectly reserved
and can be representatively used for further unbalancing
calculations.

3.3. Experimental Results and Discussions

3.3.1. Experiment Setup. To verify the rotor balancing
performance in practice, a series of experiments are de-
veloped under different external forces. Note that multiple
faults are simulated using a specifically designed Bently
Nevada Rotor Kit (see Figure 8).

Figure 8 illustrates the structure chart of the rotor
balancing test rig together with the specific loading
structure. As can be observed, the whole rig consists of a
speed controller, a DC motor, a serial of standard weights,
and a small range electric balance. A NI-4432 data ac-
quisition card was used for the vibration signal collection.
Moreover, six eddy current displacement probes perpen-
dicular to each other were installed separately and further
used to perform the task of vibration information capture
(see Figure 8(a)). 'e other two probes were employed for
speed measurement and control. More details of the rig can
be found in [19].

It needs to be emphasized that the specific loading device
installed is used to simulate additional failures like pipeline
excitation, which directly affect the distribution of the radial
forces by the four linked springs (see B-direction in
Figure 8(a)). 'e current device is able to generate different
levels of external forces in terms of the four round nuts.
'eoretically, it is capable of loading radial forces in any
direction on the rotating components. Since the force ap-
plied to the spring is proportional to the spring deformation,
the change of the deformation can be quantified and
transformed into the changes of pitch number. 'us, the
pitch number directly substitutes the real force for
convenience.

Balancing calculation

System with other fault

Orignal Trail

Conventional ICM

Weight Phase

System without other fault

Orignal Trail

Conventional ICM

Balancing calculation

Weight Phase

System with other fault

Orignal Trail

BSS-ICM

Balancing calculation

Weight Phase

Weight comparison result Phase comparison result

Figure 3: 'e main comparison flowchart using the proposed method.

Table 1: Same parameters used for simulation and experiment cases.

Parameters Source number Sensitive IMFs number Ensemble number Noise level Max iterative Residual threshold
Values 2 2 100 0.1 10000 1e-5

Table 2: Some parameters of the mixed signal in (12).

Parameters/units d1/μm f1/Hz φ1/ra d d2/μm φ2/ra d f2/Hz φ3/ra d υi(t)

Values 20 20 π/3 15 π/4 40 π/2 10 dB
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Meanwhile, the four directions of top, down, left, and
right were represented by four capital letters T, D, L, and R,
respectively. 'e numbers are attached to the capital letters

to represent the force vectors (magnitude and direction). For
example, L2T3 means two forces of 2 pitches and 3 pitches
simultaneously applied to the left and top directions.
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Figure 4: Time curves corresponding to the two observed signals.

-10
0

10
20

IM
F1

 [u
m

]

-20

0

20

IM
F3

 [u
m

]

-5

0

5

IM
F5

 [u
m

]

-1

0

1

IM
F7

 [u
m

]

-0.4
-0.2

0
0.2
0.4

IM
F8

 [u
m

]

-1
0
1
2

IM
F6

 [u
m

]

-5

0

5

IM
F4

 [u
m

]

-1

0

1

IM
F2

 [u
m

]

0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.50

0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.50

0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.50

0.1 0.2 0.3 0.4 0.50
Time[s]

0.1 0.2 0.3 0.4 0.50
Time[s]

Figure 5: EEMD results of the observed signal in Figure 4(b).
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Note that, for comparison, all operating conditions,
including the data collection parameters, are identical. 'e
input rotating speed of the DC motor was approximately
equal to 1000 rpm. Vibration signals were collected simul-
taneously using five probes. Each file of the vibration signal
consisted of 2 s of data at a sampling rate of 4096Hz. 'e
order tracking technique was also involved in gaining vi-
bration parameters as precisely as possible when the pro-
cedure was used to process vibration signals. Meanwhile,
because rotor balancing essentially requires the phase
measurement of the synchronous harmonics of the vibration
signal with respect to a reference, the key phasor (one of the
probes fixed near the motor) was adopted to provide the
reference phase angle value associated with the filtered
amplitudes measured by each transducer.

3.3.2. 9e Standard Rotor Balance Process. 'e standard
rotor balance process without additional radial force was
first introduced to obtain the reference parameters, such as
mass unbalance vector and balancing vector corresponding
to the original imbalance.

First, the peak-to-peak values and vibration vectors at 1X
were extracted from the raw data and shown in Table 5.

As can be seen, the vibration information collected from
different sensors is distinct from one another, even from the
same rotor section. 'e probe with the highest amplitude
was chosen for the balancing task according to the main-
tenance experience to achieve a better contrast.

