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A nonlinear dynamics equation for a novel microresonant pressure sensor with a cross-type resonator is proposed. The nonlinear
resonant frequencies of the sensor are calculated. Effects of the system parameters and gas pressure on the nonlinear resonant
frequencies are investigated. Results show that the effects of nonlinearity on the resonant frequencies increase with increasing
length of the resonator, and they decrease with decreasing the clearance between the resonator and the baseplate or gas pressure.

1. Introduction

Microelectromechanical systems (MEMS), with the advan-
tages of high integration, high precision, low power con-
sumption, and easy mass production, are widely used in
intelligent manufacturing, robotics, and other fields [1-4].
MEMS include microsensors, microactuators, and processing
circuits [5]. Among them, microsensors have been most
widely studied [6].

Pressure microsensors are the most mature MEMS devices
at present [7]. In the 1960s, the first micro pressure sensor was
manufactured using micromachining technology [8]. In the
21st century, the micropressure sensor has developed rapidly.
In 2001, Lange used metal oxide semiconductor technology
and micromachining technology to produce a microsystem
containing sensors with all necessary drives and signal con-
ditioning circuits [9]. Werner and Fahrner used a diamond as
a pressing die in a pressure sensor, allowing it to work in a high
temperature environment around 300°C [10]. Han et al
proposed a high-precision resonant pressure sensor with two
similar resonators; a linear fitting method was used to ensure
its output linearity [11]. Li et al. developed a high-sensitivity
resonant pressure microsensor, which included a sensing unit
made of a silicon-on-insulator (SOI) wafer that was

encapsulated by silicon glass, thus improving the conversion
efficiency of pressure differences [12]. Shi et al. studied a
microresonant pressure sensor with a pair of double-ended
tuning forks as resonators [13]. Li et al. proposed a graphene-
based resonant pressure sensor, which had the advantages of
both a micromechanical sensor and a fiber resonator [14].
Matej et al. studied a ceramic resonant pressure sensor for
working at high temperature (up to a maximum temperature
of 201°C) [15]. Zhang et al. introduced a micromechanical
resonant pressure sensor with two resonators and solved the
overload problem [16]. Xiang et al. introduced a resonant
pressure microsensor in which the silicon islands are deployed
on an SOI wafer to improve the equivalent stiffness and
structural stability of the pressure-sensitive diaphragm [17].
Zhao et al. and Yan et al. developed temperature-insensitive
silicon resonant pressure sensors with very-low-frequency
temperature coeflicients [18, 19]. Zamanzadeh et al. proposed
a resonant pressure sensor that provided a wider range of
tunability and sensing range and a simplified signal-processing
circuit [20]. Han et al. developed a new type of resonant
pressure sensor based on electrostatic excitation and piezor-
esistive detection that had a measuring sensitivity of ap-
proximately 19Hz/kPa [21]. Mata-Hernandez et al
introduced a resonant pressure sensor based on CMOS
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technology and investigated its resonant frequency and quality
factor [22]. Alcheikh et al. proposed a kind of resonant
pressure sensor with high sensitivity whose sensitivity was
significantly improved by switching between its first and third
modes [23].

As the summary above suggests, numerous studies of
microresonant pressure sensors have been completed.
Among them, the capacitance-detection technique is easy to
implement and is widely used. However, the capacitance
between the resonator and the base is very small, so the
capacitance change signal in resonance is small, which in-
creases the difficulty of producing the subsequent amplifier
circuit. For it, this paper proposes a microresonant pressure
sensor with a cross-type resonator to increase the area in the
middle of the resonator. It can increase capacitance between
the resonator and the base to increase the capacitance
change signal in resonance [24].

The resonator is an important component of the micro-
resonant pressure sensor. Research on the resonant vibration
of the resonator is significant for the design and application of
the pressure sensor. Li et al. investigated nonlinear dynamics
of a resonant silicon bridge pressure sensor with electro-
thermal excitation [25]. Zhang et al. studied the resonant
frequency of the interfering mode for a resonant pressure
sensor and separated it well away from the operational mode
[26]. Fu and Xu proposed a multifield coupled dynamics
model of a microresonant pressure sensor and studied the
influence of various factors on the nonlinear vibration of the
sensor [27, 28]. However, for the microresonant pressure
sensor with a cross-type resonator, the nonlinear resonant
frequencies have not yet been investigated.

In this paper, a nonlinear dynamics equation for a
microresonant pressure sensor with a cross-type resonator is
proposed. The nonlinear resonant frequencies of the
microresonant sensor are calculated by using this equation
with the multiscale method. Effects of system parameters and
gas pressure on the nonlinear resonant frequencies are in-
vestigated. Our research results can be used to aid in design of
the dynamic performance of microresonant pressure sensors.

First, a nonlinear vibration equation of the microresonant
pressure sensor is proposed. Second, the vibration equation is
solved using the multiscale method, and the nonlinear res-
onance frequency equation of the sensor is given. Third,
changes of the nonlinear resonance frequency of the sensor
are analyzed and discussed. At last, a conclusion is given.

