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+e gear-bearing system is the most important part of integrally centrifugal compressors. According to statistics, the majority of
integrally geared compressor accidents are caused by excessive vibration of the geared rotor. However, its complicated dynamic
characteristics and inevitable vibration faults in actual operation present significant challenges throughout the analysis and design
stages. In this paper, the coupled self-excited vibration of the gear system characterized bymultipoint meshing and oil film bearing
supporting is investigated. Firstly, the structure of the gear system in an integrally geared compressor is used as a research object.
+e modeling approach of meshing excitation, including time-varying mesh stiffness, gear meshing error, and tooth backlash are
introduced. However, the variable stiffness and damping coefficient equations of journal bearing and oil film thrust bearing are
modeled and utilized to approximate the variable bearing force and simplify the vibration computation under the assumption of
Newtonian fluid. +en, a dimensionless modeling method of the gear system considering gyroscopic moment of gear disk,
variable meshing force, as well as variable stiffness and damping coefficient is proposed. Based on the dynamic model, the
influence of the bearing dynamic coefficients and load on the vibration of the entire gear system is studied. Among which, the
vibration displacement and meshing force are examined using frequency-domain and time-domain analysis methods. +e results
suggest that the flexible support can restrain the system’s nonlinear motion, whilst increasing load on the gear system can improve
gear operation stability and reduce load fluctuation.

1. Introduction

Integrally geared compressor is one of the most represen-
tative assembling units among big rotating machines, which
are widely utilized in the domains of natural gas, petroleum,
and coal chemical processing and meets the requirements,
such as higher flux and longer running time. It is charac-
terized by higher parameter, better performance and sta-
bility under various condition, extreme condition andmulti-
interference. +e dynamic stability of compressor geared
rotor system has always attracted much attention. For ex-
ample, it happened that self-excitation leads to the large
vibration of compressor, as reported by Wachel (1975),
Fulton (1984), Kirk(1985), Kuzdzal (1994), and Memmott
(2000) [1].

+e gear-bearing system is the key component in inte-
grally centrifugal compressor which is often characterized by
one helical gear meshing with many other gears at the same
time and coupled in different directions, and also the
nonlinear oil film support of rotors, which cause the vi-
bration characteristics of the rotor systems in integrally
geared compressors are different from those of the general
gear system. According to the statistics, most accidents of
integrally geared compressors are caused by excessive vi-
bration of geared rotor [2], which is resulted by rotor un-
balance, shafting coupling resonance, bearing instability,
and so on. +e rotor system in integrally centrifugal com-
pressor always runs at high speed and high load. Due to the
alternative engagement of teeth and the nonlinear film force,
the meshing state changes during the meshing process, while
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the impact among the gear teeth caused by the mesh
clearance and transmission error during the meshing pro-
cess would excite the vibration of the whole rotor system.
+e excessive vibration will not only lead to the wear be-
tween rotors and stators, but also serious damage of the
whole system. Although researchers have formed a relatively
perfect theory and technology of nonlinear dynamic analysis
and dynamic design for the main problems of the rotor
system of a single shaft centrifugal compressor, and have a
good means of prediction and control of its vibration
problems, it is still impossible to make a reasonable ex-
planation for the new vibration phenomenon of the geared
rotor system in integrally centrifugal compressor and put
forward an effective solution. In many times, the safe op-
eration of the integrally centrifugal compressor can only be
ensured by sacrificing the production capacity. +us, the
meshing characteristics and performance of the gear system
have important influences on the whole system even the
whole devices as well as the system security.

Researchers have proposed many modeling methods on
gear meshing force and oil film force. +e main modeling
methods of gear meshing force include linear meshing
model and nonlinear meshing model. In linear meshing
model, the meshing stiffness is regarded as a constant or
harmonic value, which is usually used to solve the resonance
frequency of the rotor or the vibration response of the rotor
with less influence of meshing excitation. For example, Doan
[3] presents a method for determining the resonance regions
of the gear system under different design parameters
according to the linear meshing assumption. Kang [4]
considers the dynamics of a gear system with viscoelastic
supports, in which, the gear pairs are simplified as two rigid
discs connected by springs along meshing lines. In addition,
in order to express the meshing excitation of gears, Shi [5]
proposed a dynamics model for hypoid gears, considered the
interaction between mesh stiffness and dynamic response,
and the simulations show evident impact of dynamic mesh
stiffness on hypoid gear dynamic response. Han [6] intro-
duced time-dependent mesh stiffness to realize steady re-
sponse analysis of rotor system, where meshing stiffness
fluctuates in simple harmonic form, while the influence of
various nonlinear factors on vibration is ignored, such as
tooth backlash and meshing error. In many cases, the linear
meshing model cannot describe the meshing force well,
especially when the mesh clearance and gear transmission
error to be taken into account. Feng [7] studied the increased
vibration of geared rotor system caused by gear wear, and
propose a gear wear model to describe wear process. With
the continually updated model coefficient according to the
real-time test data, the wear process of the gear mesh can be
well monitored.+en, Feng [8] demonstrated the ability and
effectiveness of the proposed vibration-based methodology
in monitoring and predicting gear wear, Inalpolat [9] an-
alyzed the influence of different gear meshing error on
dynamic meshing force of gear pair by experiment. +eo-
dossiadas [10] applied the non-linear meshing model to
identify the periodic steady response of gear system in-
volving backlash and time-dependent mesh stiffness under
torsional moments. Eritenel [11] proposed nonlinear