A trial weight of 9.8 g was located at 270° (both quantity
and angle were randomly chosen). Based on conventional
ICM, rotor balancing results were gained under the
unloaded condition, which inferred that only mass unbal-
ance failures were artificially concerned regardless of the
mechanical assembly errors. Note that here the mass un-
balance that can be treated as the inherent failure of the rotor
system persisted through the whole duration.

3.3.3. Rotor Balance Process with External Force Interference.
In practical experiments, a serial of experimental inves-
tigations have been established under different loading
conditions. Considering the limit of the paper, only the
condition with an additional T5R6 force was engaged to
demonstrate the superior performance of the BSS-ICM
algorithm. Moreover, in contrast to the previous analysis
using the probe with the highest amplitude, all vibration
signals were referred to the signal source to be analysed.
Because there are two groups of orthogonally installed
probes, the two raw signals were selected by the magni-
tude level. Herein, raw signals collected from 3# and 4#
sensors were selected according to the magnitude. Cor-
responding waveforms of these two signals are described
in Figure 9.

According to the algorithm flow, EEMD was used to
process the selected raw signals to obtain the IMFs. Par-
ticularly, EEMD results extracted from the 3rd probe are
representatively illustrated in Figure 10.

Table 3: Cosine similarities between each IMF and the mixed signal in Figure 4(a).

IMF 1 2 3 4 5 6 7 8
Simcos 0.012 0.091 0.860 0.646 0.104 0.056 0.019 0.020

Table 4: Cosine similarities between each IMF and the mixed signal in Figure 4(b).

IMF 1 2 3 4 5 6 7 8
Simcos 0.215 0.983 0.183 0.110 0.044 0.015 0.004 0.014
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Figure 6: Changes of decline ratio with source index.
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'ereafter, the similarity between each IMF and the original
vibration is computed using (11) to capture the most repre-
sentative IMF. Together with the original signal, herein, the IMF

with the most significant similarity (IMF4 owns the highest
values in each group) is employed to form themixingmatrix for
fault number determination and blind source separation.
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Figure 7: Source estimations using the proposed method.
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Figure 8: Bently Nevada Rotor Kit with a specific force loading device. (a) 'e structure chart and (b) the physical view.
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Tables 6 and 7 give the corresponding similarities of the
two groups of IMFs, respectively.

'en, the SVD method is used for fault number esti-
mation. Table 8 shows the details of the top 20 nonzero

eigenvalues related to the new observed matrix. 'e decline
ratios are illustrated in Figure 11.

In Figure 11, it is clear that the second ratio owns the
most considerable value compared to the others. In other
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Figure 9: 'e original signal collected from (a) the 3# and (b) 4# sensors.
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Figure 10: First eight IMFs of the 3rd vibration signal (from high- to low-frequency bands).

Table 6: Results of cosine similarities based on the first selected raw data.

IMF 1 2 3 4 5 6 7 8
Simcos 0.019 0.020 0.477 0.991 0.444 0.011 0.040 0.040

Table 5: Vibration vectors of raw signals.

Probes 1st 2nd 3rd 4th
Peak-to-peak value μm 42.1 53.0 112.0 70.0
1X vector μm∠° 36.2∠347 51.2∠79 104∠340 69.9∠76
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words, the rotor system suffers from two main faults that
correspond to the mass unbalance and the simulated fault
generated by the external force.

'ereafter, NMF is adopted to separate the main
sources from the new observed matrix, and the rela-
tionship between the decomposed signals and the two
faults can be determined based on the frequency distri-
bution. 'e corresponding order spectrums are intro-
duced to obtain a much more precise balancer vector,
because the order spectrum is able to eliminate the in-
terference of the speed fluctuation.

'e proposed method is validated during the whole
balancing process without additional operations. 'us, the
above flow involving some key steps (steps 1, 2, 4, and 5 in
Section 2.4) will be repeated to obtain the corresponding
vibration information under the trial condition. Note that
SVD can be omitted in this case since the source number has
been obtained under the original vibration situation.

Finally, once all relevant information has been obtained,
ICM is employed to accomplish the rotor balancing task.
'ree sets of analytical results are calculated using the
conventional ICM.'e corresponding results are intensively
elaborated in Tables 9–11.

3.3.4. Results and Discussions. According to the rotor bal-
ancing results in Tables 9–11, a brief summary can be
reached. (1) Conventional ICM plays an important role in
the process of rigid rotor balancing, in which the axial vi-
brations at 3# in cases 1 and 2 were reduced by more than
75% after field balancing. (2) 'e impact of the additional
force is undeniable, where all amplitudes of vibrations de-
crease to a slighter level under the external radial force. (3)
Significant changes are seen in the final balancer vectors in
two cases, especially, in the correction angle, where a de-
viation angle of 40° is obtained. In reality, the deviation is an
outrageous option. It can be easily inferred that once the
external force disappears (e.g., the run-in period after the
overhaul), the inappropriate installation may result in the
opposite effect or uncontrollable situations like a mal-
function or even fatal damage. (4) Regardless of the am-
plitude difference, the final balancer vector obtained by BSS-
ICM in case 3 is much more effective. Compared to the
referred angle in case 1, a nearly identical correction angle
has been achieved, which indicates that the optimal in-
stallation position has been figured out, even if the balancing
effectiveness may decline. However, the inherent balancing
has been accurately modified accordingly.