2. Nonlinear Dynamics Equation of a
Pressure Sensor

The coupled dynamics model of the microresonant pressure
sensor is shown in Figure 1. Here, x is the coordinate of the
central axis of the resonator; y is the position coordinate in the
direction perpendicular to the x-axis; y (x, t) is the dis-
placement of the resonator in the y-axis direction; L is half the
length of the resonator; h is the thickness of the resonator; b is
the width of the resonator; L. and b, are, respectively, the
length and width of the cross structure on the resonator; d, is
the initial clearance between the resonator and the baseplate; g
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(x, t) is the force per unit length applied to the resonator; Uy is
the voltage between the resonator and the baseplate.
The dynamics equation of the resonator is [29].

4 2
EIa y(f,t) o y(og,t) +pS 0 y(zc,t)
ox ox ot
(1)
ay(x,t)
+ CQT - Q(x; t)7

where E is the modulus of elasticity; I is the second moment;

F is the inner axial force of the resonator; p is the density of

the resonator material; S is the cross-sectional area of the

resonator; C, is the gas damping factor:

C, = nb’/(d, — y)’(n is the dynamic viscosity of the gas).
The gas damping force per unit length is [30].

oy
fr=Ciz 5 (2)

The displacement y (x, ) includes two parts: static
displacement y, and dynamic displacement Ay. The
damping force can be written as a Taylor series at y =y,
which is given as follows:

b oA 3nb’ oA
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(do - )’0) ot (do - )’0) ot

fp =
, , (3)
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The higher-order terms above the third order are
omitted; Eq. (3) can be rewritten as
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where cop = 11b /(dy — o) cop1 = 317b I(dy = yo)hs Copz =
6nb*/ (dy — vo)°s Cops = 1046/ (dy - ¥,)°.
If € = yo/d, is defined as the nonlinear parameter, we have
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FiGgure 1: Coupled dynamics model of the sensor.
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Let Aq denote the dynamic force per unit length of the

resonator along the x-axis; it includes the dynamic electric
force Aqg and the dynamic van der Waals force Aq;:

Aq = Aq, + Aq,. (6)

The Van der Waals force per unit length of the resonator
is [31].

H, b

I )

(7)

where Hyis the Hamaker constant: Hy, = 10~ *°].
The Van der Waals force can also be written as a Taylor
series at y = yy:
H

b H b
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on (do - )’0)3 2n (do - )’0)4
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Here, the static Van der Waals force is
H b
fo="""T"3" 9)
om (do - o)

The higher-order terms above the third order are
omitted, and the dynamic Van der Waals force can be
expressed as follows:

Aqr = kvslAy + kstAyZ + kvs3Ay3 (10)

where

2
=HvLy0{l+&+<&) +} (11)

5H, b
=€ —.
3 dgy,
The electric force per unit length of the resonator is [32].
1 g,ebU”
fo=3 (12)
2 (do-)

It can also be written as a Taylor series at y=y,:
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Here, the static electric force is

feOZ

UAy (13)
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The higher-order terms above the third order are

omitted, and the dynamic electric force can be written as
follows:

(14)
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where ¢, is the vacuum permittivity; ¢, is the relative
permittivity;
3
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Substituting Egs. (10) and (15) into Eq. (6) yields
Aq = eE\ Ay + 6,0y + eE5AY, (17)

whereé, = (&,6,bU%/d2y,) + (H,b/2nd}y,); &, = (3e,6,bU?/
2d3y,)+ (H,bindgy,); &5 = (2e,¢,bU/dgy,) + (5H, b/
3ndyy,).
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Upon substituting Eqgs. (4) and (17) into Eq. (1), the
coupled dynamics equation of the microresonant pressure
sensor is obtained as follows:

4 2 2
A A A
178 pIAy | GTAY

E
ox* ox* ot

0A (18)
+ e(cpo +CpAy + cpszz + cp3Ay3) a—ty

= & Ay + b, Ay + eE Ay’
3. Solution of Nonlinear Dynamics Equation
Letting Ay = ¢ (x)q(t) and substituting it into Eq.(18) yields

" !
q q (Cpo - —2 -3
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Setting the left and right sides of Eq. (19) to be equal to
—w? yields

F S €
oW — ﬁ¢(2) —(wzgl + EEII)(/) =0, (20)

q" +w'q+eAq +eAq q+eAq g 1)
+ sA4q'q3 - eA5q2 - sA6q3 =0,
- -
Ay =cplpS, Ay =cpdlpS, Az =cpd /pS,
-3 — —
Ay =cyp307/pS, A5 = §,¢/pS, and Ag = &3¢ /pS.

where

_ 1L
§=1 jo 16 (x)ldx,

re =% Jz |6 (x)2dx, (22)