dynamic model to investigate the gear loads and bearing
forces of the gear system with backlash and time-varying
stiffness. Cho [12] studied the dynamics of a two-stage
differential wind generator gearbox, where the non-linear
meshing model was adopted. Guerine [13] investigated the
influence of random uncertainty of mass, damping coeffi-
cient, bending stiffness, and torsion stiffness on the dynamic
response of single-stage gear system, as well as the syn-
thetically impact of these random parameters. Luo [14]
proposed an improved analytical model to calculate the
time-varying mesh stiffness of a planetary gear set, where the
effect of sliding friction and spalling defects are considered.
Zheng [15] considered centrifugal effect and developed an
analytical-FEM framework to integrate the centrifugal field
into the mesh stiffness and nonlinear dynamics, where the
reasonable accuracy is demonstrated between the simulation
and experiment results. Wang [16] studied the bending-
torsion coupling response of spur gear system, taking into
account mesh stiffness variations, backlash, transmission
errors, and loads. +e results show that, due to the coupling
effects of bending and torsional vibrations, the system ex-
hibits a diverse range of periodic, subharmonic, and chaotic
motion. Sánchez [17] investigated the contact conditions of
modified teeth influenced by the profile modification on the
load sharing and transmission error under load. Wang [18]
suggested two approaches for determining time-varying
meshing stiffness in internal gear pairs with tiny tooth
differences, both of which were validated using the finite
element method. Ma [19] established a fractal contact model
suited for gear pair contact, where the influence of roughness
on the normal contact stiffness of gears is considered. On the
basis of modified fractal contact model, the asperity contact
stiffness and the fractal contact compliance are calculated.

Also included are two methods that are commonly used
in the numerical calculation of bearing force. +e first one is
to directly calculate the oil film force using a numerical or
analytic method, while the other is an approximation of the
dynamic coefficients of the oil film, such as stiffness and
damping coefficients. It always takes a long time to solve the
dynamic oil film force by finite element method or variation
method in the first method. +us, the Reynolds equation is
often simplified to analyzing and solving practical problems,
where the oil film force model of long bearing proposed by
Sommerfeld and the short bearing proposed by Capone is
the most representative. For example, Chang-Jian [20] and
Amamou [21] use the long bearing hypothesis to investigate
the non-linear dynamic features of a disk rotor system
supported by a circular tile bearing and the dynamic stability
of a circular tile bearing. However, Lin [22] and Soni [23]
used the short bearing hypothesis to investigate the lubri-
cation features of bearings in non-Newton ferromagnetic
fluid and the nonlinear dynamic characteristics of circular
tile bearings in thin film lubrication. Due to the complexity
of the first technique’s calculation process, the second
method is extensively utilized in engineering applications to
solve the rotor response problem due to its simple calcu-
lation procedure. Srikanth [24] ignores the degree of free-
dom of the tile thrust bearing block and solves the stiffness
and damping parameters of tile thrust bearings of various
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sizes. Furthermore, several researchers investigated the non-
linear vibration of a rotor system with oil film support from
the perspectives of external stimulation and rotor fault.
Zhang [25] investigates the change in bearing force of rotor
system due to the change of submarine position. Liang [26]
analyzes the influence of the film force in the squeeze film
damper on the nonlinear vibration suppression of the rotor
system produced by the misalignment. Cable [27] studies the
static angular misalignment of the thrust collars and the
main bull gear in integrally geared compressor induced by
manufacturing inaccuracies and poor assembly process,
which hasmajor impact on the dynamics of the rotor system.

Despite the fact that many studies have been done on the
dynamic of gear system, they have always focused on gear
systems with classical configurations. +ere are few works
concentrate on the time-varying features and non-linear
coupled vibration of gear systems with multipoint mesh.
Meanwhile, in some vibration analyses of complicated gear
systems, bearings are always treated as invariable stiffness
and damper coefficients, which would make the analysis
results lose some important information. Many compressor
manufacturing companies still lack a dynamic analysis
process of the gear system during the design phase, resulting
in many vibration problems of the gear system that cannot
be effectively solved, and the safe operation of the equipment
can only be ensured by sacrificing production capacity, such
as reducing the working speed and load.

+e modeling approach of the gear system with multipoint
mesh according to the structure of the gear system in integrally
geared compressor is proposed in this study, where the variable
meshing force and variable bearing dynamic coefficients are
taken into account. In addition, the non-linear coupled vi-
brations of the gear system and meshing properties at various
speeds and loads are investigated. +e findings of this work
could provide theoretical support for the dynamic design and
fault diagnostics of multipoint mesh gear systems aiming for
high reliability and minimal vibration.

