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An isolation bearing consumes most of the seismic energy of a structure and is vulnerable to destruction. *e performance of
isolation bearings is usually evaluated according to the global stiffness and energy dissipation capacity. However, the early minor
damage in isolation bearings is difficult to identify. In this study, a damage detection scheme for the isolation bearing is proposed
by focusing on the antiresonance of the quasiperiodic structure. Firstly, a laminated rubber bearing was simplified as a
monocoupled periodic rubber-steel structure. *e characteristic equation of the driving point antiresonance frequency of the
periodic system was achieved via the dynamic stiffness method. Secondly, the sensitivity coefficient of the driving point anti-
resonance, which was obtained from the first-order derivative of the antiresonance frequency, with respect to the damage scaling
parameter was derived using the antiresonance frequency characteristic equation. *irdly, the optimised driving points of the
antiresonance frequencies were selected by means of sensitivity analysis. Finally, from the measured changes in the antiresonance
frequencies, the damage was identified by solving the sensitivity identification equation via a numerical optimisation method.*e
application of the proposed method to laminated rubber bearings under various damage cases demonstrates the feasibility of this
method. *is study has proven that changes in the shear modulus of each rubber layer can be identified accurately.

1. Introduction

During an earthquake disaster, the seismic isolator con-
sumes a large amount of structural vibration energy. *e
isolator is the most vulnerable part of the structure that is
expected to be destroyed. If the early damage of the seismic
isolator cannot be identified and dealt with in time, then it
will continue to accumulate and may lead to the sudden
structural failure. However, the early minor damage in the
isolation bearing cannot be reflected from the test results of
mechanical properties. *erefore, the effective monitoring
and evaluation of the seismic isolator is of great significance.

*e laminated rubber bearing is widely used in seismic
isolation structures. Most theoretical studies have investi-
gated the behaviour of laminated rubber bearings in terms of
Haringx’s theory [1,2]. In the model of Haringx’s equivalent
column, the rubber layers and steel shims are treated as

homogeneous and isotropic materials. For moderate
amounts of shear strain, horizontal stiffness of the elasto-
meric bearing in Haringx’s theory agrees with the experi-
mental results [3,4]. Haringx’s theory has been applied in the
investigation of the stability of rubber bearings [5–8]. On the
basis of Haringx’s theory, Koh and Kelly [9] proposed a
nonlinear mechanical model to predict the horizontal dis-
placement of the elastomeric bearing under large axial force,
and the experimental results of Buckle et al. [10] validated
this model. *e limitations of the investigations lie in the
inability to address the details of the mechanical behaviours
of interlaminated rubber layers [4], and the traditional
approach cannot handle the influence of geometric and
material parameters of each rubber layer. In addition,
according to the results of finite element analysis, Kalfas et al.
[11, 12] found the damage magnitude of each rubber layer
and steel shim is different after the bearing under a certain
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load. When Haringx’s theory is applied to the damage
identification of laminated rubber bearings, the damage of
certain layers cannot be located; consequently, the early
minor damage in the bearings is difficult to identify.

*e periodical model can be used to analyse the internal
deformation and force of individual cells. *erefore, the
laminated rubber bearing model that considers the peri-
odicity can be used to identify the damage of each layer. As a
typical one is consisting of several alternating layers of
rubber bonded to interleaving steel shims [13]; it can be
considered a chain-like periodic structure system composed
of an end-to-end repeating structure. Static models
[4, 14, 15] and dynamic models [13, 16] of laminated rubber
bearing that consider periodicity have been developed.
However, the dynamic characteristics will change when
damage occurs in a periodic structure.

Dynamic characteristics, such as natural frequencies
and mode shapes, have been used in the damage detection
of periodic structures [17–19]. Zhu [17] used the charac-
teristic receptance approach to obtain the frequency
characteristic equation of a periodic spring-mass system
with a single damage and identified the damage of it based
on the sensitivity of natural frequencies. *is method can
be applied to various types of finite monocoupled periodic
systems with multiple damage [17]. To extend the work
[17], Yin [18] used natural frequencies to identify the
damage of periodically supported structures. Zhu [19] used
the slopes and curvatures of mode shapes to localise
damage, which were then quantified using natural fre-
quencies. *e abovementioned studies showed that the
damage of periodic structures can be identified by using
natural frequencies and mode shapes.

On the one hand, natural frequencies are less sensitive to
local damage compared with mode shapes [19]. On the other
hand, the mode shapes have generally lower accuracy than
natural frequencies during measurements. In addition, as
the total number of natural frequencies is always limited in
high-quality measurements [20], the available modal data
that can be used in damage detection is usually incomplete.
Natural frequencies and mode shapes are clearly inadequate
in damage identification; thus, antiresonance frequencies
have been applied to the finite element model updating and
damage identification of structures [21–27]. Dilena [22]
found that the appropriate use of natural frequencies and
antiresonance frequencies could avoid the nonuniqueness of
the damage location problem, which occurs in symmetrical
beams when only frequency data are employed. Wang [23]
utilised the first antiresonance to localise the crack of a
Timoshenko beam. Hanson [24] used antiresonance fre-
quencies to update the model of a two-degrees-of-freedom
(DOF) system. Sinou [25] detected the breathing crack of a
pipeline beam based on the antiresonances of higher-order
frequency response functions (FRFs). In an experimental
study on the crack identification of thick beams, Hou [26]
proved that the incorporation of antiresonance frequencies
could enhance the modal dataset in finite element model
updating. Another study involving model updating found
that antiresonance frequencies could be used as an alter-
native of natural frequencies and mode shapes [27].

