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Amodel of a segmented electrode multilayer cantilever piezoelectric actuator was established to predict its actuation performance,
and then, theoretical and numerical analyses of the strain nodes were performed based on normalized deflection and strain
distributions. +e segmented electrodes instead of the continuous electrodes are applied in a multilayer cantilever piezoelectric
actuator which can avoid the modal displacement offsets at the high vibration modes, thereby enhancing the tip deflection. +e
theoretical analysis and simulation results show that the tip deflection of the segmented electrode at the second mode was almost
100% larger than that of the continuous electrode. At the second mode, the maximum error between the theoretical calculation
value of the tip deflection and the simulation result is 6.8%. It is because the segmented electrode is optimally designed at the strain
node, which avoids the modal displacement offsets of a multilayer cantilever piezoelectric actuator at the high vibration modes;
meanwhile, the theoretical results are closer to the FEM simulation results. It reveals that the tip deflection of a multilayer
cantilever piezoelectric actuator can be precisely estimated by the proposed model. +is research can provide some useful
guidance improving the actuation performance and optimizing the design of a multilayer cantilever piezoelectric actuator.

1. Introduction

Piezoactuators are widely used in microelectromechanical
systems (MEMS) because of the characteristics of small size,
thinness, and high displacement, such as atomic force mi-
croscopes [1], biosensors [2], microelectromechanical
switches [3], and micropositioning platforms [4], etc. +e
actuation performance improvement and design optimiza-
tion of such devices have always been the main focus of
many researchers. In particular, there are many reports in
the theoretical research of piezoelectric actuators. Based on
the Euler model, Wang et al. [5] and Zhang et al. [6] pre-
sented the governing equations for the piezoelectric actu-
ators with a sandwich layer. In a study conducted by Zhang
et al. [7], a simple MCPAs distributed parameter model is
developed to simulate the fundamental wave of

piezoelectricity in thickness-extension mode. In order to
reduce the poor piezoelectric effect caused by the damage of
piezoelectric materials, some researchers have designed
multilayer piezoelectric actuators to improve the flexibility
and compactness of the structure. Afonin [8] constructed a
generalized structural parameter model of nano-
mechatronics multilayer electromagnetic elastic actuators.
Shivashankar and Gopalakrishnan [9] reported a d33 mode
surface-bondable multilayer actuator that can provide large
braking force and stroke for driving large, thick, and stiffer
structures. Peng et al. [10] proposed a piezoelectric multi-
layer actuator considering buffer layers and analyzed the
dependence of the resonance frequency at the first mode and
tip deflection on different layer thicknesses (buffer layer,
electrode layer, and substrate layer).+e contributions of the
above research mainly focused on the first mode while
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ignoring the other higher-frequency modes, because the tip
deflection of the cantilever beam at higher modes is smaller
than the tip deflection at the first mode. However, piezo-
electric cantilever beams can also provide superior perfor-
mance at higher modes [11], which is more common in
energy harvesters [12]. Ly et al. developed a 31-effect pie-
zoelectric bending cantilever based on the Euler-Bernoulli
beam theory. +eir results indicated that the voltage and
bandwidth at the second mode of resonant frequency were
much larger than those at the first mode [13]. Except for the
first mode, the cantilevered piezoelectric energy harvester
(PEH) has fixed strain nodes in other vibration modes, and
there are dynamic strain distributions with opposite strain
signs on both sides of the node. +eoretical and experi-
mental results demonstrate that covering the strained nodes
with continuous electrodes may lead to a strong cancelation
of the electrical output [14]. In order to improve the pie-
zoelectric performance, Zizys et al. investigated the seg-
mentation of a vibration-shock cantilevered PEH working in
higher transverse vibration modes [15]. Rafique et al. used
segmented electrodes to enhance the output power of the
PEH [16]. Liu et al. employed the first and second bending
vibration modes to design a novel bonded-type piezoelectric
actuator, which obtained higher power density than pre-
vious designs [17]. Although segmented electrodes could be
applied to MCPAs at the high vibration modes, there is
currently no complete electromechanical equation that can
describe MCPA with segmented electrodes (MCPA-S).