2. Gear Bearing System with Multipoint Mesh
and Its Modelling Method

2.1. Structure of Gear System in Integral Centrifugal
Compressor. Figure 1 depicts an entire centrifugal

compressor rotor system comprised of five shafts engaged by
helical gear, including one input shaft, one middle gear
driving shaft, and three high speed output shafts, all sup-
ported by journal bearings and oil film trust bearings. +e
maximum speed of the input shaft of the rotor system is
4000r/min, and the maximum output speed of the output
shaft is 12800r/min.

+e gears are treated as rigid body and the dynamic
model of gear system is shown in Figure 2. Gears 1–5 refer to
the gears on the input shaft, center shaft, and three output
shafts. kij(t), 2bij, and eij(t) are the time-variant stiffness
parameter, gear clearance parameter, and transfer error
parameter between Gears i and Gear j, respectively.

As shown in Figure 2, each gear is located in the center of
the two supporting, and Gear i rotates around the rotation
center Oi at rotation speed ωi. kij(t)， cij， eij(t), and bij

are the meshing stiffness, meshing damping, transfer error,
and unilateral backlash between Gears i and j, respectively.
kix is axial stiffness of the thrust bearing on Gear i, kiyL, kizL
and kiyR, kizR are the vertical and horizontal stiffness of left
and right journal bearings on Gear i, respectively.

2.2. Modelling Approach of Meshing Excitation

2.2.1. Time-VariantMeshing Stiffness. Due to the alternation
of meshing teeth, the meshing stiffness changes periodically,
which result in the dynamic stiffness excitation during the
meshing process, the Ishikawa Formula shown as the fol-
lowing equation is used to describe the deformation of the
tooth under mesh force F:

δ � δBr + δBt + δs + δG, (1)

where δBr and δBt are the bending deformations of the
rectangular and trapezoid section, respectively, and δs and
δG are the shear and elasticity deformations, respectively.
+en the stiffness of the tooth can be described as

k �
F

δ
. (2)

+emeshing stiffness appears obvious periodicity during
the meshing process and can be expressed as a Fourier series:

k(t) � k0 + 
∞

j�1
aj cos jωΛt(  + bj sin jωΛt(   � k0 + 

∞

j�1
kj cos jωΛt + φj , (3)

where k0 is the average meshing stiffness; ai, bi, and ki are the
Fourier coefficients; φj is the phase angle; and ωΛ is the
meshing frequency.

If only the first order of Fourier series is preserved, Eq.
(3) can be written as

k(t) � k0 1 + ε sin ωΛt + φ(  , (4)

where ε is the fluctuation coefficient of stiffness.

2.2.2. Gear Transfer Error. +e transfer error of the gear pair
is mainly caused by manufacture error and gear wear.
Transfer errors make the meshing tooth profile deviate from
the ideal meshing position, which destroy the correct
meshing method of gear pairs, and resulting in tooth-to-
tooth collisions and impacts during the meshing process.

Because the transfer error is of periodicity during the
transfer process, the transfer error could also be expressed in
the form of Fourier series:
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e(t) � e0 + 
∞

j�1
cj cos(jωt) + dj sin(jωt)  � e0 + 

∞

j�1
ej cos jωΛt + φj , (5)

Figure 1: Rotor system of integral centrifugal compressor.
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Figure 2: Dynamic model of the gear system.
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where e0 is the average transfer error and ci and di are the
Fourier coefficients.

Similarly, if only the first order of this Fourier series is
preserved, and average transfer error is equaled to zero,
Equation (3) can be written as

e(t) � es sin ωΛt + φ( , (6)

where es is the fluctuant amplitude of transfer error.

2.2.3. Backlash. Backlash between gear pair changes the
contact state and causes continuous impact between the gear
pairs, which has a significant impact on the dynamic
characteristics of the gear system. Assuming the teeth
backlash of a gear pair is 2bn, and the relative deformation
between the meshing teeth is Δ. +erefore, the deformation
functions of the tooth along the meshing line can be
expressed as

g(Δ) �

Δ − bn, Δ> bn,

0, −bn ≤Δ≤ bn,

Δ + bn, Δ< − bn,

⎧⎪⎪⎨

⎪⎪⎩
(7)

Equation (7) is a step function, and when the meshing
point is within the scope of teeth backlash, there is no
deformation. Otherwise, the teeth begin to deform.

2.3. Modelling Approach of Bearing Dynamic Coefficients.
+e journal bearings on shafts can be modeled as Figure 3.
Here, the journal rotates at the speed ofΩ with stable load F.
O and Οb are the center of journal and bearing, respectively.
r and Rb are the radius of journal and bearing bore. φ is the
displacement angle. E is the eccentric distance.

After coordinate translation, the Reynolds equation for
oil film force analysis in journal bearing and its oil film
boundary can be shown as

1
R
2
b

z

zθ
h
3

12η
zp

zθ
  +

z

zx

h
3

12η
zp

zx
  �

1
2
Ω

zh

zθ
+

zh

zt
, (8)

p θ1, x(  � p θ2, x(  � 0,

p θ, −
L

2
  � p θ,

L

2
  � 0,

⎧⎪⎪⎨

⎪⎪⎩
(9)

where η is the dynamic viscosity of the oil; p is the oil film
pressure; x is the position along the width direction; θ1 and
θ2 are the starting angle boundary and end angle boundary;
and L is the width of the bearing.

