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A nonlinear dynamics equation for a novel microresonant pressure sensor with a cross-type resonator is proposed. �e nonlinear
resonant frequencies of the sensor are calculated. E�ects of the system parameters and gas pressure on the nonlinear resonant
frequencies are investigated. Results show that the e�ects of nonlinearity on the resonant frequencies increase with increasing
length of the resonator, and they decrease with decreasing the clearance between the resonator and the baseplate or gas pressure.

1. Introduction

Microelectromechanical systems (MEMS), with the advan-
tages of high integration, high precision, low power con-
sumption, and easy mass production, are widely used in
intelligent manufacturing, robotics, and other �elds [1–4].
MEMS include microsensors, microactuators, and processing
circuits [5]. Among them, microsensors have been most
widely studied [6].

Pressure microsensors are the most matureMEMS devices
at present [7]. In the 1960s, the �rst micro pressure sensor was
manufactured using micromachining technology [8]. In the
21st century, the micropressure sensor has developed rapidly.
In 2001, Lange used metal oxide semiconductor technology
and micromachining technology to produce a microsystem
containing sensors with all necessary drives and signal con-
ditioning circuits [9]. Werner and Fahrner used a diamond as
a pressing die in a pressure sensor, allowing it to work in a high
temperature environment around 300°C [10]. Han et al.
proposed a high-precision resonant pressure sensor with two
similar resonators; a linear �tting method was used to ensure
its output linearity [11]. Li et al. developed a high-sensitivity
resonant pressure microsensor, which included a sensing unit
made of a silicon-on-insulator (SOI) wafer that was

encapsulated by silicon glass, thus improving the conversion
e¡ciency of pressure di�erences [12]. Shi et al. studied a
microresonant pressure sensor with a pair of double-ended
tuning forks as resonators [13]. Li et al. proposed a graphene-
based resonant pressure sensor, which had the advantages of
both a micromechanical sensor and a �ber resonator [14].
Matej et al. studied a ceramic resonant pressure sensor for
working at high temperature (up to a maximum temperature
of 201°C) [15]. Zhang et al. introduced a micromechanical
resonant pressure sensor with two resonators and solved the
overload problem [16]. Xiang et al. introduced a resonant
pressure microsensor in which the silicon islands are deployed
on an SOI wafer to improve the equivalent sti�ness and
structural stability of the pressure-sensitive diaphragm [17].
Zhao et al. and Yan et al. developed temperature-insensitive
silicon resonant pressure sensors with very-low-frequency
temperature coe¡cients [18, 19]. Zamanzadeh et al. proposed
a resonant pressure sensor that provided a wider range of
tunability and sensing range and a simpli�ed signal-processing
circuit [20]. Han et al. developed a new type of resonant
pressure sensor based on electrostatic excitation and piezor-
esistive detection that had a measuring sensitivity of ap-
proximately 19Hz/kPa [21]. Mata-Hernandez et al.
introduced a resonant pressure sensor based on CMOS
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technology and investigated its resonant frequency and quality
factor [22]. Alcheikh et al. proposed a kind of resonant
pressure sensor with high sensitivity whose sensitivity was
significantly improved by switching between its first and third
modes [23].

As the summary above suggests, numerous studies of
microresonant pressure sensors have been completed.
Among them, the capacitance-detection technique is easy to
implement and is widely used. However, the capacitance
between the resonator and the base is very small, so the
capacitance change signal in resonance is small, which in-
creases the difficulty of producing the subsequent amplifier
circuit. For it, this paper proposes a microresonant pressure
sensor with a cross-type resonator to increase the area in the
middle of the resonator. It can increase capacitance between
the resonator and the base to increase the capacitance
change signal in resonance [24].

,e resonator is an important component of the micro-
resonant pressure sensor. Research on the resonant vibration
of the resonator is significant for the design and application of
the pressure sensor. Li et al. investigated nonlinear dynamics
of a resonant silicon bridge pressure sensor with electro-
thermal excitation [25]. Zhang et al. studied the resonant
frequency of the interfering mode for a resonant pressure
sensor and separated it well away from the operational mode
[26]. Fu and Xu proposed a multifield coupled dynamics
model of a microresonant pressure sensor and studied the
influence of various factors on the nonlinear vibration of the
sensor [27, 28]. However, for the microresonant pressure
sensor with a cross-type resonator, the nonlinear resonant
frequencies have not yet been investigated.

In this paper, a nonlinear dynamics equation for a
microresonant pressure sensor with a cross-type resonator is
proposed. ,e nonlinear resonant frequencies of the
microresonant sensor are calculated by using this equation
with the multiscale method. Effects of system parameters and
gas pressure on the nonlinear resonant frequencies are in-
vestigated. Our research results can be used to aid in design of
the dynamic performance of microresonant pressure sensors.

First, a nonlinear vibration equation of the microresonant
pressure sensor is proposed. Second, the vibration equation is
solved using the multiscale method, and the nonlinear res-
onance frequency equation of the sensor is given. ,ird,
changes of the nonlinear resonance frequency of the sensor
are analyzed and discussed. At last, a conclusion is given.