-5 1 (F 3
¢ = I .[0 [ (x)|"dx.
Eq.(20) can be changed into the following form:
¢ (x) -’ (x) - B¢ (x) =0, (23)

where o® = F/EI and $* = w? (pS/EI) + (e, /EI).
The four characteristic roots of Eq.(23) are



Shock and Vibration

3 (24)

where A= \/—(042/2) + 4/ (a4/4) + /34 and A, =
\/ (02/2) + +/ (at/4) + B

With two local coordinate system set up, the origins are
located on the left and right ends of the resonator (see
Figure 2). In the left coordinate system, the mode function of
the left resonator is

¢, (x) = C;chd,x + Cyshd,x + Cycos Ay x + Cy sind x.
(25)

In the right coordinate system, the mode function of the
right resonator is

¢, (x) = C5chd,x + Cgshd,x + C; cosA; x + Cyg sin A, x,
(26)
where the undetermined constants C; (j=1, 2, 3, 4, 5, 6, 7,
and 8) and the parameters A;(j = 1, 2) can be determined by
boundary conditions and continuity conditions.

Since the displacement and rotation angle at the fixed
end of the resonator are zero, we have

¢(0) = ¢'(0) =0. (27)

At the center of the resonator, there is a concentrated
mass, so the shear force in the resonator is equal to the
inertia force of the concentrated mass, i.e.,

(C,+C5; =0,

CA, +C4h, =0,

N1 V2

FiGure 2: Coordinate systems for the resonator vibration analysis.

EI$" (L) = —% mw¢ (L). (28)

When the mode function of the left resonator is anti-
symmetric to the mode function of the right resonator, it can
be concluded that

i ¢1 (0) = ‘/’1 (L) =0,

p ¢1’ (0) =0, (29)

EIg] (1) =~ ma$, (1)

When the mode function of the left resonator is sym-
metric to the mode function of the right resonator, we have,
instead,

i ¢1 (O) = 0)

1 ¢1(0)=¢,(L) =0, (30)

| Elgy (1) = —% mo’, (L).

Substituting Eq.(25) into (29) yields

C,chA,L + CyshA, L+ C5cos AL + Cysind L =0,

(31)

1 1
C (EI/\;shAzL + Emwzch/lzL) + Cz(Emgch/\zL + EmwzshAZL),

1 1
+C3<EI)L? sin A, L + = maw’ cosA1L> + C4<—mw2 sin A, L — EIA} cosA1L> =0.
2 2
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This equation has a nonzero solution only if the de-
terminant of the coefficients is equal to zero, i.e.,

1 0 1 0
0 A, 0 A
chA,L shA,L cosA L sinA, L
2 2 1 1 —o. (32)
EINshA, L EIX}ch)\,L EIX} sin),L % me? sin, L
1, 1, 1,
+£ mw chA,L +Emw shA,L +z mw” cosA, L —EI/\? cosh, L
From this equation, the frequency equation for the Substituting Eq.(25) into (30) yields
antisymmetric mode functions can be written
(A4, = 4,43) (cos A, L - chA, L — 1) + sin A, L - shd, L(A} + A3) = 0.
(33)
(C, +C5; =0,
C,A, +C4A, =0,
CiA,shA, L + CyAychA, L — C3A, sin AL + Cy4A, cos A L = 0,
] (34)

1 1
C, (EI/\gshAzL +5 mwzchAZL) + CZ(EI/\;ch/\ZL + Emwzsh)\zL)

1 1
+C3<EI)L? sin A, L + = maw’ cosA1L> + C4<—mw2 sin\,L — EIA} cosA1L> =0.
2 2

This equation also has a nonzero solution only if the
determinant of the coeflicients is equal to zero, i.e.,

1 0 1 0
0 A, 0 A
Ayshd,L MychA, L -A;sin), L Ay cosA L
2 2 2 2 1 1 1 ! =0. (35)
EINJshA,L EIXch),L EI)]sin, L lmw2 sinA; L
2
1 2 1 2 1 2
M chh,L o mew shA,L Hymw cosh, L ~EIX} cos ), L
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It follows from this equation that the frequency equation
for symmetric mode functions can be written

EI(MjA, +A1A3)sin A, L - chA, L

+ EI(A}A3 + 4,03 )cos A, L - shi,L

+ lma)z(/\Z —/\z)sin/\ L-shA,L oo
> 174 1 2
+mw’ A, (cos\ L - chA,L—1) = 0.
Eq.(21) can be simplified to
q" + wzq +(£A1 +eA,q + .€A3q2 + eA4q3)q' (37)

- sAqu - eA6q3 =0.
Using the multiscale method, we can let

q=q0(To,T1,T,) +eq, (To, Ty, T,) + 52@2 (T, T, T),
(38)

W' = wy(1+e0, + &0, +-), (39)

where T, =¢'t(n=0,1,2,...), (d/dt) = Dy +eD, +€D,,
(d*/dt*) = D} + 2¢DyD, + € (D3 + 2D, D,).
Substituting Eq. (38) into (37) then yields