Antiresonance frequencies reflect not only the intrinsic
characteristics of structures but also their local physical
characteristics. *erefore, the antiresonance frequency is
further extended to the damage identification of periodic
structures in this study.

Two methods are generally used to determine anti-
resonance frequencies. *e first method is to extract data
from the frequency response or impedance curve [23–26],
which are the zeros of the curves. *e other method is to
calculate the eigenvalues of a structure under a variety of
artificial constraints applied to the ground combined with
transducer location data [28,29]. A set of sensitivities of
antiresonance frequencies [28] was used for damage iden-
tification. According to Mottershead [28], the sensitivity of
an antiresonance frequency is a linear combination of the
sensitivity of mode shapes at the same point and the sen-
sitivity of natural frequencies. However, the calculation of
antiresonance frequencies and its sensitivity of periodic
structures has not yet been studied. As for the periodic
structure, each cell is the same, which implies that the pe-
riodicity of the structure can be exploited to simplify the
analytic process.

At present, the damage detection of laminated rubber
bearing based on the antiresonance frequencies of periodic
structure is at an early stage. According to the damage
detection method for laminated rubber bearing based on the
characteristic receptance method developed by Zhang [30],
only single damage can be identified. And the influence of
driving points on identification results has not been studied.
However, as each node of the structure can be configured as
the driving point, additional appropriate driving points
should be selected to be able to extract the antiresonance
frequencies and improve the modal identification. Anti-
resonance frequencies can be obtained from the point FRFs
and transfer FRFs, in which the former is more robust than
the latter [21]. Mao [29] studied the selection of optimal
antiresonance frequencies but did not distinguish the
driving point antiresonance from the transfer point anti-
resonance. *erefore, the selection of the optimal driving
point is investigated in this study.

*is study proposes a damage detection method of
laminated bearings in service based on the sensitivity
analysis of the antiresonance frequency of periodic struc-
tures. Firstly, the laminated rubber bearing is modelled as a
monocoupled periodic rubber-steel structure. *e anti-
resonance frequency of the periodic structure is derived
using Bloch’s theorem and dynamic stiffness method. Sec-
ondly, the relationship between the antiresonance frequency
and damage scaling parameter is derived according to the
antiresonance frequency characteristic equation. From the
results of the sensitivity analysis, more suitable driving
points of the antiresonance frequencies are selected and used
in damage identification. Finally, by taking the anti-
resonance frequencies before and after the damage as the
objective function, the sensitivity identification equation is
solved via a numerical optimisation method. By detecting
the simulated damage of one or more parts of the laminated
rubber bearing, the accuracy of the proposed method was
verified.
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2. Antiresonance Frequency Characteristic
Equation of the Periodic Rubber-
Steel Structure

*e laminated rubber bearing is considered a periodic
rubber-steel structure, as shown in Figure 1(a). Each peri-
odic cell consists of a rubber layer and two steel shims, as
depicted in Figure 1(b). Figure 2 illustrates a monocoupled
NP-cell periodic structure terminating at the fixed endO and
the free end N.

In the horizontal direction, the steel plates do not affect
the shear deformations of the rubber layers in the bearing.
Since the ratio of the shear modulus of steel to that of rubber
is greater than 1× 104, the deformation of the steel shim is
negligible in the analysis. *erefore, the deformation of the
isolation bearing is considered to be entirely caused by the
rubber layer. *e rubber layer is simplified as a shear beam.
Here, only the shear deformation is considered, and the
bending deformation is neglected. *e parameters of the
rubber layer are as follows: the thickness of each layer is
given by l, the cross-sectional area is given by A, the shear
modulus is given by G, and the density is given by ρ. *e
stiffness and mass matrix of the rubber layer are as follows:

kr � 
l

0
GA

dNw

dx
 

T dNw

dx
 dx �

GA

l

1 −1

−1 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (1a)

mr � 
l

0
ρA Nw 

T Nw dx �
ρAl

6
2 1
1 2

 , (1b)

where Nw(x) � 1 − x/l x/l  is the shape function vector.

*e lumped mass is used for describing the steel shim.
*e mass of each steel shim in the symmetrical cell is cal-
culated as ms/2. With the introduction of the mass ratio of
steel to rubber, θ � ms/mr, where mr � ρAl is the mass of
each rubber layer. *e mass matrix of the composite cell is
given by
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(2)

When the structure vibrates harmonically with angular
frequency ω, the dynamic stiffness matrix of the composite
periodic cell can be expressed as

d � kr − ω2m �
dLL dLR

dRL dRR

 , (3)

where

dLL � dRR �
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l
− ω2 1

3
+
θ
2

 ρAl,
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l
− ω2ρAl

6
.

(4)

For a monocoupled NP-cell periodic structure with one
fixed end and one free end, the global dynamic stiffness
matrix can be expressed as

D(ω) �
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NP×NP

. (5)

For an undamped structure, the FRFs of a driving point,
i.e., j-th node, can be expressed as

Hj �
det(D)j

det(D)
. (6)

det(·) represents the determinant of the matrix D, and
subscript j means that the j-th row and the j-th column are
deleted. For the driving point FRFs of an undamped
structure, the antiresonance frequencies zj are the zeros of
the numerator polynomial [27], which satisfies

det(D)j � 0. (7)

*e determinant det(D)j can be rewritten as the de-
terminant of a partitioned matrix as

det(D)j �
DL 0

0 DR




� DL


 · DR


, (8)

where |DL| and |DR| are the characteristic determinants of
the substructures on both sides of the driving point, and the
detailed expressions of |DL| and |DR| are provided in
Appendix.
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By substituting equation (7) into (6), the characteristic
equation of the driving point antiresonance frequencies can
be obtained.