In this paper, by optimizing the structure of segmented
electrodes, a MCPA with segmented electrodes based on the
strain nodes is designed to improve the actuation perfor-
mance [18]. +e strain nodes are determined by the nor-
malized deflection and strain distribution [14]. Based on
Euler-Bernoulli beam theory and piezoelectric constitutive
equation, a complete electromechanical coupling model is
developed for the MCPA-S. Here, the electrodes are con-
nected in series at the first mode and in parallel at the second
mode, which is different from those reported in [11]. It can
prevent the displacement offset in the electric potential,
increase the modal electromechanical coupling term, and
improve the applied capacity. In order to understand
whether segmented electrodes can eliminate the influence of
strain node at higher modes, we have studied the rela-
tionship of tip deflection of segmented and continuous
electrodes MCPAs with excitation frequency, excitation
voltage, and beam length under different modes. In addition,
the structural parameters of the MCPAs were optimized by
simulating different thicknesses of the substrate, piezo-
electric, and buffer layers, as well as the different Young’s
modulus ratios. +e proposed model and prediction results
can provide useful guidance for optimizing the construction
and efficiency of MCPAs.

2. Design and Modeling

2.1. Design. Except for the fundamental modes, the dy-
namic strain distribution of the cantilevered beam changes
direction at fixed strain nodes. +e modal actuation ca-
pability of a cantilevered beam is closely related to the

position of the piezoelectric actuators. To increase the
driving force, the use of segmented actuators to control
adaptive structures is proposed by avoiding the position of
dynamic strain phase changes. At high modes, when the top
surface of the entire piezoelectric layer was covered by
continuous electrodes, the actuation capability had been
significantly reduced. +erefore, we apply electrode seg-
mentation at the nodes to a multilayer actuator (consid-
ering buffer and electrode layers), which is different from
the traditional sandwich structure. +is paper takes the
MCPA in the second mode as an example to analyze the
actuation capability.+ere is one strain node in the second-
order mode, and the electrode is cut at the node and divided
into two sections of electrodes.

Figure 1 depicts a two-dimensional schematic diagram
of the MCPA-S. One end of the multilayer cantilever pi-
ezoelectric actuator is attached to the base composed of five
different layers from bottom to top: the substrate, the
buffer, the second electrode, the piezoelectric layer, and the
first electrode as shown in Figure 1(a). +e first electrode
and the piezoelectric layer are cut at the strained node to
form segmented electrodes for the MCPA. +e contact
between the second electrode and the lower surface of the
piezoelectric film is continuous, but the contact between
the first electrode and the upper surface of the piezoelectric
layer is discontinuous. +e polarization direction is re-
versed after passing through the strain node, and the split
position is the strain node position L1. +e different
electrode connections are adopted under the different
modes of the cantilever beam. At the first mode, the strain
distribution is in the same phase for the MCPA, because
there is no strain node [10]. Here, the electrode directions
in the L1 and L1-L regions are opposite, and the electrode
wires are connected in series with the applied voltage, as
shown in Figure 1(b). At the second mode, there is a strain
node and the strain distributions in L1 and L1-L regions are
180 degrees out of phase. +e connection of the electrodes
is described in Figure 1(c), which is arranged in parallel to
prevent modal displacement in the electric potential. And
then the applied voltage should be applied on the L1 and L1-
L regions of the cantilever beam to generate the deflection
for the MCPA.

Z1, Z2, Z3, and Z4 depict the vertical coordinates of the
bottom-surface of substrate, buffer, piezoelectric layer, and
the first electrode, respectively. Zi and Z5 indicate the vertical
coordinates of the top surface of buffer and the second
electrode. +e length and width of the cantilever beam are
denoted by L and b. In Cartesian coordinate system, the x-
and z-axes are consistent with the directions 1 and 3, re-
spectively, and the z-axis represents the polarization di-
rection of the piezoelectric layer. +e coordinate origin of
the x-z plane corresponds to the leftmost point of theMCPA.
+e mid-plane of the substrate is denoted by the dotted line.
+e neutral plane is located at z0 from the mid-plane of the
substrate. Moreover, h is used to describe the thickness of
each layer, and its subscripts p, s, i, and e indicate the pie-
zoelectric, substrate, buffer, and electrodes layers, respec-
tively. +e transverse deflection w(x, t) of the MCPA occurs
along the z-axis and is a function with the x value and time t.