[D(Z) +2eDy,D, + sZ(D% + 2D0D2)](q0 +é&q, + ezqz)
+ wé(% +é&q + 52‘12)
+ [sA1 + sAz(qO +eq, + szqz) + £A3(q0 +eq, + ezqz)z
+ sA4(q0 +eq; + ezqz)a] (DO +eD; + sZDZ)(qO +eq, + szqz)
- sAS(qO +eq, + ezqz)z - sAG(qO +eq, + 82q2)3 =0.
(40)

Setting the sum of the coefficients of the parameter e with
the same power equal to zero yields

D(Z)‘JO + wé% =0, (41a)

Dg% + “’3% = -A;Dyqy — 2DyD,q, + As@é - AzDo‘I(z)
3 3 4
+ Agqy — A3sDoqy — AyDoqp»
(41b)

7
Dg‘]z + wé‘]z =-A;Dyq, - D?% —2DyD,q, - A2D1‘IS
3 4
- A3D,q, — AyD,q, — A Dyq,
—2DyD\q; +2A590q, — 2A;,D0q09,
+ 3A6ng1 - 3A3D0q§q1 - 4A4DOQ(3)Q1-
(41¢)
Solution of Eq.(41a) can be given as
Qo = A(T1, T,)e" + A(T}, T,)e ", (42)

where A is an unknown function of a complex variable and
Ais its complex conjugate.
Substituting Eq.(42) into Eq. (41b) yields

Dy, + woqy =(-A,Aiwy — 2D, Aiwy - 3A;, A" Aiw, + 3A,AA)e "0
+(AsA” - 2A,A%iw, — 8A,A¥Aiw, )"0
+(AgA” - 3A,A%iw, )0
— 44, Atiwge" T
+A;AA + CC,
(43)
where CC is the complex conjugate of the previous term.

In order to eliminate the secular term in the equation, we
let

—A,Aiw, — 2D, Aiwy — 3A;A*Aiw, + 3AAA=0.  (44)
From this equation, it follows that

1 3, 3AAA
DA=—AA-"AAA+
2 2 2iw,

(45)

Substituting Eq.(45) into Eq. (43) yields
<2A2A2iw0 +8A,A A iw, — A5A2> Yoy Ty
a9 = €

2
3w,

3. 3
+(W)esiono (46)

2
8w

4. by
4A4A ln4iw0T0 n ASAA

>—+ CC.
15w0 w,

Substituting Egs. (42) and (46) into Eq. (41c) then yields
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112 v 24 4iASALA. 3iA A, (3iw AP A, — APA .
Dyg, + wygs = EA7A§e7‘“°T° + <€A6A3A4 22 Al (BiA’As ) ST

5w, [N

8 8iASA A, 15iA%A,(3iwg AP A, — A’A) 3A%A((3iw A’ A, - APAL)  20iA° A, (2w, AP Ay — A2As + 8iwyA*A A 2\ .
+<§A5A2A4+ Ilsa;; 5 3( ;w 3 6)+ 6( (; . 3 6)7 4( o 23 5 (] 4 )+16A6AiA ST
o o Wy Wy
Letaa iAA, (3i0y A Ay - A°Ag) . AA(3iw, A° Ay - APAy) e CAAA 6IAZA, (i, A, - A A)A
2 w, 402 107 % 10w, @,
+ ShiwnTy
4A°Ay(2i0 A’ A, - APA; + Siwg A A A) N A’ Ag(2iwg AP Ay - A’ A + 8iw, A’ A A)
Wy w(z)

352iA°A,A A 3iA*A,AA N 9ATAZA  9IAA(3iw A’ Ay - AAg)A N 3AA(3iw, A’ Ay - AAQ)A

1 15 4, ,— 8 _
EA3A]A3 - §A4A§A + §A4A2A4A -

15w, Wy 8wp 4w, 407
+ 3Ty
R 2AA(2i0,A% A, — AP A; + Biwg A’ A,A) . 2AA4(2i0,A% A, — AP A; + Biwg A’ A,A) B 12iA° A, A(2iw A’ A, — A’ A; + 8iwy A’ A,A)
50 4 w, 3wp Wy

1, 55—y o MAAAA SIAA AR SAAAA iA(3i0,ATAy - A AN As(3iwATA; - A AG)A

SAPA A, - AP A AR+ 2APA AA - - + e - + .