DL


 · DR


 � 0. (9)

As shown in equation (8), antiresonance occurs provided
that the driving frequency reaches a natural frequency of the
substructure on the left or right side of the driving point.
|DL| � 0 gives the characteristic equation of periodic
structure 1 consisting of j cells with two fixed ends. |DR| � 0
gives the characteristic equation of periodic structure 2
consisting of (NP − j) cells and with one free end and one
fixed end. In other words, the antiresonance frequencies
reflect the natural frequencies of the substructure on either
side of the driving point.

For a perfectly periodic structure, the dynamic stiffness
matrix of each cell is exactly the same. Take the λ-th (λ�1, 2,
. . ., NP) cell as an example. *e displacements and forces at
the ends of the cell can be expressed in relation to the
dynamic stiffness matrix as follows:

dLL dLR

dRL dRR

 
X

[λ]
L

X
[λ]
R

⎧⎨

⎩
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F
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F
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⎩

⎫⎬

⎭. (10)

In terms of the vibration of the monocoupled periodic
structure, according to Bloch’s theorem, the state vector at
the left end of a cell must be equal to eμ times the state vector
at the left end of the next cell, where μ is the propagation
constant [31, 32]. *e relationship between the displace-
ments and forces of the two adjacent cells can be determined
in relation to the propagation constant μ.

X
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F
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where the superscript λ and λ+ 1 refer to cell λ and the next
cell λ+ 1.

*e displacements and equilibrium of the forces at the
interface of the λ-th cell and the (λ + 1)-th cell are com-
patible. *us,

X
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L

F
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⎩
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X
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F
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By combining equations (10) and (11), the displacements
and forces at the right and left ends of the λ-th cell become
related to the propagation constant μ.

X
[λ]
R

F
[λ]
R

⎧⎨

⎩

⎫⎬
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e

−μ 0

0 −e
−μ 

X
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L

F
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L
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⎩
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⎭. (13)

A periodic structure with symmetric cells has dLL � dRR

and dLR � dRL. Substituting equation (11) into (9) yields the
expression of the propagation constant μ.

cosh μ � −
dLL

dLR

. (14)

For the perfectly periodic structure, the determinant |DL|

in equation (A.1a) can be expressed by the dynamic stiffness of
any cell. When the dynamic stiffness of the λ-th (λ�1, 2, . . ., j)
cell, i.e., d

[λ]
LL and d

[λ]
LR , is reserved, |DL| can be rewritten using

equation (13) as follows:

Rubber layer
Steel shim

1

2

λ

NP

(a)

Rubber layer Steel shim

(b)

Figure 1: (a): *e model of a laminated rubber bearing. (b): Rubber–steel cell.

1

BoundaryBoundary

O N2 NPλ

Figure 2: *e monocoupled periodic structure of NP cells with a free end (N) and a fixed end (O).
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DL


 � −dLR( 

j−1 DL


, (14a)

where |DL| is the determinant of order (j− 1),
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−
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.
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Furthermore, by setting d[λ]
LL � dLL and d

[λ]
LR � dLR in

equation (14b), |DL| can be rewritten as

DL
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sinh(jμ)

sinh μ
. (14c)

Similarly, the determinant |DR| in equation (A.1 b) can
be expressed by the dynamic stiffness of the λ-th (λ� j+1,
j+2, . . ., NP) cell,

DR


 � −dLR( 

NP−j DR


, (15a)

where |DR| is the determinant of order (NP − j),

DR
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d
[λ]
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2
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[λ]
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2
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2
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cosh NP − j − 1( μ + cosh(λ − j − 1)μsinh NP − λ( μsinh μ
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*e detailed calculation process of determinants |DL|

and |DR| are provided in Appendix.
By substituting equations (14) and (15) into (8), the

characteristic equation of the driving point antiresonance

frequencies of the periodic structure containing the infor-
mation of the location of different cells can be obtained.

cosh NP − j( μz

d
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2
− d
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2
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d
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2
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2
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� 0,

λ � j + 1, j + 2, ..., NP( .

(16b)

*e propagation constant μ and arbitrary vibration
frequency ω have a one-to-one correspondence. Here, μz

denotes the propagation constant corresponding to the
antiresonance frequency zj. *e characteristic equation of
the driving point antiresonance frequencies of the periodic
structure expressed as the propagation constant can be
obtained using

sinh jμz( cosh NP − j( μz � 0. (17)

When the vibration frequency ω is equal to the anti-
resonance frequency zj, combining equations (3) and (13)
yields the relationship between the propagation constant μz

and antiresonance frequency zj.

cosh μz �
6G − z

2
j(2 + 3θ)ρl

2

6G + z
2
jρl

2 . (18)

*e propagation constant is usually written in complex
form, i.e., μ � δ + ic, where ‘i’ is the imaginary unit, namely,
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i �
���
−1

√
. *e real part δ represents the attenuation constant,

whereas the imaginary part c represents the phase constant
[33]. When δ ≠ 0, the wave is in a frequency stopband; when
δ � 0, the wave is in a passband [34]. For an undamped
periodic structure with symmetric cells, the natural fre-
quencies lie within the passband [35]. In addition, the
driving point antiresonance frequencies interlace the natural
frequencies [21]. *erefore, the driving point antiresonance
frequencies also lie within the passband (i.e., δ � 0).
Substituting μ � ic and equation (18) into (16) yields the
antiresonance frequencies of the periodic rubber-steel
structure in the healthy status.

z
u
j � 2sin

c
u

2

�����������������
3G

cos c
u

+ 2 + 3θ( ρl
2



, (19)

where cu � cu
L � πk1/j(k1 � 1, 2, . . . , j − 1) orcu � cu

R �

(π/2)(2k2 − 1/NP − j) (k2 � 1, 2, . . . , NP − j), in which the
superscript ‘u’ means undamaged.