Nondimensional parameters are defined as
p � p/[6ηΩ(Rb/C)2], x � x/(L/2)， λ � 2Rb/L, e � e/C,
_e � _e/(CΩ), h � h/C � 1 + e cos(θ − φ), and τ � Ωt. Equa-
tion (8)-(9) can be transferred to

z

zθ
h
3zp

zθ
  + λ2

z

zx
h
3zp

zx
  � −e sin(θ − φ) + 2_e cos θ − φde(  � f(θ),

p θ1, x(  � p θ2, x(  � 0,

p(θ, −1) � p(θ, 1) � 0.

⎧⎪⎨

⎪⎩
(10)

To simplify the vibration calculations, stiffness and
damping coefficients can be used to approximate the bearing
force of the lubricant film, which can be calculated by
linearization of the unsteady load capacity in the vicinity of
the static position of equilibrium and developed to the first
derivative in a Taylor series as Equation (11), where the force
caused by dip angle of the journal is neglected:

Fy

Fz

  �
Fy0

Fz0
  +

kyy kyz

kzy kzz

⎡⎣ ⎤⎦
y

z
  +

cyy cyz

czy czz

⎡⎣ ⎤⎦
_y

_z
 ,

(11)

where

kyy kyz

kzy kzz

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 
L/2

−L/2

θ2

θ1

zp

zy
cos θ −

zp

zy
sin θ

zp

zz
cos θ −

zp

zz
sin θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rbdθ dx,

cyy cyz

czy czz

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 
L/2

−L/2

θ2

θ1

zp

z _y
cos θ −

zp

z _y
sin θ

zp

z _z
cos θ −

zp

z _z
sin θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rbdθ dx.

(12)

+e oil film thrust bearing on shafts can be modeled as
Figure 4, which consists of many bearing bushes. θ0, θ1, and
θ2 are the angle of bush, side oil seal lip, and thrust face,
respectively; b is the width of the outer oil seal lip; ri and ro

are the inner and outer radius of thrust face; φ is the angle of
thrust face; θ and r are the coordinates in radial and cir-
cumferential directions; h(θ) is the film thickness with radial
coordinate θ; C is the bearing clearance; and e is the relative
displacement between trust bearing and thrust runner collar.

+e Reynolds equation for each bush in oil film thrust
bearing and its oil film boundary can be shown as

1
r
2

z

zθ
h
3

12η
zp

zθ
  +

z

zr

h
3

12η
zp

zr
  �

1
2
Ω

zh

zθ
+

zh

zt
, (13)

p ri, θ(  � p ro, θ(  � 0,

p r, θ1(  � p r, θ2(  � 0,
 (14)

where η is the dynamic viscosity of the oil; p is the oil film
pressure; and θ1 and θ2 are the starting angle boundary and
end angle boundary.

Nondimensional parameters are defined as
p � p/[6ηΩ(ri/C)]2, r � r/ri, b � b/ri, h � h/C, e � e/C,
_e � _e/(CΩ), τ � Ωt, and κ � 1/r. Equations (14)-(15) can be
transferred to
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κ2
z

zθ
h
3zp

zθ
  +

z

zr
h
3zp

zr
  �

zh

zθ
+ 2

zh

zτ
,

p(1, θ) � p ro, θ(  � 0,

p r, θ1(  � p r, θ2(  � 0.

⎧⎪⎨

⎪⎩

(15)

Similarly, the linearization result of nonlinear bearing
force can be shown as Equation (18), where the force caused
by dip angle of the thrust runner collar is neglected:

Fx ≈ Fx0 + kxxΔx + cxxΔ _x, (16)

where

z

y

F

Ob

O

hmin

e

hmax

r

Rb

θ

h (θ)

φ

Ω

Figure 3: Dynamic model of the journal bearing.
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Figure 4: Dynamic model of the oil film thrust bearing.
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kxx � − 
ro

ri


θ2

θ1

zp

zx
rdθdr,

cxx � − 
ro

ri


θ2

θ1

zp

z _x
rdθdr.

(17)

2.4.DynamicModel of theGear-BearingSystem. For the shaft
of Gear i, if total length is li, average diameter is di, and
Young’s modulus is E, the supporting stiffness of the shaft to
Gear i is expressed as

ks �
3πd

4
i E

4l
3
i

. (18)

+e turnover stiffness of geared shaft to gear is expressed
as

ko �
πd

4
i E

2li
. (19)

Define kiyL and kizL as the left supporting bearing
stiffness of Gear i along axis-x, y, and define kiyR and kizR as

the right supporting bearing stiffness of Gear i along axis-x,
y. +e lateral supporting stiffness of Gear is expressed as

kiy �
kiyL + kiyR ks

kiyL + kiyR + ks

,

kiz �
kizL + kizR( ks

kizL + kizR + ks

.

(20)

+e tilting stiffness of Gear i is expressed as

kiθy �
li kizL + kizR( ko

li kizL + kizR(  + 2ko

,

kiθz �
li kiyL + kiyR ko

li kiyL + kiyR  + 2ko

.