2 2 ’ Wo 2w, wy 2w, 4w,
+ 2T

2,0 46iA A AR BIAA(3iwg AP Ay — A ANA 4iAAA(2iw AP Ay — AP Ag+ 8iw, A AA)  2AAGA(2iwy AP A, — AP Ag + 8iw, AP A,A)
— - - - +
5 3404

2
5w, g 2 wy

_ _ o , _
N 3iA,A AR . 6A,AATA 9 9iA,AATA , A (2i0,A°A, — AP A + 8iwg A, AA)
2

1 _ 3 > 3 - _
+AAAL ZAzAaAZA2 + ZA]A4AZA2 e o + ZA3A4A3A3 R 7 +CC.
(47)
In order to eliminate the secular term in this equation,
we can set the coefficient of the term e“7o to be zero:
240D,Aw’ + 30ATAiw” + 160A5A% Aiw® + 1804, A;A*Aiw” + 240A,A; A% Aw
+400A2A%Ai + 4054247 A%iw® + 12804,A,A%A i’ + 16004,A,AA"w (48)
~180A, A, AP A w + 225A2AYAi + 268842 ATA%iw? = 0.
From this equation, it can be concluded that
DA~ iAAT 2iA’ATA BiA’A\AJ A APAAA SIAPAZA 27iA° AZA
2 8w, 3w, 4w, wé 3w(3) 16w,
(49)

16iA>A,A,A° 20A3A4ASKZ+3A3A3AGZZ 15iA%A24°  56iA'AZA°

3w, 3w, 4w; 16w, 5wy
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Substituting Eq. (49) into Eq. (47) then yields

7 42 6 .6
. _TATAL iy, _(69A AsA, | 19iA A4A6>e6ion0

450, 175w}, 175w,

+( I5A°A] 2A4°A,A, BiIATAA;s iATALA N AAL 26A6AiZ)eSiw0T0

64w, 30; 100, 8wy 64wy 9w,

+( 11A*A,A,  A*AA, 19iA*A A, iA4A2A6+A4A5A6 547A°AAA 139iA5A4A62) siagT,
- - - - - e

150, 30w, 60w, 5w, 12w, 1500, 150w,

AAL APAA, 5iA3A2A5+A3A§ 39AATA 26A'A,A,A

2w0p 16w, 20, 120,  64w) 50;
+ 2 e3iw0T0 (50)
23iA'AAA BIATALAGA 3ATAJA 66A°ATA
C 300 16w, 64! 50
AA A, TATAAA 24°AAA . 37iA° A AsA 2iA°A,AGA
6w, 3w; 3w; 12w) 307
+ eZinTU

BAPAAA 163ATAAA° 49iATAAA

12w, 15w; 15w,

2 —2 — 2 —2 2 —2 3 —3 L a2 —2 .43 -3
JIAAAA AMAA BAAAA BAAAAL INMAAL A AAA ALIATAAGA

+ CC.
wg 4wg 4w§ 4wg 4w(2) 4wg 4wg
Here where DjA = 0.
dA Substituting Eqs.(45) and (49) into Eq. (51) yields
——=D,A +¢D,A + D, A, (51)
dt
dA 1 3, 3AA%A
g —AA-ZAATA+ T T
dt 2 2 2iw,

iAA? 2iA2APA 3iAPAAA APAAA SIAPAYA 27iAYARA]

8w, 3w, 4w, W2 30 16, (52)
+€2
16iA°A,A,A° 20A°A,AA° 3AAAAS 15iAAZAT 56iATAYA°
— + p— pa—
3w, 3w; 4w} 16w, 5w,
We then write
1 .
At) = E1<(t)e""“>, (53)

where K (t) and 6(t) are time-varying functions.
Substituting Eq. (53) into Eq. (52) yields
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) 1 3 s AAS K3 s A A, K52 Substituting Eqs. (42), (46), and (50) into Eq. (38) yields
K' =—A Ke--A;K'e - >~ 5
2 8 4w, 12w

(54)
N 3A,AK’

64w;

o - 5A§K282 B 15A2K4e2 B 3A6K2£ B Afs2 B AﬁKzs2
12w) 256w, 8wy 8w, 6w,
34,A,K* 27AK'e AAK'e 7ALK®E
16w, 256w, 3w, 40w,

(55)

A,

A5 K2
—K" cos2¢ -
6w, 3w,

A A
K?sin2¢ — —+K" sin2¢ — —% K> cos 3¢
30-)0 320)0
q(t)=Kcosp+¢

3A A A
3K sin 3p -+ K* sin4go+—52K2
2w, 30w, 2w,

AA 7A,A AA 163A5A
—I—ZZK2 cos2¢ — ;;K“ cos2¢p — 1—;K4 cos2¢ — —3241(6 cos
2w, 24w, 12w,

29
W,

37A;A AA 49A,A 23A5A
——335K4 sin2¢ + 2—361('4 sin2¢ + —436K6 sin2¢ — %K‘l cos2¢
w, 12w, w, 96w,

A; AA 394;
——ZZK3 cos3(p—1—23K3 cos3¢ — 32K5c
8w 4w, 1024w,

3o Ay s
0S —-—— Cos
y 40w; 4

334, 5A,A 23A4,A 34,4
- 42K7 o8 3¢ + —2 35K3 sin 3<p—7435K5 sin 3¢ + 2 36K5 sin 3¢
160w, w, 0 256w,