3. Sensitivity Analysis

3.1. Sensitivity of Driving Point Antiresonance. When the
shear modulus of the λ-th (λ�1, 2, . . ., NP) cell in the

periodic structure changes slightly, the first-order Taylor’s
expansion of the antiresonance frequency of driving point j
is

zj G + ΔG[λ]
  � zj(G) +

zzj

zG
[λ]
ΔG[λ]

, (20)

where the first-order partial derivate zzj/zG[λ] is the sen-
sitivity coefficient of the antiresonance frequency with re-
spect to the shear modulus of the λ-th (λ�1, 2, . . ., NP) cell.

According to the characteristic equation of the driving
point antiresonance frequencies, i.e., equation (16), the
sensitivity coefficient of the antiresonance frequency with
respect to the shear modulus of the λ-th cell is as follows:

zzj

zG
[λ]

� −
Γ zj, G

[λ]
 /zG

[λ]

Γ zj, G
[λ]

 /zzj

, (21)

where the function Γ(zj, G[λ]) is set according to equation
(16), i.e.,

Γ zj, G
[λ]

  � cosh NP − j( μz

d
[λ]
LL 

2
− d

[λ]
LR 

2

dLR( 
2

sinh(λ − 1)μzsinh(j − λ)μz

sinh
2μz

−
d

[λ]
LL

dLR

sinh(j − 1)μz

sinh μz

+ cosh(λ − 1)μzcosh(j − λ)μz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(λ � 1, 2, ..., j),

(22a)

Γ zj, G
[λ]

  � sinh jμz( 

d
[λ]
LL 

2
− d

[λ]
LR 

2

dLR( 
2

sinh(λ − j − 1)μzsinh NP − λ( μz

sinh
2μz

−
d

[λ]
LL

dLR

cosh NP − j − 1( μz

sinh μz

+ sinh NP − λ( μzcosh(λ − j − 1)μz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

λ � j + 1, j + 2, ..., NP( .

(22b)

*e first partial derivatives zΓ(zj, G[λ])/zG[λ] and
zΓ(zj, G[λ])/zzj in equation (21) can be obtained from (22),

which contains the information about the location of the
different cells.

zΓ zj, G
[λ]

 

zzj

�
NP − j( sinh NP − j( μzsinh jμz(  + jcosh NP − j( μzcosh jμz( 

sinh μz

zμz

zzj

, (23a)

zΓ zj, G
[λ]

 

zG
[λ]

� −
cosh NP − j( μz

dLRsinh
2 μz

2 cosh μz

zd
[λ]
LL

zG
[λ]

+
zd

[λ]
LR

zG
[λ]

 sinh(j − λ)μzsinh(λ − 1)μz

+
zd

[λ]
LL

zG
[λ]

sinh μzsinh(j − 1)μz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(λ � 1, 2, . . . , j),

(23b)
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zΓ zj, G
[λ]

 

zG
[λ]

� −
sinh jμz( 

dLRsinh
2 μz

2 cosh μz

zd
[λ]
LL

zG
[λ]

+
zd

[λ]
LR

zG
[λ]

 sinh(λ − j − 1)μzsinh NP − λ( μz

+
zd

[λ]
LL

zG
[λ]

sinh μzcosh NP − j − 1( μz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

λ � j + 1, j + 2, ..., NP( .

(23c)

*e detailed expressions of zd
[λ]
LL /zG[λ], zd

[λ]
LR/zG[λ], and

zμz/ zzj in equation (23) can be obtained from equations (3)
and (18):

zd
[λ]
LL

zG
[λ]

�
A

l
, (24a)

zd
[λ]
LR

zG
[λ]

� −
A

l
, (24b)

zμz

zzj

�
2 + 3θ + cosh μz( ρAlzj

3dLRsinh μz

, (24c)

where l is the thickness of each layer, A is the cross-sectional
area, and θ is the mass ratio of steel to rubber.

Combining equations (19), (21), (23), and (24) yields the
sensitivity coefficient zzj/zG[λ].

zzj

zG
[λ]

�

2
j

������������������
3

coscu
+ 2 + 3φ( Gρl

2



sin
c

u

2
cos2

2λ − 1
2

c
u

 , (λ � 1, 2, . . . , j),

0, λ � j + 1, j + 2, . . . , NP( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
u

� c
u
L � π

k1

j
, k1 � 1, 2, . . . , j − 1 ,

(25a)

zzj

zG
[λ]

�

0, (λ � 1, 2, . . . , j)

2
NP − j

������������������
3

cos c
u

+ 2 + 3θ( Gρl
2



sin
c
u

2
cos2

2λ − 2j − 1
2

c
u

 , λ � j + 1, j + 2, . . . , NP( 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

c
u

� c
u
R �

π
2
2k2 − 1
NP − j

, k2 � 1, 2, . . . , NP − j .

(25b)

As shown in equation (25), the sensitivity coefficient
zzj/zG[λ] is dependent on the total number of periodic cells
NP, the driving point j, the location of the cell λ, the
propagation constant corresponding to the antiresonance
frequency cu, the mass ratio θ , the shear modulus G, the
thickness l, and the density ρ of the rubber layer. Each cell λ
has a specific sensitivity coefficient zzj/zG[λ] that can be
used for damage identification.

3.2. Selection of Optimal Driving Points of Antiresonance for
Damage Identification. Given that a structure comprises
more than one driving point, the amount of data of anti-
resonance frequencies is larger than the amount of data of
natural frequencies. Besides, in the real practice of realising

damage identification, sufficient structural information can
be obtained by selecting a small number of driving points.
*erefore, the optimal driving point should be selected.