2 Shock and Vibration



2.2. Modeling

2.2.1. Electromechanical Coupling Equation. +e constitu-
tive equation for piezoelectric materials can be described in
the form [10]

T1,p � c11,pS1 − ep31E3, (1)

where stress, strain, and electric field are denoted by T, S, and
E, respectively, elastic constant of the piezoelectric material
is described by c, and piezoelectric coupling coefficient
under steady electric field is depicted by ep. Here, the axial
strain and polarization direction are marked as subscripts 1
and 3, respectively. +e elastic stiffness component can be
calculated by c11,p � 1/s11,p according to the plane-stress
presumption of the MCPA. Under a constant electric field,
s11,p denotes the elastic compliance. In addition, e31 can be
expressed as ep31 � d31/s11,p with the commonly used pie-
zoelectric constant d31. +e constitutive equations applied to
the substrate layer and the buffer layer can be given as [19]

T1,s � c11,sS1,

T1,i � c11,sS1.
(2)

+e constitutive equation for the electrode layer is [19]

T1,e � c11,eS1, (3)

and the axial strain S1 at value x and time t can be obtained
by [20]

S1(x, t) � −z
z
2
w(x, t)

zx
2 . (4)

According to our previous research [7], the position of
the neutral plane z0 can be given by z0 � [(c11,ehe2 + c11,p

hp)(2he1 + 2hi + hs + hp) + c11,ehe2
(he2

+ hp)c11,ehe2
(he2

+

hp) + (c11,ehe1
+ c11,ihi) (hs + hi) + c11,ehe1

(he1
+ hi)]/(c11,shs

+c11,ihi + c11,ehe1
+ c11,ehe2

+ c11,php)

According to the moment balance equation (the beam’s
cross section), the bending moment is given by

M(x, t) � −b 􏽚
z2

z1

T1,szdz + 􏽚
zint

z2

T1,izdz + 􏽚
z3

zint

T1,e1
zdz + 􏽚

z4

z3

T1,pzdz + 􏽚
z5

z4

T1,e2
zdz􏼠 􏼡. (5)

At the first mode, the polarization and electric field are
consistent along the entire beam length; thus, the uniform
electric field E3(t) can be given in terms of voltage v(t) across
the piezoelectric layer and the thickness hp as
E3(t) � −v(t)/hp. At the second mode, the polarization

direction and electric field of the two segmented piezo-
electric layers are different.+erefore, for the 0-L1 area (same
direction) the electric field can be obtained by
E3(t) � −v(t)/hp; and for the L-L1 area (opposite direction),
E3(t) � v(t)/hp.

Z
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Figure 1: (a) Schematic illustration of the deflection of MCPA-S; (b) electrode wire connection at the first mode (series connection) and (c)
at the second mode (parallel connection).
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By substituting equations (1)–(4) into equation (5) and
integrating equation (5), it can be further simplified to

M(x, t) � EI
z
2
w(x, t)

zx
2 − v(t)Γ(x). (6)

EI represents the bending stiffness of the composite
structure’s cross section, which is expressed by the following
equation:

EI �
b

3
c11,s z

3
2 − z

3
1􏼐 􏼑 + c11,i z

3
i − z

3
2􏼐 􏼑 + c11,e z

3
3 − z

3
i􏼐 􏼑 + c11,p z

3
4 − z

3
3􏼐 􏼑 + c11,e z

3
5 − z

3
4􏼐 􏼑􏽨 􏽩. (7)

Γ(x) represents the spatial distribution of the electric
potential and is related to the modes and the structure of the
piezoelectric cantilever beam. For the MCPA with contin-
uous electrodes (MCPA-C), Γ(x) is expressed as [21]

Γ(x) � ϑ[H(x) − H(x − L)]0≤x≤ L. (8)

For the MCPA with segmented electrodes (Figure 1), the
uniform electric fields are applied at different modes by
conducting the different electrode lines.+e potential spatial
distribution can be regarded as the sum of the two electrode
regions. At the first mode, the electric field is exerted to the
segmented electrodes in series, and the Γ(x) can be derived
by

Γ(x) � Γ1(x) + Γ2(x) � ϑ[H(x) + H(x − L)]. (9)

At the second mode, the electric field is exerted to the
segmented electrodes in parallel, and the Γ(x) can be derived
by

Γ(x) � Γ1(x) + Γ2(x) � ϑ H(x) + H(x − L) − 2H x − L1( 􏼁􏼂 􏼃,

(10)

whereH(x) denotes the Heaviside function and the coupling
term ϑ is given as

ϑ �
be31 z

2
4 − z

2
3􏼐 􏼑

2hp􏼐 􏼑
. (11)

+e configurations of the microcantilever conform to the
Euler-Bernoulli beam hypothesis, which have been pre-
sented in our previous research [10]. Considering viscous air
(medium) damping and Kelvin-Voigt (or strain rate)
damping, the governing equation of the cantilever beam can
be written as [21]

z
2
M(x, t)

zx
2 + csI

z
5
w(x, t)

zx
4
zt

+ m
z
2
w(x, t)

zt
2 + ca

zw(x, t)

zt
� 0.