(56)
A2 34; 114,A AA
+—22K cos 39 — —— K’ cos 39 — ——23K" cos 4g — ——3K" cos 4¢
480! 10240, 12002 2400}

2
+€

547A5A A AA 139A,A
——3241(6 cos 4¢ +—335K4 sin4¢ + — 36K4 sin 4¢ +7436K6 sin 4¢
4800w, 480w, 40w, W,

AsA 15A; A A 13A;
+57‘fK4 cos4g — 3K —Z—;KS cos5¢ —742K7 Cos 5¢
96w, 1024w, 4w, 288w,

o

. Ashg 5 . Aé 5 69434, 6
sin5¢ + K™ sin 5¢ + K’ cos5¢p ———K" cos6
LAEPYE ¢ : 5600 ¢

o ) 5600wy

160w,

194,A 7A; 5A.A AA 3A4,A
48 36 % gin 0] 4 2K7 cos7¢ + 54 ot 4+ 1 22K2 42 231('4
5600w, 2880w 8w, 8w, 32w

0

3A/A 9AA
+ 124K4+ 3 ;K6
32w, 128w,
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where ¢ = 0+ tw,, and K and 0 can be determined by
Eqs.(54) and (55).
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Thus, the nonlinear resonant frequency of the sensor can
be found from Eq.(39) to be

2 2 2
ﬁ+ ﬁ+—3A1A3 +5_AAS K2
AR 4 '\37 8 6
w=w, |1- Z —¢ — (57)
2 2 2
2745 24,4, 3AG\ 4 TAi e
128 3 128 20
2
. - 3P (Ly nx
The pressure sensor structure is shown in Figure 3(a) The o y=0 ==\7 (2 + p)cos . tH|
pressure membrane used for detecting the pressure is a m f (64)
rectangular membrane fixed at four edges. Here, P denotes z =(dR)

the pressure applied to the membrane, and L; denotes its
length and its width. The sizes of the membrane are shown in
Figure 3(b).

If we let d denote the thickness of the pressure mem-
brane and w denote its elastic displacement, the boundary
conditions of the pressure membrane can be written as

w | x:irLf =w | y:th = 0’

ow (58)

x:iLf - ay

ow

I 0.

y:th =

The elastic displacement of the pressure membrane
satistying all boundary conditions is then

)

Substituting Eq. (59) into the Galerkin equation yields

j J(P - Dv4w)<1 + cos(%:))(l + cos<%>)dxdy =0. (60)

From Eq. (60), it follows that

(59)

4
_PL

27D
where D = Ed®/12(1 - y?).

The relationship between displacement and stress is
known as follows:

o (T 0)
o1t \ox’ ”ayz '

Substituting Eq. (59) into Eq. (62) yields

EzAHﬂ2 1 X ny //lz ny 29
o, = 5 |-z cos ——( 1+cos = | +—5cos = 1+cos— ||
U U Ly Ly Ly Ly

!
(63)

u (61)

(62)

At y=0 and z = d/2, the stress on the pressure mem-
brane is

Its average value can be written

_ _3P (L_f)zjéf [(2 + u)cos (nx/Lf) + y]dx

~ 2\d L
T f
(65)
L.\2
f
=3P = |
() #
Thus, the axial force F in the resonator is
L;\*
F =3P = hxL,. 66
(nd) pxh XLy (66)

When Eq. (66) is substituted into Eq. (18), the effects of
the gas pressure on the sensor can be determined.

4. Results and Discussion

By using a cross-type resonator, the area of capacitance elec-
trode between the resonator and the substrate is increased, and
the capacitance variation is increased under the same resonator
vibration amplitude, that is, the strength of the resonant signal
of the microresonant pressure sensor is increased.

Comparison between the traditional resonator and the
cross-type resonator is given in Table 1. Here, S is the pole area,
Ay is the average vibration amplitude, AC is the capacitance
change, and U, is the output signal voltage. Table 2 shows
parameters of the sensor system, and Figures 4 and 5 show
effects of nonlinear parameter on resonant frequencies and
resonant frequency difference.

The pole area of the cross-type resonator is 1.5 times of
the traditional resonator. So, the capacitance change and the
output signal voltage of the cross-type resonator are about 2
times of the traditional resonator. It is very beneficial to the
design and manufacture of the signal-processing circuit.

The chosen parameters of the resonator are shown in
Table 2. Here, the material is silicon (Si), and the nonlinear
parameter is €=0.25 when other parameters are changed.
£=yo/dy is the ratio of the static displacement of the reso-
nator to initial clearance. If € =y,/d, is above 0.3, the res-
onator will come into instability state. So, the nonlinear
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FIGURE 3: Structure and sizes of the pressure sensor (a) sensor structure (b) sizes of the pressure membrane.

TaBLE 1: Comparison between traditional and cross-type resonators.