In this section, the optimal driving points are selected by
conducting a sensitivity analysis of the antiresonance fre-
quency on the location of driving point j. Supposing the
thickness of the steel shim is neglected, the length of each
periodic cell denoted by l is equal to the thickness of the
rubber layer. *us, the location of driving point j can be
expressed as

xj � jl j � 1, 2, ..., NP( . (26)

By substituting equation (26) into (19), the anti-
resonance frequency can be rewritten as
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z
u
j � 2sin

πk1l

2xj

����������������������
3G

cos πk1l/xj  + 2 + 3θ ρl
2



k1 � 1, 2, . . . , j − 1(  (27a)

z
u
j � 2sin

π 2k2 − 1( l

4 NPl − xj 

������������������������������������
3G

cos π 2k2 − 1( l/2 NPl − xj   + 2 + 3θ ρl
2



k2 � 1, 2, . . . , NP − j( . (27b)

As shown in equation (27), the expression of anti-
resonance frequency contains the information of the loca-
tion of the driving point. *erefore, the sensitivity of the

antiresonance frequency zj with respect to the location of
driving point j can be derived as follows:

zzj

zxj

� −

���
3G

ρ


3πk1(1 + θ)

x
2
j cos πk1l/xj  + 2 + 3θ 

3/2 cos
πk1l

2xj

k1 � 1, 2, . . . , j − 1( , (28a)

zzj

zxj

�

���
3G

ρ


3π 2k2 − 1( (1 + θ)

4 NPl − xj 
2
cos π 2k2 − 1( l/2 NPl − xj   + 2 + 3θ 

3/2 cos
π 2k2 − 1( l

4 NPl − xj 
k2 � 1, 2, . . . , NP − j( . (28b)

*e antiresonance frequency with the larger sensitivity
coefficient zzj/zxj is expected to be much more sensitive to
the location of driving point j. However, the sensitivity
coefficient zzj/zxj is closely related to the order of anti-
resonance frequency zj, so the antiresonance frequencies of
different orders cannot be directly fused together for the
selection of the optimal driving point and damage identi-
fication. *erefore, the relative sensitivity zzj/zxj is pro-
posed, defined by

zzj

zxj

�
1
zj

zzj

zxj

, (29)

zzj/zxj represents the sensitivity of the change rate of
antiresonance frequency to the location of driving point,
which can be used to eliminate the influence of the different
orders.

In the evaluation of the j-th node contributions in the
sensitivities of the antiresonances, the sensitivity coefficient
zzj/zxj is normalised.

cj,n �
zzj,n/zxj






NP

j�1 zzj,n/zxj




. (30)

Assuming that only the first Nm order antiresonance
frequencies of each driving point are available, the vector
containing the sensitivity coefficients cj,n can be formed as
Cj � [cj,1, cj,2, . . . , cj,Nm

]. *e overall sensitivity of anti-
resonance frequency of point j can be expressed as

Cj � 

Nm

n�1
cj,n. (31)

With the index Cj, the antiresonance frequency sensi-
tivities involving the much higher value are expected to be
optimal for damage identification.

4. Sensitivity-Based Damage Detection

When the ideal periodicity is disrupted due to the damage,
the laminated rubber bearing becomes a quasiperiodic
structure. *e changes in the n-th antiresonance frequency
of the j-th node before and after the damage can be expressed
as

Δzj,n � z
d
j,n − z

u
j,n, (32)

where zd
j, n and zu

j,n are the n-th antiresonance frequencies of
the j-th node in the damaged and undamaged statuses,
respectively.

*e damage of the shear modulus is considered in this
study. Take as an example the case in which the driving point
is at the j-th node.

zzj,1

zG
[1]
ΔG[1]

+
zzj,1

zG
[2]
ΔG[2]

+ · · · +
zzj,1

zG
NP[ ]
ΔG NP[ ] � Δzj,1

zzj,2

zG
[1]
ΔG[1]

+
zzj,2

zG
[2]
ΔG[2]

+ · · · +
zzj,2

zG
NP[ ]
ΔG NP[ ] � Δzj,2

⋮

zzj,Nm

zG
[1]
ΔG[1]

+
zzj,Nm

zG
[2]
ΔG[2]

+ · · · +
zzj,Nm

zG
NP[ ]
ΔG NP[ ] � Δzj,Nm

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Suppose the number of driving points selected is ND.
*us, the total number of available changes in the anti-
resonance frequency is q � ND × Nm. Equation (33) is ap-
plied to all driving points, and a matrix form is written as

SΔG � Δz, (34)

8 Shock and Vibration



where S ∈ Rq×NP is the sensitivity matrix of the anti-
resonance frequencies with respect to the shear modulus.
Furthermore, Δz ∈ Rq×1 is the vector consisting of the
change in measured antiresonance frequencies, and ΔG �

[ΔG1,ΔG2, . . . ,ΔGNP
]T ∈ RNP×1 is the parameter vectors to

be identified.
In practical engineering structures, the damage types of

the isolation bearings are varied. As the ageing of rubber
material leads to the increase in the shear modulus, the
inequality constraint ΔG≥ 0 is introduced. *e optimality
criterion used in [17, 18] is adopted to solve equation (34).

*us, by solving the nonnegative least-square curve
fitting problem [36], the optimal solution of the change in
shear modulus of each cell can be obtained.

min
ΔG≥0

1
2
‖SΔG − Δz‖

2
. (35)

It should be pointed out that the damage usually only
occurs in a small part of the entire structure, which means
the damage vector ΔG is sparse. It guarantees the uniqueness
of the solutions to underdetermined linear systems of
equations (37).