2. Nonlinear Dynamics Equation of a
Pressure Sensor

,e coupled dynamics model of the microresonant pressure
sensor is shown in Figure 1. Here, x is the coordinate of the
central axis of the resonator; y is the position coordinate in the
direction perpendicular to the x-axis; y (x, t) is the dis-
placement of the resonator in the y-axis direction; L is half the
length of the resonator; h is the thickness of the resonator; b is
the width of the resonator; Le and be are, respectively, the
length and width of the cross structure on the resonator; d0 is
the initial clearance between the resonator and the baseplate; q

(x, t) is the force per unit length applied to the resonator;U0 is
the voltage between the resonator and the baseplate.

,e dynamics equation of the resonator is [29].

EI
z
4
y(x, t)

zx
4 − F

z
2
y(x, t)

zx
2 + ρS

z
2
y(x, t)

zt
2

+ Ca

zy(x, t)

zt
� q(x, t),

(1)

where E is the modulus of elasticity; I is the second moment;
F is the inner axial force of the resonator; ρ is the density of
the resonator material; S is the cross-sectional area of the
resonator; Ca is the gas damping factor:
Ca � ηb3/(d0 − y)3(η is the dynamic viscosity of the gas).

,e gas damping force per unit length is [30].

fp � Ca
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zt
. (2)

,e displacement y (x, t) includes two parts: static
displacement y0 and dynamic displacement ∆y. ,e
damping force can be written as a Taylor series at y� y0,
which is given as follows:
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,e higher-order terms above the third order are
omitted; Eq. (3) can be rewritten as
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where cOp0 � ηb3/(d0 − y0)
3; cOp1 � 3ηb3/(d0 − y0)

4; cOp2 �

6ηb3/(d0 − y0)
5; cOp3 � 10ηb3/(d0 − y0)

6.
If ε� y0/d0 is defined as the nonlinear parameter, we have
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Let ∆q denote the dynamic force per unit length of the
resonator along the x-axis; it includes the dynamic electric
force ∆q0 and the dynamic van der Waals force ∆qr:

∆q � ∆q0 + ∆qr. (6)

,e Van der Waals force per unit length of the resonator
is [31].
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where HVis the Hamaker constant: HV � 10− 19J.
,e Van der Waals force can also be written as a Taylor

series at y� y0:
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Here, the static Van der Waals force is
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,e higher-order terms above the third order are
omitted, and the dynamic Van der Waals force can be
expressed as follows:
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,e electric force per unit length of the resonator is [32].
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It can also be written as a Taylor series at y� y0:
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Figure 1: Coupled dynamics model of the sensor.

Shock and Vibration 3



fe �
εoεrb

2 d0 − y0( 􏼁
2 U

2
+

εoεrb

d0 − y0( 􏼁
3U

2∆y

+
3εoεrb

2 d0 − y0( 􏼁
4 U

2∆y
2

+
2εoεrb

d0 − y0( 􏼁
5U

2∆y
3

+ · · · .

(13)

Here, the static electric force is
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,e higher-order terms above the third order are
omitted, and the dynamic electric force can be written as
follows:
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where εo is the vacuum permittivity; εr is the relative
permittivity;
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Substituting Eqs. (10) and (15) into Eq. (6) yields

∆q � εξ1∆y + εξ2∆y
2
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whereξ1 � (εoεrbU2/d2
0y0) + (Hvb/2πd3
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Upon substituting Eqs. (4) and (17) into Eq. (1), the
coupled dynamics equation of the microresonant pressure
sensor is obtained as follows:

EI
z
4∆y

zx
4 − F

z
2∆y

zx
2 + ρS

z
2∆y

zt
2

+ ε cp0 + cp1∆y + cp2∆y
2

+ cp3∆y
3

􏼐 􏼑
z∆y

zt

� εξ1∆y + εξ2∆y
2

+ εξ3∆y
3
.

(18)

3. Solution of Nonlinear Dynamics Equation

Letting ∆y � ϕ(x)q(t) and substituting it into Eq.(18) yields

q″
q

+ ε
q′
ρS

cp0

q
+ cp1ϕ + cp2ϕ

2
q + cp3ϕ

3
q
2

􏼠 􏼡

−
εξ2ϕq

ρS
−
εξ3ϕ

2
q
2

ρS

�
F

ρS

ϕ(2)

ϕ
−

EI

ρS

ϕ(4)

ϕ
+
εξ1
ρS

.

(19)

Setting the left and right sides of Eq. (19) to be equal to
− ω2 yields
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Eq.(20) can be changed into the following form:

ϕ(4)
(x) − α2ϕ(2)

(x) − β4ϕ(x) � 0, (23)

where α2 � F/EI and β4 � ω2(ρS/EI) + (εξ1/EI).
,e four characteristic roots of Eq.(23) are
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With two local coordinate system set up, the origins are

located on the left and right ends of the resonator (see
Figure 2). In the left coordinate system, the mode function of
the left resonator is

ϕ1(x) � C1chλ2x + C2shλ2x + C3 cos λ1x + C4 sin λ1x.

(25)

In the right coordinate system, the mode function of the
right resonator is

ϕ2(x) � C5chλ2x + C6shλ2x + C7 cos λ1x + C8 sin λ1x,

(26)

where the undetermined constants Cj (j� 1, 2, 3, 4, 5, 6, 7,
and 8) and the parameters λj(j� 1, 2) can be determined by
boundary conditions and continuity conditions.