(12)

Here, the viscous damping coefficient is denoted by ca,
the inertia moment of the cross section area is described by I,
the strain rate damping term is expressed as csI, and the mass
per unit length of the MCPA is represented by m, which is
obtained by

m � b pshs + pehe1 + pphp + pehe2 + pihi􏼐 􏼑, (13)

where the uniform densities of the different layers are ps (Si
substrate), pi (buffer), pe (electrodes), and pp (piezoelectric),
respectively. +e mass per unit length of the different layers
is bps (Si substrate), bpi (buffer), bpe1 (electrodes), bpp (pi-
ezoelectric), and bpe2 (electrodes), respectively. Finally, by
inserting equation (6) into equation (11), the electrome-
chanical coupling equation of the MCPA at the first two
modes can be obtained:

EI
z
4
w(x, t)

zx
4 + csI

z
5
w(x, t)

zx
4
zt

+ m
z
2
w(x, t)

zt
2 + ca

zw(x, t)

zt
� v(t)

d
2Γ(x)

dx
2 . (14)

2.2.2. Modal Analysis. Based on the standard modal ex-
pansion approach, a series of the absolutely uniformly
convergent eigenfunctions are used to describe the trans-
verse deflection of the cantilever beam [11]:

w(x, t) � 􏽘
∞

r�1
ϕr(x)ηr(t). (15)

+e mass normalized eigenfunction and modal coor-
dinate of the clamped-free beam at the rth vibration mode

are, respectively, given by ϕr(x) and ηr(t). +e deflection of
the cantilever beam can be exactly obtained from this
equation. ϕr(x) is written as [11]

ϕr(x) �

���
1

mL

􏽲

cosh
λr

L
x − cos

λr

L
x􏼠 􏼡 − σr sinh

λr

L
x − sin

λr

L
x􏼠 􏼡􏼢 􏼣,

(16)

and it satisfies the orthogonality conditions [9].
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􏽚
L

0
mϕr(x)ϕs(x)dx � δrs,

􏽚
L

0
EIϕs(x)

d4ϕr(x)

dx
4 dx � ω2

rδrs.

(17)

Here, λr (dimensionless frequency number) of the rth
vibration mode can be expressed as follows:

1 + cos λ cosh λ � 0, (18)

and σr is given by

σr �
sinh λr − sin λr

cosh λr + cos λr

. (19)

Bending strain distribution can be measured directly by
the curvature eigenfunction that is the second derivative of
the displacement eigenfunction (equation (16)). For a
positive definite system (λr > 0), the positions of the strain
nodes can be determined by calculating the roots of equation
(20) at 0<x< 1

cosh λrx + cos λrx( 􏼁 − σr sinh λrx + sin λrx( 􏼁 � 0, (20)

where x � x/L denotes the length position (dimensionless)
for the MCPA. By combining equation (20) with equations
(18) and (19), the strain nodes positions (dimensionless) of
the first three modes can be obtained in Table 1.

In addition, ωr is the undamped natural frequency of the
rth mode, which is written as

ωr �
λ2r
L
2

���
EI

m

􏽲

. (21)

Equation (16) is simplified by using the orthogonal
condition of equation (17) and then substituted into
equation (15). +e mechanical motion equation in modal
coordinates can be derived as follows:

d2ηr(t)

dt
2 + 2ξrωr

dηr(t)

dt
+ ω2

rηr(t) − χrv(t) � 0, (22)

where ξr denotes the modal mechanical damping ratio. +e
coupling term (modal electromechanical) is defined as

χr � 􏽚
L

0
ϕr(x)

dΓ(x)

dx
2 dx. (23)

(23) can be further rewritten as [11]

χr � ϑ􏽚
L

0
ϕr(x)

dδ(x)

dx
dx􏼠 􏼡,

χr � ϑ􏽚
L

0

dϕr(x)

dx
δ(x)dx,

(24)

where δ(x) is the Dirac function.
By substituting equation (8) into equation (23), χr for the

continuous electrodes can be rewritten as

χr � ϑ
dϕr(x)

dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�L

􏼠 􏼡. (25)

For the segmented electrodes, χr is related to the spatial
distribution of the electric potential at the vibration modes.