(21)

Define cix, ciy, ciz, ciθy, and ciθz as the shaft damping
coefficient of Gear i along axis-x, y, z and around axis-y, z,
respectively. +e dynamic functions of gear system shown in
Figure 2 are shown in Equations (22)–(26).

+e dynamic functions of Gear 1 are shown as follows:

m1€x1 + c1x _x1 + k1xx1 − c12 _p12 + k12g12(t) sin β � 0,

m1y1 + c1y _y1 + k1yy1 + c12 _p12 + k12g12(t) cos β sin α − ϕ12(  � 0,

m1z1 + c1z _z1 + k1zz1 + c12 _p12 + k12g12(t) cos β cos α − ϕ12(  � 0,

Ip1
€θx1 + c1θx

_θx1 + r1 c12 _p12 + k12g12(t) cos β � T1,

Id1
€θy1 + c1θy

_θy1 + ω1Ip1
_θz1 + k1θyθy1

+ r1 c12 _p12 + k12g12(t) sin β sin α − ϕ12(  � 0,

Id1
€θz1 + c1θz

_θz1 − ω1Ip1
_θy1 + k1θzθz1

+ r1 c12 _p12 + k12g12(t) sin β cos α − ϕ12(  � 0.

(22)

+e dynamic functions of Gear 2 are shown as follows:
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m2€x2 + c2x _x2 + k2xx2 + c12 _p12 + k12g12(t) sin β − 
5

i�3
c2i

_p2i + k2ig2i(t) sin β � 0,

m2€y2 + c2y _y2 + k2yy2 − c12 _p12 + k12g12(t) cos β sin α − ϕ12( ,

+ 
5

i�3
c2i

_p2i + k2ig2i(t) cos β sin α − ϕ12(  � 0,

m2€z2 + c2z _z2 + k2zz2 − c12 _p12 + k12g12(t) cos β cos α − ϕ12( ,

+ 
5

i�3
c2i

_p2i + k2ig2i(t) cos β cos α − ϕ12(  � 0,

Ip2
€θ2 + c2θx

_θx2 − r2 c12 _p12 + k12g12(t) cos β + r2 

5

i�3
c2i

_p2i + k2ig2i(t) cos β � 0,

Id2
€θy2 + c2θy

_θy2 + ω2Ip2
_θz2 + k2θyθy2 + r2 c12 _p12 + k12g12(t) sin β sin α − ϕ12( ,

+ r2 

5

i�3
c2i

_p2i + k2ig2i(t) sin β sin α − ϕ12(  � 0,

Id2
€θz2 + c2θz

_θz2 − ω2Ip2
_θy2 + k2θzθz2 + r2 c12 _p12 + k12g12(t) sin β cos α − ϕ12( ,

+ r2 

5

i�3
c2i

_p2i + k2ig2i(t) sin β cos α − ϕ12(  � 0.

(23)

+e dynamic functions of Gear 3 are shown as follows:

m3€x3 + c3x _x3 + k3xx3 + c23 _p23 + k23g23(t) sin β � 0,

m3€y3 + c3y _y3 + k3yy3 − c23 _p23 + k23g23(t) cos β sin α − ϕ23(  � 0,

m3€z3 + c3z _z3 + k3zz3 − c23 _p23 + k23g23(t) cos β cos α − ϕ23(  � 0,

Ip3
€θx3 + c3θx

_θx3 − r3 c23 _p23 + k23g23(t) cos β � T3,

Id3
€θy3 + c3θy

_θy3 + ω3Ip3
_θz3 + k3θyθy3 + r3 c23 _p23 + k23g23(t) sin β sin α − ϕ23(  � 0,

Id3
€θz3 + c3θz

_θz3 − ω3Ip3
_θy3 + k3θzθz3 + r3 c23 _p23 + k23g23(t) sin β cos α − ϕ23(  � 0.

(24)

+e dynamic functions of Gear 4 are shown as follows:

m4€x4 + c4x _x4 + k4xx4 + c24 _p24 + k24g24(t) sin β � 0,

m4€y4 + c4y _y4 + k4yy4 − c24 _p24 + k24g24(t) cos β sin α − ϕ24(  � 0,

m4€z4 + c4z _z4 + k4zz4 − c24 _p24 + k24g24(t) cos β cos α − ϕ24(  � 0,

Ip4
€θx4 + c4θx

_θx4 − r4 c24 _p24 + k24g24(t) cos β � T4,

Id4
€θy4 + c4θy

_θy4 + ω4Ip4
_θz4 + k4θyθy4 + r4 c24 _p24 + k24g24(t) sin β sin α − ϕ24(  � 0,

Id4
€θz4 + c4θz

_θz4 − ω4Ip4
_θy4 + k4θzθz4 + r4 c24 _p24 + k24g24(t) sin β cos α − ϕ24(  � 0.