Since the displacement and rotation angle at the fixed
end of the resonator are zero, we have

ϕ(0) � ϕ′(0) � 0. (27)

At the center of the resonator, there is a concentrated
mass, so the shear force in the resonator is equal to the
inertia force of the concentrated mass, i.e.,
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Substituting Eq.(25) into (29) yields
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Figure 2: Coordinate systems for the resonator vibration analysis.
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,is equation has a nonzero solution only if the de-
terminant of the coefficients is equal to zero, i.e.,
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1
2

mω2
chλ2L􏼒 􏼓 + C2 EIλ32chλ2L +

1
2

mω2
shλ2L􏼒 􏼓

+C3 EIλ31 sin λ1L +
1
2

mω2 cos λ1L􏼒 􏼓 + C4
1
2

mω2 sin λ1L − EIλ31 cos λ1L􏼒 􏼓 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

,is equation also has a nonzero solution only if the
determinant of the coefficients is equal to zero, i.e.,

1 0 1 0

0 λ2 0 λ1

λ2shλ2L λ2chλ2L − λ1 sin λ1L λ1 cos λ1L

EIλ32shλ2L

+
1
2

mω2
chλ2L

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

EIλ32chλ2L

+
1
2

mω2
shλ2L

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

EIλ31 sin λ1L

+
1
2

mω2 cos λ1L

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

mω2 sin λ1L

− EIλ31 cos λ1L

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (35)
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It follows from this equation that the frequency equation
for symmetric mode functions can be written

EI λ41λ2 + λ21λ
3
2􏼐 􏼑sin λ1L · chλ2L

+ EI λ31λ
2
2 + λ1λ

4
2􏼐 􏼑cos λ1L · shλ2L

+
1
2

mω2 λ21 − λ22􏼐 􏼑sin λ1L · shλ2L

+ mω2λ1λ2 cos λ1L · chλ2L − 1( 􏼁 � 0.

(36)

Eq.(21) can be simplified to

q″ + ω2
q + εA1 + εA2q + εA3q

2
+ εA4q

3
􏼐 􏼑q′

− εA5q
2

− εA6q
3

� 0.
(37)

Using the multiscale method, we can let

q � q0 T0, T1, T2( 􏼁 + εq1 T0, T1, T2( 􏼁 + ε2q2 T0, T1, T2( 􏼁,

(38)

ω2
� ω2

0 1 + εσ1 + ε2σ2 + · · ·􏼐 􏼑, (39)

where Tn � εnt(n � 0, 1, 2, . . .), (d/dt) � D0 + εD1 + ε2D2,
(d2/dt2) � D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2).

Substituting Eq. (38) into (37) then yields

D
2
0 + 2εD0D1 + ε2 D

2
1 + 2D0D2􏼐 􏼑􏽨 􏽩 q0 + εq1 + ε2q2􏼐 􏼑

+ ω2
0 q0 + εq1 + ε2q2􏼐 􏼑

+ εA1 + εA2 q0 + εq1 + ε2q2􏼐 􏼑 + εA3 q0 + εq1 + ε2q2􏼐 􏼑
2

􏼔

+ εA4 q0 + εq1 + ε2q2􏼐 􏼑
3
􏼕 D0 + εD1 + ε2D2􏼐 􏼑 q0 + εq1 + ε2q2􏼐 􏼑

− εA5 q0 + εq1 + ε2q2􏼐 􏼑
2

− εA6 q0 + εq1 + ε2q2􏼐 􏼑
3

� 0.

(40)

Setting the sum of the coefficients of the parameter εwith
the same power equal to zero yields

D
2
0q0 + ω2

0q0 � 0, (41a)

D
2
0q1 + ω2

0q1 � − A1D0q0 − 2D0D1q0 + A5q
2
0 − A2D0q

2
0

+ A6q
3
0 − A3D0q

3
0 − A4D0q

4
0,

(41b)

D
2
0q2 + ω2

0q2 � − A1D1q0 − D
2
1q0 − 2D0D2q0 − A2D1q

2
0

− A3D1q
3
0 − A4D1q

4
0 − A1D0q1

− 2D0D1q1 + 2A5q0q1 − 2A2D0q0q1

+ 3A6q
2
0q1 − 3A3D0q

2
0q1 − 4A4D0q

3
0q1.

(41c)

Solution of Eq.(41a) can be given as

q0 � A T1, T2( 􏼁e
iω0T0 + A T1, T2( 􏼁e

− iω0T0 , (42)

where A is an unknown function of a complex variable and
Ais its complex conjugate.

Substituting Eq.(42) into Eq. (41b) yields

D
2
0q1 + ω2

0q1 � − A1Aiω0 − 2D1Aiω0 − 3A3A
2
Aiω0 + 3A6A

2
A􏼐 􏼑e

iω0T0

+ A5A
2

− 2A2A
2
iω0 − 8A4A

3
Aiω0􏼐 􏼑e

2iω0T0

+ A6A
3

− 3A3A
3
iω0􏼐 􏼑e

3iω0T0

− 4A4A
4
iω0e

4iω0T0

+ A5AA + CC,

(43)

where CC is the complex conjugate of the previous term.
In order to eliminate the secular term in the equation, we

let

− A1Aiω0 − 2D1Aiω0 − 3A3A
2
Aiω0 + 3A6A

2
A � 0. (44)

From this equation, it follows that

D1A � −
1
2
A1A −

3
2
A3A

2
A +

3A6A
2
A

2iω0
. (45)

Substituting Eq.(45) into Eq. (43) yields

q1 �
2A2A

2
iω0 + 8A4A

3
A iω0 − A5A

2

3ω2
0

􏼠 􏼡e
2iω0T0

+
3A3A

3
iω0 − A6A

3

8ω2
0

􏼠 􏼡e
3iω0T0

4A4A
4
i

15ω0
e
4iω0T0 +

A5AA

ω2
0

+ CC.