5. Analytical Examples

A rubber-steel periodic structure with one fixed end and one
free end is employed to demonstrate the feasibility of the
proposed method in the damage identification of a lami-
nated rubber bearing. As shown in Figure 1, the rubber-steel
quasiperiodic structure consists ofNP cells, in which the cells
are numbered starting at 1 from the bottom cell to the top
one. *e structural parameters are as follows: the thickness
of each rubber layer is l� 0.01m, the cross-sectional di-
ameter is φ� 0.8m, the shear modulus is G� 1× 106N/m2,
the density is ρ� 1000 kg/m3, themass ratio of steel to rubber
is θ� 2, and the total number of cells is NP � 10. *e details
are listed in Table 1.

*e method is tested for its ability to detect damage by
using five cases. *e detailed damage configuration is shown
in Table 2. *e cases simulate the increase in shear modulus
of the rubber layer due to the ageing of the rubber material.
Cases 1 and Case 2 are single damage conditions in which
the corresponding shear moduli of cells 1 and 10 are in-
creased by 5%. Case 3 has two damaged cells, which shows
the condition in which the shear moduli of cells 1 and 10 are
increased by 5% simultaneously. Cases 4 and 5 have three
damaged cells. Case 4 shows the condition in which the shear
moduli of cells 2, 7, and 10 are increased by 8%, 2%, and 5%,
respectively. In Case 5, the damage appears in cells 2, 4, and
6, and the damage magnitudes of the three cells are all
increased by 5%.

*e optimal driving points are selected according to the
selection criteria in accordance with the more sensitive
driving points proposed in Section 3.2. *e specific process
is as follows. Firstly, by substituting the geometric and
material parameters into equation (19), the n-th anti-
resonance frequencies of the j-th node in the healthy status,
which is given by zu

j,n (j� 1, 2, . . .,NP; n� 1, 2, ...,Nm), can be
calculated. Assume that only the first four antiresonance

frequencies of each driving point are used similar to that in a
real situation in which only limited measurement infor-
mation is available, i.e., Nm � 4. *e first four antiresonance
frequencies of the different driving points are listed in Ta-
ble 3. Secondly, the sensitivity coefficients of the anti-
resonance frequencies with respect to the location of driving
points are calculated using equation. (28), as depicted in
Figure 3(a). Finally, the overall sensitivity of the anti-
resonance frequencies of driving point j is obtained using
equation (31). As shown in Figure 3(c), the three most
sensitive points are the 6th, 5th, and 7th nodes, whereas the
two least sensitive points are the 9th and 10th node.

From the calculation of the overall sensitivity of the
driving points, five schemes are formulated for driving point
selection in damage identification, as shown in Table 4. In
Schemes 1 and 2, the 6th and 5th nodes are selected as the
driving points, respectively. In Scheme 3, the 6th and 5th
nodes are simultaneously selected as the driving points. In
Scheme 4, the 6th, 5th, and 7th nodes are selected as the
driving points to investigate the influence of the size of the
“optimal driving point” dataset on the damage identifica-
tion. Scheme 5, which consists of the “worst two” driving
points (9th and 10th nodes), is also investigated.

Take Case 1 as an example for demonstrating the process
of calculation when the 1st node is used as the only driving
point, i.e., j� 6 and ND � 1. And the procedure of damage
detection is illustrated in Figure 4. Firstly, by substituting the
geometric and material parameters into equation (25), the
sensitivity coefficients of antiresonance frequencies with
respect to the shear modulus are calculated. As shown in
Figure 5, the sensitivity coefficients of the element in the
substructure on one side of the driving point are equal to
zero. *e sensitivity of the driving point antiresonance
frequency represents the sensitivity of the natural frequency
of the substructure on either side of the driving point.
Consequently, the sensitivity of the antiresonance frequency
to the element in another substructure equals zero.

Secondly, by substituting the geometric and material
parameters for Case 1 (i.e., ΔG[1] � 5%G) into equation (8),
the antiresonance frequencies in the damaged status zd

j,n are
calculated. *en, the changes in antiresonance frequencies
before and after the damage are computed according to
equation (32). Finally, by using the change in antiresonance
frequencies and the sensitivity matrix, the damage is
identified by solving the optimisation problem of equation
(35). *e results of the damage identification are expressed
using the change rate of the shear modulus, which is defined
as ΔG/G. Subsequently, Case 1 is detected using the other
four schemes of the driving point selection. As shown in
Figure 6, when only the 5th or 6th node is used, the damage
in cell 1 is misidentified due to the symmetry. In other
words, the sensitivity of antiresonance frequency of the 5th
node to cell 1 is equal to that of cell 5, and the sensitivity of
antiresonance frequency of the 6th node to cell 1 is equal to
that of cell 6, as shown in Figure 5(a) and 5(b).*ese findings
indicate that the antiresonance frequencies of a single
driving point cannot be used for damage identification even
if it is the optimal driving point. *e results of damage
identification, which uses the “best two” and “best three”
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driving points, suggest that the location and magnitude of
the damage can be both predicted reasonably. *erefore,
more than one driving point should be selected for damage
identification.

From the aforementioned analyses, Schemes 3 and 4 are
selected for damage identification. Scheme 5, which consists
of the “worst two” driving points, is also studied to verify the
proposed optimal driving point selection criteria. In

Table 1: *e geometric and material parameters of periodic rubber–steel structure.

Parameters Values
Static shear modulus (G) 1× 106N/m2

Cross section diameter of the rubber layer (φ) 0.8m
Density of the rubber material (ρ) 1000 kg/m3

*ickness of each rubber layer (l) 0.01m
Mass ratio of steel to rubber (θ) 2
*e total number of cells (NP) 10

Table 2: Damage cases for the 10-cell periodic rubber–steel structure.