By substituting equation (9) into equation (25), χr at the first
mode can be expressed as

χ1 � ϑ
dϕr(x)

dx

􏼌􏼌􏼌􏼌􏼌􏼌x�L
􏼠 􏼡. (26)

At the second mode, it can be obtained by

χ2 � ϑ 2
dϕ2(x)

dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�L1

−
dϕ2(x)

dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�L

􏼠 􏼡. (27)

Employing the separating variables method, we record
ηr(t) � Nre

jwt and v(t) � Vejwt, where Nr and V represent
the amplitudes. By substituting them into equation (22), ηr
can be calculated by

ηr(t) � 􏽘
∞

r�1

χrϕrVe
jwt

ω2
r − ω2

+ j2ξrωrω
. (28)

By substituting equation (28) into equation (15), the
transverse deflection can be redescribed as the following
formula:

w(x, t) � 􏽘
∞

r�1

χrϕr(x)Ve
jwt

ω2
r − ω2

+ j2ξrωrω
. (29)

Finally, the tip deflection that occurred at the free end of
the cantilever is expressed as

w(L, t) � 􏽘
∞

r�1

χrϕr(L)Ve
jwt

ω2
r − ω2

+ j2ξrωrω
. (30)

3. Verification by FEM Simulation

3.1. Material Properties and Structural Parameters. +e
MCPA finite element model consists of Si substrate, SiO2
buffer, Pt first electrode, piezoelectric, and Pt second elec-
trode. +e geometrical dimensions of the segmented elec-
trodeMCPA include length L, width b, thicknesses hs, hi, he1,
hp, he2, and segmented length L1. All dimensions are listed in
Table 2. At the first and second mode, the mechanical
damping ratios were ξ1 � 0.01 and ξ2 � 0.013, respectively.
Poisson’s ratio υ � 0.3 was set in this paper, and other
material property parameters are shown in Tables 3 and 4.

3.2. Strain Distribution of the Cantilevers with MCPA. In the
simulations, the piezoelectric material is modeled by “solid5”
composed of 3D 8-node hexahedral coupled-field elements,
and the nonpiezoelectric materials are modeled by “solid45”
including 8-node linear structural elements. At the beam’s
fixed end, the freedom degree of displacement is limited to be
zero. +e electrode connection of the first and second elec-
trodes is implemented using coupling commands. For the
upper surface of the second electrode layer and the lower
surface of the piezoelectric layer, the voltage is coupled and
constrained to be zero. +e applied voltage is coupled to the
upper surface of the first electrode layer. Figures 2(a), 2(b),
3(a) and 3(b) show the raw and finemesh of the finite element
(FEM); the circled area marks the position of the strain node.
+e strain distributions of the continuous and segmented
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electrode MCPAs at the first two modes are, respectively,
presented in Figures 2(c), 2(d), 3(c), and 3(d). +e black line
of MCPA is the cutting position of the segmented electrode
(L1), as shown in Figure 3. It can be observed that, at the first
mode, the strain of the continuous and segmented electrodes
decreases monotonously from the fixed end to the free end in
the strain contours of the MCPAs. However, at the second
mode, there is a minimum strain magnitude at a certain
region of the beam, which is much lower than at the fixed end,
indicating the presence of a strain node.

4. Results and Discussion

4.1. Determination of Strain Nodes. Figure 4 shows the de-
pendence of normalized deflection and normalized strain
distribution of the MCPAs with continuous and segmented
electrodes on the dimensionless position along the beam axis
x � x/L. Here, the normalized deflection curve is mono-
tonically decreasing, and there is no zero point at the first
mode, as shown in Figure 4(a). At the second mode there is a
zero point on the normalized deflection curve, indicating the
existence of strain nodes. In Figure 4(b), at the first mode, the
strain distribution curve is monotonically increasing without
strain node. At the second mode, there is a strain node at
x � x/L � 0.216, which is similar to the reported result [11].
+erefore, the existence of strain nodes at the second mode is
analyzed by both the theoretical and simulation models.