(46)

Substituting Eqs. (42) and (46) into Eq. (41c) then yields
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D
2
0q2 + ω2

0q2 �
112
15

A
7
A
2
4e

7iω0T0 +
24
5

A
6
A3A4 +

4iA
6
A4A6

5ω0
−
3iA

3
A4 3iω0A

3
A3 − A

3
A6􏼐 􏼑

ω0

⎛⎝ ⎞⎠e
6iω0T0

+
8
3
A
5
A2A4 +

8iA
5
A4A5

15ω0
−
15iA

2
A3 3iω0A

3
A3 − A

3
A6􏼐 􏼑

8ω0
+
3A

2
A6 3iω0A

3
A3 − A

3
A6􏼐 􏼑

8ω2
0

−
20iA

3
A4 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

3ω0
+ 16A

6
A
2
4A

⎛⎝ ⎞⎠e
5iω0T0

+

1
2
A
4
A1A4 −

iAA2 3iω0A
3
A3 − A

3
A6􏼐 􏼑

ω0
+

AA5 3iω0A
3
A3 − A

3
A6􏼐 􏼑

4ω2
0

+
47
10

A
5
A3A4A −

iA
5
A4A6A

10ω0
−
6iA

2
A4 3iω0A

3
A3 − A

3
A6􏼐 􏼑A

ω0

−
4iA

2
A3 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

ω0
+

A
2
A6 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

ω2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
4iω0T0

+

1
2
A
3
A1A3 −

15
8

A
4
A
2
3A +

8
5
A
4
A2A4A −

352iA
4
A4A5A

15ω0
−
3iA

4
A3A6A

ω0
+
9A

4
A
2
6A

8ω2
0

−
9iAA3 3iω0A

3
A3 − A

3
A6􏼐 􏼑A

4ω0
+
3AA6 3iω0A

3
A3 − A

3
A6􏼐 􏼑A

4ω2
0

+
48
5

A
5
A
2
4A

2
−
2iAA2 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

ω0
+
2AA5 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

3ω2
0

−
12iA

2
A4A 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

ω0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
3iω0T0

+

1
2
A
2
A1A2 −

5
2
A

3
A2A3A + 2A

3
A1A4A −

14iA
3
A3A5A

ω0
−
5iA

3
A2A6A

2ω0
+
8A

3
A5A6A

ω2
0

−
iA2 3iω0A

3
A3 − A

3
A6􏼐 􏼑A

2ω0
+

A5 3iω0A
3
A3 − A

3
A6􏼐 􏼑A

4ω2
0

−
42
5

A
4
A3A4A

2
−
46iA

4
A4A6A

2

5ω0
−
3iAA4 3iω0A

3
A3 − A

3
A6􏼐 􏼑A

2

ω0
−
4iAA3A 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

ω0
+
2AA6A 2iω0A

2
A2 − A

2
A5 + 8iω0A

3
A4A􏼐 􏼑

ω2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
2iω0T0

+
1
4
A1A2AA +

3
4
A2A3A

2
A
2

+
3
4
A1A4A

2
A
2

+
3iA2A6A

2
A
2

4ω0
+
6A5A6A

2
A
2

ω2
0

+
9
4
A3A4A

3
A
3

+
9iA4A6A

3
A
3

4ω0
+

A6A
2 2iω0A

2
A2 − A

2
A5 + 8iω0A4A

3
A􏼐 􏼑

ω2
0

+ CC.

(47)

In order to eliminate the secular term in this equation,
we can set the coefficient of the term eiω0T0 to be zero:

240D2Aω3
+ 30A

2
1Aiω2

+ 160A
2
2A

2
Aiω2

+ 180A1A3A
2
Aiω2

+ 240A2A5A
2
Aω

+400A
2
5A

2
Ai + 405A

2
3A

2
A
3iω2

+ 1280A2A4A
3
A
2iω2

+ 1600A4A5A
3
A
2ω

− 180A3A6A
3
A
2ω + 225A

2
6A

3
A
2i + 2688A

2
4A

4
A
3iω2

� 0.

(48)

From this equation, it can be concluded that

D2A � −
iAA

2
1

8ω0
−
2iA

2
A
2
2A

3ω0
−
3iA

2
A1A3A

4ω0
−

A
2
A2A5A

ω2
0

−
5iA

2
A
2
5A

3ω3
0

−
27iA

3
A
2
3A

2

16ω0

−
16iA

3
A2A4A

2

3ω0
−
20A

3
A4A5A

2

3ω2
0

+
3A

3
A3A6A

2

4ω2
0

−
15iA

3
A
2
6A

2

16ω3
0

−
56iA

4
A
2
4A

3

5ω0
.