(25)

+e dynamic functions of Gear 5 are shown as follows:
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m5€x5 + c5x _x5 + k5xx5 + c25 _p25 + k25g25(t) sin β � 0,

m5€y5 + c5y _y5 + k5yy5 − c25 _p25 + k25g25(t) cos β sin α − ϕ25(  � 0,

m5€z5 + c5z _z5 + k5zz5 − c25 _p25 + k25g25(t) cos β cos α − ϕ25(  � 0,

Ip5
€θx5 + c5θx

_θx5 − r5 c25 _p25 + k25g25(t) cos β � T,5

Id5
€θy5 + c5θy

_θy5 + ω5Ip5
_θz5 + k5θyθy5 + r5 c25 _p25 + k25g25(t) sin β sin α − ϕ25(  � 0,

Id5
€θz5 + c5θz

_θz5 − ω5Ip5
_θy5 + k5θzθz5 + r5 c25 _p25 + k25g25(t) sin β cos α − ϕ25(  � 0,

(26)

where Ti is the load on the Gear i; mi, Ipi, and Idi are the
mass, polar moment of inertia, and diameter moment of
inertia of Gear i, respectively; pij is the length of meshing
line between Gear i and Gear j; ϕij is the position angle of
Gear j respect to Gear i; α is the pressure angle of gear; and
gij(t) is the clearance function expressed as

gij(t) �

pij − bij, pij > bij,

0, pij



≤ bij,

pij + bij, pij < − bij,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

where 2bij is the clearance length between Gear i and j.
+e space vector of the system totally has 30 DOFs and

can be expressed as

X � x1, y1, z1, θx1, θy1, θz1, · · · , x5, y5, z5, θx5, θy5, θz5 
T
. (28)

Equations (22)-(26) can be written as

M €X + Cs + Cm + H(  _X + KsX + KmG(p) � F, (29)

whereM, Cs, Ks, Cm, and Km are themass matrix, supporting
damping matrix, supporting stiffness matrix, meshing
damping matrix, and meshing stiffness matrix of gear sys-
tem, respectively; H is the gyro matrix of the gear system;
G(p) is a tooth gap function related to p; and F is load vector.

+rough defining that xθi � riθxi, yθi � riθyi, and
zθi � riθzi, the angle variable of space vector can be trans-
formed into the arc length turning around the basic circle.
Assume the characteristic frequency and length are ωc and
bc, and define that

τ � ωct, Xij �
Xij

bc

, eij �
eij

bc

, bij �
bij

bc

,

X � x1, y1, z1, xθ1, yθ1, zθ1, · · · , x5, y5, z5, xθ5, yθ5, zθ5 
T
,

dX

dτ
� _X,

d
2
X

dτ2
� €X,

S � diag 1, 1, 1, r1, r1, r1, · · · , 1, 1, 1, r5, r5, r5( .

(30)

(25) can be converted into proper dimensionless indexes
and expressed as

€X + Cs + Cm + H(  _X + KsX + KmG(p) � F, (31)

where Cs � SM− 1CsS− 1/ωc， Cm � SM− 1CmS− 1/ωc， Ks �

SM− 1KsS− 1/ωc， Km � SM− 1KmS− 1/ω2
c， Hs � SM− 1H

S− 1/ωc, and F � SM−1/bcω2
cF。

+e backlash function of each gear pair can be defined as

Gij pij  �

Xij −
1
4
SijBijbij, pij > bij,

0, pij



≤ bij,

Xij +
1
4
SijBijbij, pij < − bij.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

3. Self-Excited Vibration Analysis of Gear-
Bearing System

3.1. Vibration Behaviors of the Gear System by Self-Excited
Vibration. +emain parameters of gear pairs in Figure 2 are
shown in Table 1.+e backlash andmeshing error of the gear
pairs are 100 μm and 20 μm, respectively.

Rated loads on the three output shafts are T3 � 24Nm,
T4 � 20Nm, and T5 �18Nm. +e following three simulated
conditions are depicted.

Condition 1. Rated load with constant bearing damping and
stiffness at 4000 r/min.

Condition 2. Rated load and variable bearing damping and
stiffness calculated by Equations (13) and (17).

Condition 3. 1.5 times the rated load with variable bearing
damping and stiffness calculated by Equations (13) and (17).

+e Newmark-βmethod is used to analyze the dynamics
of the above three working conditions according to (31), in
which the Newmark constants are 0.25 and 0.5. In order to
describe the vibration and meshing behavior of the gear
system in the whole process of increasing speed, the vi-
bration bifurcation diagrams of Gear 4 along y-axis at
different input speeds ranging from 500r/min to 4000r/min
are obtained and presented in Figure 5 based on the dynamic
analysis of the vibration of gear system under the three
conditions.

+e nonlinear vibration characteristics of the gear sys-
tem under the impact of speed are shown in Figure 5(a).
Before the input speed reaches 1600r/min, the gear vibration
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is harmonic. +en the vibration signals begin to period
doubling bifurcate, and gradually evolve into chaos near
2280 r/min. With the increasing of the input speed, the
vibration signal of the gear begins to return to the multi
period motion, and eventually returning to harmonic mo-
tion at 3500r/min.