4.2. Effect of Segmented Electrode Length on Tip Deflection.
To verify the influence of the segmented electrode length L1
on the tip deflection of the MCPA, the L1-tip deflection
curves under different resonance frequency were simulated
when V� 1–5V, L1 � 0–1.0mm, and L� 1mm, as shown in
Figure 5. Figure 5(a) shows that tip deflection at the first
mode does not change with the increase of L1 under constant
applied voltages. Figure 5(b) indicates that, at the second
mode, as L1 increases from 0 to 0.216mm, the tip deflection

increases monotonically, but as L1 increases from 0.216 to
1mm, the tip deflection decreases nonmonotonically. +e
tip deflection increases and reaches a peak at L1 � 0.216mm
(strain node); then the tip deflection decreases and reaches
the lowest value at L1 � 0.620mm.Meanwhile, the maximum
value of tip deflection increases as the applied voltage in-
creases. At different modes, the electrode is segmented at the
strain node and the electrodes are connected in different
ways, in which the modal electromechanical coupling co-
efficient can reach a large value. For the modal displacement
in the spatial potential, the cancelation is prevented to in-
crease the tip deflection at the second mode. It indicates that
the mechanism of the segmented electrode to avoid the
modal displacement offsets at the high modes has been
verified for the MCPAs. By adjusting the length of the
segmented electrode and positioning segmentation location
at the strain node, the larger tip deflection value can be
obtained to improve the actuation performance.

4.3. Tip Deflections with the Segmented Electrode under Dif-
ferent Excitation Frequencies. Under different excitation fre-
quencies, the tip deflection at the first and second modes of the
MCPA with continuous and segmented electrodes is described
in Figures 6 and 7. +e tip deflection reaches a peak at the
resonance frequency, and the peak value increases with the
growth of the applied voltages, as shown in Figure 6. For
continuous electrodes and segmented electrodes MCPAs, the
tip deflections at the first mode are almost the same. At the
second mode, the tip deflection of the MCPA-S at the second
mode is almost 100% larger than that of the MCPA-C, as
depicted in Figure 7.+emaximum error of the tip deflection at
the secondmode is 6.8% between the theoretical and simulation
results, and the theoretical calculation results of tip deflection
are close to its simulation results. It reveals that, under different
excitation frequencies, there is zero/one strain node at the first/
second mode for the MCPAs, which has different degrees of
influence on the tip deflection. Furthermore, the series/parallel
connection is valid forMCPA-S at the first/secondmode. At the
second mode, the dynamic strain distribution of the beam can
change the strain direction on both sides of the strain node [11].
When the strain nodes are covered by the continuous elec-
trodes, the tip deflection of the beam is canceled. +erefore, the
optimized segmented electrode is cut at the strain node, and the
wires of the segmented electrodes are connected in series at the
first mode and in parallel at the secondmode. It can prevent the
modal displacement in the electric potential from canceling out
[21] and improve the actuation performance of MCPA-S.

4.4. Dependence of Tip Deflection on Applied Voltage. To
perceive the dependence of tip deflection on applied voltage,
theoretical calculations and simulations are carried out on
the tip deflection of MCPA-C and MCPA-S under different
applied voltages. Here, the tip deflection increases linearly
with the increase of the applied voltage from 1 to 5V, as
indicated in Figure 8. +e theoretical slope of the applied
voltage-tip deflection curve at the first mode is 12.85 μm/V at
24 kHz in Figure 8(a). In Figure 8(b), at 150 kHz, the the-
oretical slopes of the applied voltage-tip deflection curves at

Table 1: Frequencies and strain node positions (dimensionless) of
a cantilevered beam for the first three modes.

Mode λr

Strain node positions on
the x-axis (x � x/L)

1 1.87510407 — —
2 4.69409113 0.2165 —
3 7.85475744 0.1323 0.4965

Table 2: +e geometrical dimensions.

b
(μm)

L
(μm)

L1
(μm)

hs
(μm)

hi
(μm)

he1
(μm)

hp
(μm)

he2
(μm)

200 1000 216 20 1 1 2 1

Table 3: Mechanical properties of the different materials.