(49)
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Substituting Eq. (49) into Eq. (47) then yields

q2 � −
7A

7
A
2
4

45ω2
0

e
7iω0T0 −

69A
6
A3A4

175ω2
0

+
19iA

6
A4A6

175ω3
0

􏼠 􏼡e
6iω0T0

+ −
15A

5
A
2
3

64ω2
0

−
2A

5
A2A4

3ω2
0

−
3iA

5
A4A5

10ω3
0

−
iA

5
A3A6

8ω3
0

+
A
5
A
2
6

64ω4
0

−
26A

6
A
2
4A

9ω2
0

􏼠 􏼡e
5iω0T0

+ −
11A

4
A2A3

15ω2
0

−
A
4
A1A4

30ω2
0

−
19iA

4
A3A5

60ω3
0

−
iA

4
A2A6

5ω3
0

+
A
4
A5A6

12ω4
0

−
547A

5
A3A4A

150ω2
0

−
139iA

5
A4A6A

150ω3
0

􏼠 􏼡e
4iω0T0

+

−
A
3
A
2
2

2ω2
0

−
A
3
A1A3

16ω2
0

−
5iA

3
A2A5

12ω3
0

+
A
3
A
2
5

12ω4
0

−
39A

4
A
2
3A

64ω2
0

−
26A

4
A2A4A

5ω2
0

+
23iA

4
A4A5A

30ω3
0

−
3iA

4
A3A6A

16ω3
0

−
3A

4
A
2
6A

64ω4
0

−
66A

5
A
2
4A

2

5ω2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
3iω0T0

+

−
A
2
A1A2

6ω2
0

−
7A

3
A2A3A

3ω2
0

−
2A

3
A1A4A

3ω2
0

+
37iA

3
A3A5A

12ω3
0

−
2iA

3
A2A6A

3ω2
0

−
23A

3
A5A6A

12ω4
0

−
163A

4
A3A4A

2

15ω2
0

−
49iA

4
A4A6A

2

15ω3
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
2iω0T0

+
5A

2
A5A6A

2

ω4
0

+
AA1A2A

4ω2
0

+
3A

2
A2A3A

2

4ω2
0

+
3A

2
A1A4A

2

4ω2
0

+
9A

3
A3A4A

3

4ω2
0

+
11iA

2
A2A6A

2

4ω3
0

+
41iA

3
A4A6A

3

4ω3
0

+ CC.

(50)

Here

dA

dt
� D0A + εD1A + ε2D2A, (51)

where D0A � 0.
Substituting Eqs.(45) and (49) into Eq. (51) yields

dA

dt
� ε −

1
2
A1A −

3
2
A3A

2
A +

3A6A
2
A

2iω0
􏼠 􏼡

+ ε2

−
iAA

2
1

8ω0
−
2iA

2
A
2
2A

3ω0
−
3iA

2
A1A3A

4ω0
−

A
2
A2A5A

ω2
0

−
5iA

2
A
2
5A

3ω3
0

−
27iA

3
A
2
3A

2

16ω0

−
16iA

3
A2A4A

2

3ω0
−
20A

3
A4A5A

2

3ω2
0

+
3A

3
A3A6A

2

4ω2
0

−
15iA

3
A
2
6A

2

16ω3
0

−
56iA

4
A
2
4A

3

5ω0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(52)

We then write

A(t) �
1
2

K(t)e
iθ(t)

, (53)

where K(t) and θ(t) are time-varying functions.
Substituting Eq. (53) into Eq. (52) yields
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K′ � −
1
2
A1Kε −

3
8
A3K

3ε −
A2A5K

3ε2

4ω2
0

−
5A4A5K

5ε2

12ω2
0

+
3A3A6K

5ε2

64ω2
0

,

(54)

θ′ � −
5A

2
5K

2ε2

12ω3
0

−
15A

2
6K

4ε2

256ω3
0

−
3A6K

2ε
8ω0

−
A
2
1ε

2

8ω0
−

A
2
2K

2ε2

6ω0

−
3A1A3K

2ε2

16ω0
−
27A

2
3K

4ε2

256ω0
−

A2A4K
4ε2

3ω0
−
7A

2
4K

6ε2

40ω0
.

(55)