Cases Case 1 Case 2 Case 3 Case 4 Case 5
Damage cell (k) 1 10 1, 10 2, 7, 10 2, 4, 6
Increase in shear modulus (ΔG/G)/% 5 5 5, 5 8, 2, 5 5, 5, 5

Table 3: *e first four antiresonance frequencies of different driving points (j� 1, 2, . . ., 10) for undamaged 10-cell periodic rubber–steel
structure.

Order (n) zu
1,n zu

2,n zu
3,n zu

4,n zu
5,n zu

6,n zu
7,n zu

8,n zu
9,n zu

10,n

1 318.5167 358.2907 409.4071 477.5191 572.7775 715.4009 817.0391 715.4009 636.2086 572.7775
2 952.1873 1070.0356 1220.8973 2320.4851 1140.5367 952.1873 952.1873 2102.0259 1265.4368 1140.5367
3 1574.7513 1765.4390 1878.6729 2738.6128 1697.0584 1878.6729 1618.5364 2738.6128 1878.6729 1697.0584
4 2175.4360 2427.5732 2006.8487 3123.5874 2233.7496 2102.0259 2381.8669 3300.1676 2462.9191 2233.7496

1 2 3 4 5
Driving point

6 7 8 9 10

6
5
4
3
2
1
0

×104

n=1
n=2

n=3
n=4

∂z
j/∂

x j

(a)

1 2 3 4 5
Driving point

6 7 8 9 10

0.22

0.18

0.14

0.1

0.06

n=1
n=2

n=3
n=4

c j,
n

(b)

1 2 3 4 5
Driving point

6 7 8 9 10

0.6
0.55

0.5
0.45

0.4
0.35

0.3
0.25

C– j

(c)

Figure 3: (a)*e sensitivity coefficients zzj,n/zxj(j � 1, 2, . . . , NP; n � 1, 2, . . . , Nm) for Nm � 4 and NP � 10. (b) *e normalised sensitivity
coefficients cj,n(j � 1, 2, . . . , NP; n � 1, 2, . . . , Nm). (c) *e overall sensitivity Cj of driving point j (j � 1, 2, ..., NP).
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addition, the damage detection result of the proposed
method that uses antiresonance frequencies is compared
with that of the scheme that uses natural frequencies (the
first five orders). In this study, only the first five natural
frequencies are used to simulate the situation in which only
the fewer-order modes can be measured in practical ap-
plication [17]. *e accuracy of the identification results is
measured using the root mean square error (RMSE), which
is normalised by the initial parameter value,
RMSE �

�������������������������������
1/NP 

NP

λ�1 (ΔG[λ]
exp ecte d − ΔG[λ]

actual/G)2


(λ � 1, 2, ..., NP) [29].
Table 5 shows the RMSE of the identification results of each
damage identification scheme under different damage
conditions. *e process is repeated to detect a single damage
in the 10th cell. As shown in Figures 7(1) and 7(2), both of
the antiresonance frequencies extracted frommore than one
driving point and natural frequencies offer good predictions
of the single damage, with the RMSE approaching zero. *e
small deterioration in terms of accuracy of the damage
magnitude prediction can be attributed to the sensitivity
coefficients being deduced around the healthy structure.

*en, a detection of the two damaged cells is conducted
on the basis of the abovementioned two single damage cases.
*e detection result of Case 3 is shown in Figure 7(3). *e
damage in cells 1 and 10 can be identified using the

antiresonance frequencies of more than one driving point.
When natural frequencies are used, the damage in cell 10
cannot be identified, and the cell is even incorrectly iden-
tified as cell 9. *e corresponding RMSE approaches a value
as high as 1.7%.

Subsequently, the three cells in the structure are
utilised for damage detection. In Case 4, the damage types
in cells 2, 7, and 10 can be identified using the anti-
resonance frequencies of more than one driving point.
When natural frequencies are used, the damage in cell 10
cannot be identified, and the cell is even incorrectly
identified as cell 1, as shown in Figure 7(4). In Case 5, the
damage types in cells 2, 4, and 6 can be predicted rea-
sonably using either the antiresonance frequencies of
more than one optimal driving point or the natural fre-
quencies. When the “worst two” driving points are used,
the damaged cells cannot be identified. *e RMSE of the
damage identification results entailing the “worst two”
driving points selected by the proposed criterion is much
greater than that involving the “best two” driving points,
as shown in Table 5. On the one hand, as shown in
Figure 8, the performance of the antiresonance fre-
quencies of the “best two” driving points selected by the
proposed criterion is better than that of the natural

The sensitivity coefficient of the antiresonance
frequency with respect to the shear modulus of

the λ-th cell ∂zj/∂G[λ] from Eq. (25)

The antiresonance frequencies of the 
periodic rubber–steel structure in the

healthy status zu
j,n from Eq. (19)

The changes in the n-th antiresonance 
frequency of the j-th node before and
after the damage ∆zj,n from Eq. (32) 

The antiresonance frequencies of the quasi-
periodic rubber–steel structure in the damaged

status zd
j,n from Eq. (8)

The geometric and material parameters of the 
healthy structure in Table 1

The root-mean-square errors (RMSE) 
of the detection results 

The actual values of material parameters of the damaged
structure ∆G[λ]

actual

The expected values of material parameters of the
damaged structure ∆Gexpected according to

sensitivity-based damage detection from Eq. (35)
[λ]

Figure 4: *e procedure of damage detection in laminated rubber bearing.

Table 4: Selection of driving points.