S/m? Ay/m AC/F U,/ mV
Traditional resonator 9.6x1077 2.0870x 1077 1.4315x 107! 103.330
Cross-type resonator 14.4x1077 2.5584x 1077 2.9446 x 107" 220.064
times 1.50 1.23 2.06 2.13

TaBLE 2: Parameters of the sensor system.

L (m) b (m) h (m) m (kg) E (GPa) P (kg/m3)
4x1073 5x107* 1x107° 3.495%x107° 190 2330
£o (C*N'm™) £, Uo (V) d o (m) H, () F (N)
8.85x107*2 1 1.0 5x1077 10x107 1

TaBLE 3: Comparison of linear and nonlinear resonant frequencies
for the first four orders.

Odd mode function

w o (Hz) w 1 (Hz) 1 (%)
Mode (1, 1) 35388.10 33054.06 6.596
Mode (2, 2) 74560.91 72885.34 2.004
Mode (3, 3) 114017.01 113038.15 0.859
Mode (4, 4) 154808.42 154115.23 0.448

Even mode function

w o (Hz) w 1 (Hz) 1 (%)
Mode (1, 1) 44117.75 42588.68 3.534
Mode (2, 2) 80909.60 79886.53 1.265
Mode (3, 3) 120061.71 119279.67 0.651
Mode (4, 4) 161300.35 160673.29 0.389

parameter is taken to be 0.25. Using Egs. (36) and (57), the
linear and nonlinear frequencies of the first four orders of
resonant vibration of the resonant sensor are obtained, as
shown in Table 3.

Effects of the nonlinear parameter and molecular force
on the nonlinear frequencies and the difference between the
linear and nonlinear frequencies were investigated (see
Figures 4-6). Here w is the linear resonant frequency, w; is
the nonlinear resonant frequency, Aw, is the difference
between the linear and nonlinear resonant frequencies

considering molecular force, Aw, is the difference between
the linear and nonlinear resonant frequencies without
considering molecular force, and # is the relative difference
between the linear and nonlinear resonant frequencies. The
following can be deduced from Table 3 and Figures 4-6:

(1) The nonlinear resonant frequency is lower than the
linear resonant frequency. This shows that nonlin-
earity has the property of a soft spring. The frequency
difference between the linear and nonlinear resonant
frequencies decreases gradually from low-order to
high-order modes. The frequency difference for the
first-order mode is about 13 times that of the fourth-
order mode.

(2) The resonant frequency difference of the odd-
number order modes is about twice that of the even-
number order modes. As the order number in-
creases, the resonant frequency difference for the
odd-number modes gradually approaches one for
the even-number modes. From Eq.(21), it is known
that the nonlinear effects are related to the coefh-
cients A;, A,, Az, Ay, As, and Ag, which depend on
the vibration modes of the resonator. For the odd-
number order modes, these coefficients are larger
than those of the even order modes. So, the non-
linearity has more obvious effects on the odd-
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number order modes than those on the even-number
order modes.

(3) With an increase of the nonlinear parameter ¢, the
nonlinear resonant frequencies decrease. When the
nonlinear parameter € increases from 0.1 to 0.25, the
resonant frequency of the odd-number order mode
decreases by 5.3%, and the resonant frequency of the
even-number order mode decreases by 2.9%. The
nonlinear parameter has a more obvious effect on the
resonant frequencies for the odd-number order
modes than that for the even-number order modes.
With an increase of the nonlinear parameter ¢, the
frequency difference between the linear and non-
linear resonant frequencies increases gradually as
well. For odd-number order modes, the frequency
difference increases more significantly than for the
even-number order modes.

(4) The difference between the linear and nonlinear
resonant frequencies is larger when molecular force is
considered than when it is not considered. The fre-
quency difference for the odd-number order modes is
larger than for the even-number order modes. As the
length of the resonator increases, the frequency dif-
ference between the linear and nonlinear resonant
frequencies increases gradually. This means that the
effect of the molecular force on the resonant fre-
quencies increases along with the resonator length.

By changing the length and thickness of the resonator
and the clearance between the resonator and the base plane,
the variation of resonant frequencies with and without
considering nonlinearity can be further studied. The results
are shown in Figures 7-10.

(1) With an increase in the length of the resonator, its
resonant frequency decreases, and the decrease of
high-order resonant frequencies is more evident than
those of low order. When the length of the resonator
increases from 2.5x 107> to 4x 10~ m, the resonant
frequency of the first odd-number order decreases by
16.6%, while the resonant frequency of the fourth
odd-number order decreases by 39.3%. At the same
time, the resonant frequency of the first even-number
order decreases by 19.8%, while the resonant fre-
quency of the fourth even-number order decreases by
42.2%.

With an increase in the length of the resonator, the
frequency difference between the linear and non-
linear resonant frequencies increases. This means
that effects of the nonlinearity on the resonant fre-
quencies increase as the resonator length increases.
For the odd-number modes, the effects of the
nonlinearity are more significant than those for the
even-number modes.