Substituting Eqs. (42), (46), and (50) into Eq. (38) yields

q(t) � K cosφ + ε

−
A5

6ω2
0
K

2 cos 2φ −
A2

3ω0
K

2 sin 2φ −
A4

3ω0
K

4 sin 2φ −
A6

32ω2
0
K

3 cos 3φ

−
3A3

32ω0
K

3 sin 3φ −
A4

30ω0
K

4 sin 4φ +
A5

2ω2
0
K

2
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+ε2

−
A1A2

12ω2
0
K

2 cos 2φ −
7A2A3

24ω2
0

K
4 cos 2φ −

A1A4

12ω2
0
K

4 cos 2φ −
163A3A4

480ω2
0

K
6 cos 2φ

−
37A3A5

96ω3
0

K
4 sin 2φ +

A2A6

12ω3
0
K

4 sin 2φ +
49A4A6

480ω3
0

K
6 sin 2φ −

23A5A6

96ω4
0

K
4 cos 2φ

−
A

2
2

8ω2
0
K

3 cos 3φ −
A1A3

64ω2
0
K

3 cos 3φ −
39A

2
3

1024ω2
0
K

5 cos 3φ −
13A2A4

40ω2
0

K
5 cos 3φ

−
33A

2
4

160ω2
0
K

7 cos 3φ +
5A2A5

48ω3
0

K
3 sin 3φ −

23A4A5

480ω3
0

K
5 sin 3φ +

3A3A6

256ω3
0
K

5 sin 3φ

+
A

2
5

48ω4
0
K

3 cos 3φ −
3A

2
6

1024ω4
0
K

5 cos 3φ −
11A2A3

120ω2
0

K
4 cos 4φ −

A1A4

240ω2
0
K

4 cos 4φ

−
547A3A4

4800ω2
0

K
6 cos 4φ +

19A3A5

480ω3
0

K
4 sin 4φ +

A2A6

40ω3
0
K

4 sin 4φ +
139A4A6

4800ω3
0

K
6 sin 4φ

+
A5A6

96ω4
0
K

4 cos 4φ −
15A

2
3

1024ω2
0
K

5 cos 5φ −
A2A4

24ω2
0
K

5 cos 5φ −
13A

2
4

288ω2
0
K

7 cos 5φ

+
3A4A5

160ω3
0
K

5 sin 5φ +
A3A6

128ω3
0
K

5 sin 5φ +
A

2
6

1024ω4
0
K

5 cos 5φ −
69A3A4

5600ω2
0
K

6 cos 6φ

+
19A4A6

5600ω3
0
K

6 sin 6φ −
7A

2
4

2880ω2
0
K

7 cos 7φ +
5A5A6

8ω4
0

K
4

+
A1A2

8ω2
0

K
2

+
3A2A3

32ω2
0

K
4

+
3A1A4

32ω2
0

K
4

+
9A3A4

128ω2
0
K
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,

(56)
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where φ � θ + tω0, and K and θ can be determined by
Eqs.(54) and (55).

,us, the nonlinear resonant frequency of the sensor can
be found from Eq.(39) to be

ω � ω0

����������������������������������������������������

1 − ε
3A6K

2

4
− ε2

A
2
1
4

+
A
2
2
3

+
3A1A3

8
+
5A

2
5

6
􏼠 􏼡K

2

+
27A

2
3

128
+
2A2A4

3
−
3A

2
6

128
􏼠 􏼡K

4
+
7A

2
4

20
K

6
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+ · · ·

􏽶
􏽵
􏽵
􏽵
􏽵
􏽵
􏽵
􏽴 . (57)

,e pressure sensor structure is shown in Figure 3(a),e
pressure membrane used for detecting the pressure is a
rectangular membrane fixed at four edges. Here, P denotes
the pressure applied to the membrane, and Lf denotes its
length and its width.,e sizes of themembrane are shown in
Figure 3(b).

If we let d denote the thickness of the pressure mem-
brane and w denote its elastic displacement, the boundary
conditions of the pressure membrane can be written as

w | x�±Lf
� w | y�±Lf

� 0,

zw

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 x�±Lf
�

zw

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 y�±Lf
� 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(58)

,e elastic displacement of the pressure membrane
satisfying all boundary conditions is then

w � A11 1 + cos
πx

Lf

􏼠 􏼡􏼠 􏼡 1 + cos
πy

Lf

􏼠 􏼡􏼠 􏼡. (59)

Substituting Eq. (59) into the Galerkin equation yields

􏽚 􏽚 P − D∇4w􏼐 􏼑 1 + cos
πx

Lf

􏼠 􏼡􏼠 􏼡 1 + cos
πy

Lf

􏼠 􏼡􏼠 􏼡dxdy � 0. (60)

From Eq. (60), it follows that

A11 �
PL

4
f

2π4D
, (61)

where D � Ed3/12(1 − μ2).
,e relationship between displacement and stress is

known as follows:

σx � −
Ez

1 − μ2
z
2
w

zx
2 + μ

z
2
w

zy
2􏼠 􏼡. (62)

Substituting Eq. (59) into Eq. (62) yields

σx �
EzA11π

2

1 − μ2
1

L
2
f

cos
πx

Lf

1 + cos
πy

Lf

􏼠 􏼡 +
μ2

L
2
f

cos
πy

Lf

1 + cos
πx

Lf

􏼠 􏼡⎡⎢⎢⎣ ⎤⎥⎥⎦.

(63)

At y� 0 and z � d/2, the stress on the pressure mem-
brane is

σx

􏼌􏼌􏼌􏼌 y � 0

z � (d/2)

�
3P

π2

Lf

d
􏼠 􏼡

2

(2 + μ)cos
πx

Lf

+ μ􏼢 􏼣.
(64)

Its average value can be written

σx �
3P

π2

Lf

d
􏼠 􏼡

2􏽒
Lf

0 (2 + μ)cos πx/Lf􏼐 􏼑 + μ􏽨 􏽩dx

Lf

� 3P
Lf

πd
􏼠 􏼡

2

μ.

(65)

,us, the axial force F in the resonator is

F � 3P
Lf

πd
􏼠 􏼡

2

μ × h × Lf. (66)

When Eq. (66) is substituted into Eq. (18), the effects of
the gas pressure on the sensor can be determined.

4. Results and Discussion

By using a cross-type resonator, the area of capacitance elec-
trode between the resonator and the substrate is increased, and
the capacitance variation is increased under the same resonator
vibration amplitude, that is, the strength of the resonant signal
of the microresonant pressure sensor is increased.

Comparison between the traditional resonator and the
cross-type resonator is given in Table 1. Here, S is the pole area,
∆y is the average vibration amplitude, ∆C is the capacitance
change, and Uout is the output signal voltage. Table 2 shows
parameters of the sensor system, and Figures 4 and 5 show
effects of nonlinear parameter on resonant frequencies and
resonant frequency difference.

,e pole area of the cross-type resonator is 1.5 times of
the traditional resonator. So, the capacitance change and the
output signal voltage of the cross-type resonator are about 2
times of the traditional resonator. It is very beneficial to the
design and manufacture of the signal-processing circuit.