When bearing variable stiffness is taken into account,
nonlinear vibration of gears is reduced. Although there is no
further evolution after the vibration signal evolved to eight

periods’ motion, the non-linear speed region, which is also
from 1600r/min to 3500r/min, is not greatly reduced in
Figure 5(b). +e stiffness and the damping of the bearing are
positively correlated with the speed of the bearing, according
to Equations (13) and (17). +e dynamic stiffness of each oil
film bearing before 4000 r/min is relatively low in com-
parison to Condition 1, so the stiffness of the entire gear
system with Condition 2 is lower than Condition 1. +ese
show that the flexible support has inhibition to the nonlinear

Table 1: Parameters of gears.

Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
Modulus (mm) 2.5
Face width (mm) 45
Pressure angle (deg) 20
Tooth number 80 193 41 33 25
Radius of basic circle (mm) 191.6 462.3 98.2 79.1 59.9
Mass (kg) 13 50 3.8 2.5 1.7
Polar inertia moment (kgm2) 0.07 1.6 0.007 0.004 0.003
Inertia moment (kgm2) 0.04 0.8 0.005 0.003 0.002
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Figure 5: Bifurcation diagram of y4. (a) Condition 1. (b) Condition 2. (c) Condition 3.
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motion of the system, whereas the support with greater
stiffness could aggravate the nonlinear vibration of the
system.

+e calculated result of the gear system under 1.5 times
rated load differs significantly from that shown in Figure 5(c)
under rated load. With a heavy load, the non-linear speed
interval decreases noticeably. +e vibration of the system
begins to bifurcate after 1800r/min, and there is no further
evolution after two periods’ motion and back to harmonic
motion after 3000r/min. +e gear vibration signal alternates
between two periods’ motion and on period motion
throughout the entire input speed range. +e comparison
results show that the load on the gear system has a significant
impact on the gear system’s nonlinear vibration.

Figure 6 depicts the frequency-domain characteristics of
the vibration displacement of Gear 4 along y-direction under
the three conditions. +ere is no discernible difference
between Condition 1 and Condition 2 in terms of frequency-
domain features. Except for themeshing frequency fm and its
double frequency of 2fm, the subfrequency fm/2 begins to
appear from 1500r/min to 3500r/min. Fm/4 and fm/8 can also
be found from 2000 r/min to 3000 r/min, and the peaks of
the subfrequencies are even higher than the peak of meshing
frequency at some speeds. +e peak value of meshing fre-
quency gradually decreases as the speed increases. It also
shows that if nonlinear vibration in the nonlinear speed
region is ignored, the higher the speed is, the relatively less
the effect of self-excited vibration on the system vibration is.
+e frequency-domain features of Condition 3 are quite
different from those of the first two conditions. Except for
the meshing frequency fm and its double frequency of 2fm,
only the subfrequency fm/2 can be found between 1700r/min
to 3000r/min, and no other subfrequencies are presented.
+e peak value of subfrequency fm/2 with heavy load is much
lower than in Conditions 1 and 2, due to the load effect, but
there is no discernible difference in the peak value of fm
compared to Conditions 1 and 2.

+e influence of variable bearing coefficients on the
analysis results is compared using a correlation analysis
between Condition 1 and Condition 2. Figure 7 depicts the
results of the vibration signals in the time domain and
frequency domain at various speeds. When the input speed
is below 1000 r/min or above 3200 r/min, the correlation
coefficients between time-domain and frequency-domain
data are close to 1. +e correlation coefficient of frequency-
domain data decreases slightly in the nonlinear region, but it
remains above 0.95. However, time-domain data has lower
correlation coefficients than frequency-domain data, though
there is still some correlation (above 0.6). It shows that
variable stiffness and damper of bearing have aminor impact
on the simulation results at frequency-domain features
analysis, but have a significant impact at time-domain
features analysis. Variable bearing coefficients should be
considered in vibration analysis and non-linear character-
istic analysis.

+e vibration signals of y4 under Condition 1 at different
rotational speeds are shown in Figure 8 to compare and
analyze the change of gear vibration with input speed. +e
variation of the vibration period with rotational speed can be

clearly seen from the diagram. In order to compare the
vibration information under the three conditions more
clearly. Time-domain analysis methods are adopted in
Figure 9, where the peak to peak value and standard de-
viation of vibration data in these three conditions are
analyzed.

It can be seen that the peak to peak and standard de-
viation values of the vibration data in the non-linear speed
region are much larger than the other speeds. +e vibration
will act directly on the supporting bearing, producing dis-
turbed vibration force. +e peak to peak value and standard
deviation of the central displacement of Gear 4 are nearly
identical under Conditions 1 and 2, but the result calculated
using the variable dynamic parameter of bearing is slightly
lower and smoother than constant one. Due to the influence
of heavy load, the peak to peak value and standard deviation
values are clearly reduced, while the fluctuated force of the
bearing in the non-linear speed region is also relatively small.

3.2. Meshing Force of the Gear System by Self-Excited
Vibration. Figure 10 depicts the frequency-domain features
of meshing force between Gear 2 and Gear 4 at various
speeds.