Schemes (1) (2) (3) (4) (5)
Driving points 6 5 5, 6 5, 6, 7 9, 10
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Figure 5: Continued.
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Figure 5: Continued.
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frequencies. On the other hand, the performance of the
antiresonance frequencies of the “best three” driving
points selected by the proposed criterion is less superior to

that of the “best two” driving points. *e analytic results
demonstrate that the “best two” driving points can pro-
vide sufficient information for identification.

1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6

Element number

ΔG
/G

 (%
)

scheme 1
scheme 3
scheme 4

actual damage

scheme 2

Figure 6: Detection of Case 1 using Schemes 1–4.

Table 5: RMSE (%) of the 5 cases.

Case 1 Case 2 Case 3 Case 4 Case 5
Scheme 3 0.0425 0.1060 0.1199 0.1674 0.1126
Scheme 4 0.0431 0.1079 0.1228 0.1664 0.1082
Scheme 5 0.0482 0.0495 0.0638 0.1845 2.2470
Natural frequencies 0.0508 0.1226 1.6846 1.7771 0.1114

n=1 n=2

n=3 n=4

1 2 3 4 5 6 7 8 9 10
Element

6

4.5

3

1.5

0

Se
ns

iti
vi

ty
×10-5

1 2 3 4 5 6 7 8 9 10
Element

2

1.5

1

0.5

0

Se
ns

iti
vi

ty

×10-4

1.2

0.9

×10-4

1 2 3 4 5 6 7 8 9 10
Element

0.6

0.3

0

Se
ns

iti
vi

ty

1 2 3 4 5 6 7 8 9 10
Element

2.4

1.8

1.2

0.6

0

Se
ns

iti
vi

ty

×10-4

(e)

Figure 5: *e sensitivity coefficients zzj,n/zG[λ](j � 1, 2, . . . , NP; n � 1, 2, . . . , Nm; λ � 1, 2, . . . , NP). (a) j � 5. (b) j � 6. (c) j � 7. (d) j � 9.
(e) j � 10.
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Figure 7: Detection of Cases 1–5. Actual damage; identification result (Scheme 3); identification result (Scheme 4); identification
result (Scheme 5); identification result (natural frequencies).
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Figure 8: Root mean square errors (RMSE) of the detection results for different cases.
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6. Conclusions

*is study presented an effective method of damage de-
tection for rubber bearings based on the antiresonance
frequencies of a periodic structure and its sensitivity anal-
ysis. *e laminated rubber bearing was simplified as a
monocoupled rubber-steel periodic structure. *e anti-
resonance frequency of the monocoupled periodic structure
was derived using the dynamic stiffness method combined
with the periodicity of the structure. *e optimal driving
points were selected on the basis of the sensitivity analysis of
the antiresonance frequency on the location of the driving
point. *e sensitivity of the antiresonance frequency to the
damage scaling parameter was derived from the anti-
resonance frequency characteristic equation. *e expres-
sions of antiresonance frequency as well as its sensitivities
are explicit, which have application to engineers and de-
signers.*en, the changes in antiresonance frequencies were
measured. *e damage was identified by solving the sen-
sitivity identification equation by means of the numerical
optimisation method.

*e numerical case studies were performed under dif-
ferent damage scenarios. *e identification results showed
that the antiresonance frequencies can be used to identify the

shear modulus damage of different rubber layers, and the
identification result entailing antiresonance frequencies is
better than that involving natural frequencies. *e driving
point antiresonance frequencies selected by the optimal
driving points selection criterion can always produce better
identification results. Moreover, this study demonstrated
that the “best two” driving points can provide sufficient
information for damage identification. It should be em-
phasized that compared with the most of laminated rubber
bearings used in the practical engineering structures, the
periodic system model considered in this paper is relatively
simple. For example, the bending deformation of the rubber
layer is neglected. *erefore, the performance of the ap-
proach for multicoupled periodic systems with complex
boundary conditions needs to be investigated. Besides, there
exists another matter of how to consider dampness and
nonlinearity of rubber materials.

Appendix

*e detailed expressions of characteristic determinants of
the substructures on both sides of the driving point, i.e., |DL|

and |DR|, are as follows:
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*e determinant |DL| can be calculated by expanding the
λ − th (λ � 1, 2, . . . , j) row.

DL


 �

d
[λ]
RL

dLR

DL


λ,λ−1 + cosh μ −

d
[λ]
LL

dLR

  DL


λ,λ + DL


λ,λ+1.

(A.2)

*e determinant |DL|λ,λ−1 is obtained by removing the
λ − th row and the (λ − 1) − th column of |DL|; the deter-
minant |DL|λ,λ is obtained by removing the λ − th row and
the λ − th column; and the determinant |DL|λ,λ+1 is obtained
by removing the λ − th row and the (λ + 1) − th column.*e
detailed expressions of the determinants |DL|λ,λ−1, |DL|λ,λ,
and |DL|λ,λ+1 are as follows:
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*e determinant |DR| can be calculated by expanding the
(λ − j) − th (λ � j + 1, j + 2, . . . , NP) row.
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*e determinant |DR|λ−j,λ−j−1 is obtained by removing
the (λ − j) − th row and the (λ − j − 1) − th column of
|DR|; the determinant |DR|λ−j,λ−j is obtained by removing
the (λ − j) − th row and the (λ − j) − th column; and the
determinant |DR|λ−j,λ−j+1 is obtained by removing the (λ −

j) − th row and the (λ − j + 1) − th column. *e detailed
expressions of the determinants |DR|λ−j,λ−j−1, |DR|λ−j,λ−j, and
|DR|λ−j,λ−j+1 are as follows:
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