,e chosen parameters of the resonator are shown in
Table 2. Here, the material is silicon (Si), and the nonlinear
parameter is ε� 0.25 when other parameters are changed.
ε� y0/d0 is the ratio of the static displacement of the reso-
nator to initial clearance. If ε� y0/d0 is above 0.3, the res-
onator will come into instability state. So, the nonlinear
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parameter is taken to be 0.25. Using Eqs. (36) and (57), the
linear and nonlinear frequencies of the first four orders of
resonant vibration of the resonant sensor are obtained, as
shown in Table 3.

Effects of the nonlinear parameter and molecular force
on the nonlinear frequencies and the difference between the
linear and nonlinear frequencies were investigated (see
Figures 4–6). Here ω0 is the linear resonant frequency, ω1 is
the nonlinear resonant frequency, ∆ωa is the difference
between the linear and nonlinear resonant frequencies

considering molecular force, ∆ωb is the difference between
the linear and nonlinear resonant frequencies without
considering molecular force, and η is the relative difference
between the linear and nonlinear resonant frequencies. ,e
following can be deduced from Table 3 and Figures 4–6:

(1) ,e nonlinear resonant frequency is lower than the
linear resonant frequency. ,is shows that nonlin-
earity has the property of a soft spring.,e frequency
difference between the linear and nonlinear resonant
frequencies decreases gradually from low-order to
high-order modes. ,e frequency difference for the
first-order mode is about 13 times that of the fourth-
order mode.

(2) ,e resonant frequency difference of the odd-
number order modes is about twice that of the even-
number order modes. As the order number in-
creases, the resonant frequency difference for the
odd-number modes gradually approaches one for
the even-number modes. From Eq.(21), it is known
that the nonlinear effects are related to the coeffi-
cients A1, A2, A3, A4, A5, and A6, which depend on
the vibration modes of the resonator. For the odd-
number order modes, these coefficients are larger
than those of the even order modes. So, the non-
linearity has more obvious effects on the odd-

Resonator

Diaphragm

Conductive
layer

Ventilation
duct 

P

(a)

Lf

Lf

x

y

(b)

Figure 3: Structure and sizes of the pressure sensor (a) sensor structure (b) sizes of the pressure membrane.

Table 1: Comparison between traditional and cross-type resonators.

S/m2 ∆y/m ∆C/F Uout/mV

Traditional resonator 9.6×10− 7 2.0870×10− 7 1.4315×10− 11 103.330
Cross-type resonator 14.4×10− 7 2.5584×10− 7 2.9446×10− 11 220.064
times 1.50 1.23 2.06 2.13

Table 2: Parameters of the sensor system.

L (m) b (m) h (m) m (kg) E (GPa) ρ (kg/m3)
4×10− 3 5×10− 4 1× 10− 5 3.495×10− 8 190 2330
ε 0 (C2·N− 1m− 2) ε r U 0 (V) d 0 (m) H v (J) F (N)
8.85×10− 12 1 1.0 5×10− 7 10×10− 19 1

Table 3: Comparison of linear and nonlinear resonant frequencies
for the first four orders.

Odd mode function
ω 0 (Hz) ω 1 (Hz) η (%)

Mode (1, 1) 35388.10 33054.06 6.596
Mode (2, 2) 74560.91 72885.34 2.004
Mode (3, 3) 114017.01 113038.15 0.859
Mode (4, 4) 154808.42 154115.23 0.448

Even mode function
ω 0 (Hz) ω 1 (Hz) η (%)

Mode (1, 1) 44117.75 42588.68 3.534
Mode (2, 2) 80909.60 79886.53 1.265
Mode (3, 3) 120061.71 119279.67 0.651
Mode (4, 4) 161300.35 160673.29 0.389
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Figure 5: Effects of the nonlinear parameter on resonant frequency difference. (a) Odd. (b) Even.
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Figure 4: Effects of the nonlinear parameter on resonant frequencies. (a) Odd. (b) Even.
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Figure 6: Effects of molecule force and resonator length on resonant frequency difference. (a) Odd. (b) Even.
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number order modes than those on the even-number
order modes.

(3) With an increase of the nonlinear parameter ε, the
nonlinear resonant frequencies decrease. When the
nonlinear parameter ε increases from 0.1 to 0.25, the
resonant frequency of the odd-number order mode
decreases by 5.3%, and the resonant frequency of the
even-number order mode decreases by 2.9%. ,e
nonlinear parameter has a more obvious effect on the
resonant frequencies for the odd-number order
modes than that for the even-number order modes.
With an increase of the nonlinear parameter ε, the
frequency difference between the linear and non-
linear resonant frequencies increases gradually as
well. For odd-number order modes, the frequency
difference increases more significantly than for the
even-number order modes.

(4) ,e difference between the linear and nonlinear
resonant frequencies is larger when molecular force is
considered than when it is not considered. ,e fre-
quency difference for the odd-number order modes is
larger than for the even-number order modes. As the
length of the resonator increases, the frequency dif-
ference between the linear and nonlinear resonant
frequencies increases gradually. ,is means that the
effect of the molecular force on the resonant fre-
quencies increases along with the resonator length.

By changing the length and thickness of the resonator
and the clearance between the resonator and the base plane,
the variation of resonant frequencies with and without
considering nonlinearity can be further studied. ,e results
are shown in Figures 7–10.