+ere is also no discernible difference between the
frequency-domain features of meshing force under Con-
ditions 1 and 2. In comparison to the results in Figure 6, the
peaks of meshing frequency are unaffected by changing
speed, and they are significantly greater than the peaks of
subfrequency fm/2 even in the non-linear speed region. fm/4
and fm/8 can also be found from 1500 r/min to 3500 r/min,
but their peaks of these subfrequencies are far smaller than
fm/2. +e frequency-domain features of meshing force differ
significantly from those shown in Figure 6(c). Except for the
meshing frequency fm and its double frequencies, the sub-
frequencies are quite small. Condition 3 has significantly
higher peaks of meshing frequency than the other conditions
due to the heavy load.

Figure 11 compares and analyzes the mean, peak to peak,
and RMS of the meshing force in these three conditions. +e
mean value of the three groups of meshing forces varies little
as the rotational speed increases. +e values under Condi-
tion 3 are roughly 1.5 times those of Conditions 1 and 2,
which are proportional to the load. +e peak to peak values
and RMS values in the nonlinear speed region are obviously
higher than the other speeds at rated load. +e result cal-
culated using a variable dynamic parameter of bearing
changes slightly smoother than constant one. When the load
have increased to 1.5 times rated load, the peak to peak
values and RMS values in the nonlinear speed region do not
increase, and are far lower than the results under rated loads.
Meanwhile, the RMS values under high load are clearly
higher than that under low load.

+e main cause of non-linear vibration in compressor
gear systems is the impact between gears. With the in-
creasing of the speed, the meshing state between the tooth
surfaces would change from continuous meshing to colli-
sion, and different non-linear meshing states could be
evolved. In the nonlinear speed region, the vibration and
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Figure 6: Frequency-domain analysis of y4. (a) Condition 1. (b) Condition 2. (c) Condition 3.
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Figure 8: Time-domain signals of y4 under Condition 1. (a) 1000r/min. (b) 2000r/min. (c) 2500r/min. (d) 4000r/min.

Condition 1
Condition 2
Condition 3

0

0.05

0.1

0.15

0.2

0.25

0.3

pe
ak

 to
 p

ea
k 

(u
m

)

1500 2000 2500 3000 3500 40001000
n (r/min)

(a)

Condition 1
Condition 2
Condition 3

×10–3

0

1

2

3

4

5

6

7

8

sta
nd

ar
d 

de
vi

at
io

n 
(u

m
)

1500 2000 2500 3000 3500 40001000
n (r/min)

(b)

Figure 9: Time-domain analysis of meshing force between Gear 2 and Gear 4. (a) Peak to peak value. (b) Standard deviation.

Shock and Vibration 13



1000

2000

3000

4000

0
2000

4000
6000

n (r
/m

in)

f (Hz)

fm/2
fm/4

fm

2fm

0

500

1000

1500

F 
(N

)

(a)

n (r
/m

in)

f (Hz)

1000

2000

3000

4000

0
2000

4000
6000

2fm

fm
fm/2

fm/4
0

500

1000

1500

F 
(N

)

(b)

n (r
/m

in)

f (Hz)

1000

2000

3000

4000

0
2000

4000
6000

2fm

fm
fm/2

0

500

1000

1500

2000

F 
(N

)

(c)

Figure 10: Frequency-domain analysis of meshing force between Gear 2 and Gear 4. (a) Condition 1. (b) Condition 2. (c) Condition 3.

condition1
condition2
condition3

600

700

800

900

1000

1100

1200

1300

1400

m
ea

n 
va

lu
e o

f F
 (N

)

1500 2000 2500 3000 3500 40001000
n (r/min)

(a)

condition1
condition2
condition3

2000

3000

4000

5000

6000

7000

8000

pe
ak

 to
 p

ea
k 

of
 F

 (N
)

1500 2000 2500 3000 3500 40001000
n (r/min)

(b)

Figure 11: Continued.

14 Shock and Vibration



meshing force will change. In general, increasing the load
and decreasing the stiffness of the bearing appropriately can
improve the stability of meshing.

4. Conclusion

+e modeling approach of the geared-rotor system in in-
tegrally centrifugal compressors considering changing
multipoint meshing force and variable bearing stiffness and
damper is proposed in this research, and the non-linear
coupled vibrations of the gear system and meshing prop-
erties are explored at different speeds and loads.

+e nonlinear vibration might appear as the meshing
frequency increases due to the effect of nonlinear parameters
such as meshing clearance and transmission error. +e
flexible support inhibits the system’s nonlinear motion,
whereas the bearing with increased stiffness may aggravate
the system’s nonlinear vibration. Considering the influence
of the rotating shaft’s dynamic stiffening effect, increasing
the driven speed will not change the peak of meshing fre-
quency of meshing force, but decrease the peak of meshing
frequency of vibration in the gear system.

+e peak to peak and standard deviation values of the
vibration data are substantially bigger in the nonlinear speed
area than in the other speeds. +is means that the distur-
bance force acting on the supporting bearing would be raised
as well. +e disrupted force in the nonlinear speed area
would plainly diminish as the load increased. +e peak to
peak and RMS values of the meshing force are greater in the
nonlinear speed area than in the other speeds at rated load.
However, when the load is increased to a certain level, this
phenomenon disappears, and the changes in peak to peak
and RMS values in the nonlinear speed area are not sig-
nificant. +e large load of the gear-bearing system can

effectively reduce nonlinear vibration and increase meshing
stability.
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