Table 8: Nonzero eigenvalues obtained by SVD.

Index 1 2 3 4 5 6 7 8 9 10
Simcos 28273 28107 4004 3459 2188 2183 1168 735 321 207
Index 11 12 13 14 15 16 17 18 19 20
Simcos 107 95 89 61 49 49 40 25 23 21
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Figure 11: Changes of decline ratio with source index under experiment condition.

Table 7: Results of cosine similarities based on the second selected raw data.

IMF 1 2 3 4 5 6 7 8
Simcos 0.035 0.014 0.061 0.959 0.830 0.025 0.024 0.023

Table 9: Rotor balancing results using convention ICM without external force.

Run state At condition weight (g)/angle (°) Vibration amplitude (μm) Phase angle (°) External force
Original — 104 340 —
Trial 9.8/270 51 345 —
Balanced 19/275 24.4 59 —
Final vibration amplitude reduction %: (104–24.4)/104� 76.54%.
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4. Conclusions

In this paper, a hybrid method named BSS-ICM is suc-
cessfully developed. In conjunction with the superiority of
EEMD, SVD, and NMF, extraction and division of multiple
features have been accomplished. 'e corresponding anal-
ysis results and conclusions are given as follows:

(1) 'e hybrid method is capable of maximizing the use
of the vibration information, where signals collected
from different sensors are involved for further
analysis.

(2) A root dynamic balancing and implemental frame-
work is successfully developed to accomplish the task
of vibration reduction.

(3) 'e effectiveness of the proposed method is verified
using both numerical simulations and practical ap-
plications, in which the signal characteristics of the
common rotor failure are successfully obtained and
utilized for further analysis, i.e., rotor balancing.

(4) Results of simulations and experiments indicate that
the novel method has the potential ability of
extracting the inherent faults from the mixed vi-
bration signals.

Nevertheless the investigation on rotor balancing by
means of BSS is still in its infancy, and modern signal
processing techniques have not been sufficiently applied to
this field yet, there is a slight amplitude deviation between
the two balancers obtained by BSS-ICM and conventional
ICM. Moreover, the final balancer vector cannot be verified
because of the permission restrictions and algorithm de-
velopment period, even though, based on the angle infor-
mation, it still can be deduced that the calculation result
meets the requirements of inherent rotor balancing.
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A. Wyłomańska, “Novel method of informative frequency
band selection for vibration signal using Nonnegative Matrix
Factorization of spectrogram matrix,” Mechanical Systems
and Signal Processing, vol. 130, pp. 585–596, 2019.

[22] P. O. Hoyer, “Non-negative matrix factorization with
sparseness constraints,” Journal of Machine Learning Re-
search, vol. 5, 2004.

[23] Y.-s. Yang, A.-b. Ming, Y.-y. Zhang, and Y.-s. Zhu, “Dis-
criminative non-negative matrix factorization (DNMF) and
its application to the fault diagnosis of diesel engine,”

Mechanical Systems and Signal Processing, vol. 95, pp. 158–
171, 2017.

[24] B. Li, X. Zhang, and J. Wu, “New procedure for gear fault
detection and diagnosis using instantaneous angular speed,”
Mechanical Systems and Signal Processing, vol. 85, pp. 415–
428, 2017.

[25] Z. Wu and N. E. Huang, “Ensemble empirical mode de-
composition: a noise-assisted data analysis method,” Ad-
vances in Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009.

[26] F. Jiang, Z. Zhu, W. Li, G. Chen, and G. Zhou, “Robust
condition monitoring and fault diagnosis of rolling element
bearings using improved EEMD and statistical features,”
Measurement Science and Technology, vol. 25, no. 2, Article ID
025003, 2013.

[27] Y. Lei, Z. He, and Y. Zi, “Application of the EEMDmethod to
rotor fault diagnosis of rotating machinery,” Mechanical
Systems and Signal Processing, vol. 23, no. 4, pp. 1327–1338,
2009.

[28] S. Zhou, S. W. Dyer, K.-k. Shin, J. Shi, and J. Ni, “Extended
influence coefficient method for rotor active balancing during
acceleration,” Journal of Dynamic Systems, Measurement, and
Control, vol. 126, no. 1, pp. 219–223, 2004.

14 Shock and Vibration