(1) With an increase in the length of the resonator, its
resonant frequency decreases, and the decrease of
high-order resonant frequencies is more evident than
those of low order. When the length of the resonator
increases from 2.5×10− 3 to 4×10− 3m, the resonant
frequency of the first odd-number order decreases by
16.6%, while the resonant frequency of the fourth
odd-number order decreases by 39.3%. At the same
time, the resonant frequency of the first even-number
order decreases by 19.8%, while the resonant fre-
quency of the fourth even-number order decreases by
42.2%.
With an increase in the length of the resonator, the
frequency difference between the linear and non-
linear resonant frequencies increases. ,is means
that effects of the nonlinearity on the resonant fre-
quencies increase as the resonator length increases.
For the odd-number modes, the effects of the
nonlinearity are more significant than those for the
even-number modes.

(2) With an increase in the clearance between the res-
onator and the base plane, the resonant frequency
increases, and the increases of the low-order reso-
nant frequencies are more obvious than those of the

high-order modes. When the clearance increases
from 3×10− 7m to 4.5×10− 7m, the first odd-number
order resonant frequency increases by 6.53% and the
fourth odd-number order resonant frequency in-
creases by 0.35%. At the same time, the first even-
number order resonant frequency increases by 3.50%
and the fourth even-number order resonant fre-
quency increases by 0.29%. With an increase of the
clearance between the resonator and the base plane,
the frequency difference between the linear and
nonlinear resonant frequencies decreases. ,is
means that effects of the nonlinearity on the resonant
frequencies decreases as the clearance between the
resonator and the base plane decreases.

(3) With an increase in the thickness of the resonator, its
resonant frequency decreases, and the decrease of the
high-order resonant frequency is more significant
than that of the low-order modes. As the thickness of
the resonator increases from 2×10− 6m to
10×10− 6m, the resonant frequency of the first-order
mode decreases by 48.5%, while the resonant fre-
quency of the fourth-order mode decreases by only
about 1/4 as much. With an increase of the thickness
of the resonator, the frequency difference between
the linear and nonlinear resonant frequencies de-
creases.,is means that effects of the nonlinearity on
the resonant frequencies decrease as the resonator
thickness decreases.

In brief: the effects of the nonlinearity on the resonant
frequencies increase for larger length, smaller clearance, and
smaller thickness.

Effects of the pressure on the resonant frequencies for
the sensor have been investigated and are shown in
Figures 11 and 12. Here are conclusions that can be
drawn:

With an increase of gas pressure, the resonant fre-
quencies increase, and the increase of the high-order res-
onant frequencies is greater than that of the low-order
modes. When the gas pressure increases from 0 to 3×105 Pa,
the resonant frequency of the first odd-number order in-
creases by 77.8% and the resonant frequency of the fourth
odd-number order decreases by 116.7%. At the same time,
the resonant frequency of the first even-number order in-
creases by 78.95%, and the resonant frequency of the fourth
even-number order decreases by 142.11%. As the gas
pressure increases, the frequency difference between the
linear and nonlinear resonant frequencies decreases. For the
low-order modes, effects of the gas pressure on the resonant
frequency and the resonant-frequency differences are more
significant than for the high-order modes. ,is means that
effects of the nonlinearity on the resonant frequencies de-
crease as the pressure decreases. For the even-number
modes, the effects of the pressure are more significant than
for the odd-number modes.

In brief: with increasing gas pressure, the resonant fre-
quency of the resonator increases, effects of the nonlinearity
on the resonant frequency weaken, and effects of the gas
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Figure 7: Changes of the resonant frequencies with system parameters (odd modes) (a) length changes (b) clearance changes (c) thickness
changes.
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Figure 8: Changes of the resonant frequency differences with system parameters (odd modes) (a) length changes (b) clearance changes (c)
thickness changes.
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Figure 9: Changes of the resonant frequencies with system parameters (even modes) (a) length changes (b) clearance changes (c) thickness
changes.
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Figure 12: Changes of the resonant frequency differences with pressure (a) odd modes (b) even modes.
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Figure 11: Changes of the resonant frequencies with pressure (a) odd modes (b) even modes.
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pressure on the resonant frequency are more significant for
the even-number modes than for the odd-number modes.

Using software MATLAB, Dsolve function is used to
resolve the differential equation (37), and the nonlinear
resonant frequencies are obtained. ,e results are shown in
Table 4. Here, ω2 is the nonlinear resonant frequencies
obtained by Dsolve function, and η2 is the relative error
between the numerical simulations and the multiscale
method. Results show that the maximum relative error
between the nonlinear resonant frequencies given by the
numerical simulations and the multiscale method is 3.528%.
It illustrates the multiscale method in the research.

5. Conclusions

In this paper, a nonlinear dynamics equation for a novel
microresonant pressure sensor is proposed. Effects of the
system parameters and gas pressure on the nonlinear res-
onant frequencies are investigated. Results show the fol-
lowing conclusions:

(1) ,e nonlinear resonant frequency is less than the
linear resonant frequency. ,e frequency difference
between the linear and nonlinear resonant fre-
quencies decreases gradually from low-order to
high-order modes.

(2) ,e frequency difference between the linear and
nonlinear resonant frequencies is larger when mo-
lecular force is considered than when it is not
considered.

(3) ,e effects of the nonlinearity on the resonant fre-
quencies increase with increasing resonator length or
decreasing the clearance between the resonator and
the baseplate. With increasing gas pressure, the
resonant frequency of the resonator increases.
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