(2) With an increase in the clearance between the res-
onator and the base plane, the resonant frequency
increases, and the increases of the low-order reso-
nant frequencies are more obvious than those of the

Shock and Vibration

high-order modes. When the clearance increases
from 3 x 107" m to 4.5 x 10~” m, the first odd-number
order resonant frequency increases by 6.53% and the
fourth odd-number order resonant frequency in-
creases by 0.35%. At the same time, the first even-
number order resonant frequency increases by 3.50%
and the fourth even-number order resonant fre-
quency increases by 0.29%. With an increase of the
clearance between the resonator and the base plane,
the frequency difference between the linear and
nonlinear resonant frequencies decreases. This
means that effects of the nonlinearity on the resonant
frequencies decreases as the clearance between the
resonator and the base plane decreases.

(3) With an increase in the thickness of the resonator, its
resonant frequency decreases, and the decrease of the
high-order resonant frequency is more significant
than that of the low-order modes. As the thickness of
the resonator increases from 2x107°m to
10 x 10~° m, the resonant frequency of the first-order
mode decreases by 48.5%, while the resonant fre-
quency of the fourth-order mode decreases by only
about 1/4 as much. With an increase of the thickness
of the resonator, the frequency difference between
the linear and nonlinear resonant frequencies de-
creases. This means that effects of the nonlinearity on
the resonant frequencies decrease as the resonator
thickness decreases.

In brief: the effects of the nonlinearity on the resonant
frequencies increase for larger length, smaller clearance, and
smaller thickness.

Effects of the pressure on the resonant frequencies for
the sensor have been investigated and are shown in
Figures 11 and 12. Here are conclusions that can be
drawn:

With an increase of gas pressure, the resonant fre-
quencies increase, and the increase of the high-order res-
onant frequencies is greater than that of the low-order
modes. When the gas pressure increases from 0 to 3 x 10° Pa,
the resonant frequency of the first odd-number order in-
creases by 77.8% and the resonant frequency of the fourth
odd-number order decreases by 116.7%. At the same time,
the resonant frequency of the first even-number order in-
creases by 78.95%, and the resonant frequency of the fourth
even-number order decreases by 142.11%. As the gas
pressure increases, the frequency difference between the
linear and nonlinear resonant frequencies decreases. For the
low-order modes, effects of the gas pressure on the resonant
frequency and the resonant-frequency differences are more
significant than for the high-order modes. This means that
effects of the nonlinearity on the resonant frequencies de-
crease as the pressure decreases. For the even-number
modes, the effects of the pressure are more significant than
for the odd-number modes.

In brief: with increasing gas pressure, the resonant fre-
quency of the resonator increases, effects of the nonlinearity
on the resonant frequency weaken, and effects of the gas
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TaBLE 4: Comparison of the multiscale method and the numerical
method.

Odd mode function

w  (Hz) w 5 (Hz) 1 2 (%)
Mode (1, 1) 33054.06 33988.17 2.826
Mode (2, 2) 72885.34 74654.99 2.428
Mode (3, 3) 113038.15 115868.63 2.504
Mode (4, 4) 154115.23 157837.11 2.415

Even mode function

w (Hz) w 5 (Hz) 1 2 (%)
Mode (1, 1) 42588.68 43686.38 2.577
Mode (2, 2) 79886.53 82704.93 3.528
Mode (3, 3) 119279.67 122441.77 2.651
Mode (4, 4) 160673.29 164764.03 2.546

pressure on the resonant frequency are more significant for
the even-number modes than for the odd-number modes.

Using software MATLAB, Dsolve function is used to
resolve the differential equation (37), and the nonlinear
resonant frequencies are obtained. The results are shown in
Table 4. Here, w, is the nonlinear resonant frequencies
obtained by Dsolve function, and #, is the relative error
between the numerical simulations and the multiscale
method. Results show that the maximum relative error
between the nonlinear resonant frequencies given by the
numerical simulations and the multiscale method is 3.528%.
It illustrates the multiscale method in the research.

5. Conclusions

In this paper, a nonlinear dynamics equation for a novel
microresonant pressure sensor is proposed. Effects of the
system parameters and gas pressure on the nonlinear res-
onant frequencies are investigated. Results show the fol-
lowing conclusions:

(1) The nonlinear resonant frequency is less than the
linear resonant frequency. The frequency difference
between the linear and nonlinear resonant fre-
quencies decreases gradually from low-order to
high-order modes.

(2) The frequency difference between the linear and
nonlinear resonant frequencies is larger when mo-
lecular force is considered than when it is not
considered.

(3) The effects of the nonlinearity on the resonant fre-
quencies increase with increasing resonator length or
decreasing the clearance between the resonator and
the baseplate. With increasing gas pressure, the
resonant frequency of the resonator increases.
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