Material Si SiO2 Pt Piezoelectric
Density (kg/m3) 2330 2200 21400 7550
Young’s modulus (GPa) 170 72 168 81
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the second mode are 0.88 μm/V and 1.73 μm/V, respectively,
for MCPA-C and MCPA-S. +e theoretical and simulation
tip deflections of the MCPA-S are 97% larger than that of
MCPA-C, and the maximum relative error is 7.8%. Obvi-
ously, the theoretical values are in good agreement with the
simulation values. It shows that the presented theoretical
model can correctly estimate the dynamic tip deflection of
the MCPA under the applied voltage.

4.5. Dependence of the Tip Deflection on the Beam Length.
In order to investigate the relationship between the tip de-
flection and the beam length [18], the values of tip deflection of
the MCPA were obtained when L� 0–2.0mm and V� 1–5V.
+e theoretical/simulation results of the L-tip deflection curves
ofMCPA-C andMCPA-S at first and secondmode are given in
Figures 9 and 10. Under different constant voltages, as the beam
length L increases from 0 to 2mm, the tip deflections at the first
and second modes increase nonlinearly, which is consistent

with [22]. At the second mode, the tip deflection of the seg-
mented electrode is obviously greater than that of the con-
tinuous electrode, as shown in Figures 10(a) and 10(b). By
analyzing the relative deviations of the tip deflection when
V� 1V (low applied voltage), the theoretical and simulation
results are expressed by lines and dots, respectively, as shown in
Figure 10(c). +e maximum deviations of the tip deflections
between the theoretical and simulation results are 4.9% for the
MCPA-S and 4.1% for theMCPA-C. It is similar to the reported
results [21].+e validity of the proposedmodel has been verified
for segmented electrodeMCPA.+erefore, it is a useful strategy
to improve the actuation performance by adjusting the beam
length L, which can be used to drive microelectromechanical
switches [3].

4.6. Dependence of Tip Deflection on the Substrate/Piezo-
electric LayerDickness Ratio. In this section, r � Es/Ep and
h � hs/hp are defined to describe Young’s modulus ratio

Table 4: Materials properties of the piezoelectric layer.

Piezoelectric constant d (pm V-1) Dielectric constant Elastic constant (GPa)

d31 � −123 ε11 � 730ε0
c11 � 139
c12 � 77.8

d33 � 289 ε33 � 635ε0
c13 � 74.3
c33 � 115

d15 � 496 c44 � 25.6
c66 � 30.6

NODAL SOLUTION
STEP=1
SUB=1
FREQ=24091.9
EPTOINT (AVG)
DMX=13725.6
SMN=206.486
SMX=.103E+07

206.486
115053

229900
344746

459593
574440

689286
804133

918980
.103E+07

NODAL SOLUTION
STEP=1
SUB=2
FREQ=150433
EPTOINT (AVG)
DMX=13728.5
SMN=7289.51
SMX=.604E+07

7289.51 .135E+07
.202E+07 .336E+07

.403E+07
.470E+07 .604E+07

.537E+07.269E+07
677339

(a)

(c) (d)

(b)

Figure 2: (a) +e FEM mesh and (b) local view of the mesh at the strain node and the stress contours of the MCPA-C at the first (c) and
(d) second mode.
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and thickness ratio between the substrate and the pie-
zoelectric layer [23]. In order to investigate dependence
of tip deflection on the thickness ratio between the
substrate and piezoelectric layer, when V � 1 V, he � 1 μm,
L � 1mm, b � 200 μm, and hi � 1 μm, the h-tip deflection
curves of MCPAs at the first two modes under different

Young’s modulus ratios were simulated and analyzed.
+ey are shown in Figures 11 and 12. Two monotonously
changing regions are formed on two sides of the maxi-
mum point of each curve. At the first and second modes,
as h and r increase, the tip deflections increase/decrease in
the upward/downward region. In particular, when the

NODAL SOLUTION
STEP=1
SUB=1
FREQ=24081.2
EPTOINT (AVG)
DMX=13724.1
SMN=157.492
SMX=.103E+07

157.492
115067

229976
344885

459794
574703

689612
804521

919430
.103E+07

5537.5
681.541

.136E+07
.203E+07

.271E+07
.339E+07

.406E+07
.474E+07 .609E+07

.541E+07

NODAL SOLUTION
STEP=1
SUB=2
FREQ=150339
EPTOINT (AVG)
DMX=13725.7
SMN=5537.5
SMX=.609E+07

(a)

(c) (d)

(b)

Figure 3: (a) +e FEMmesh and (b) local view of the mesh at the strain node and the stress contours of the MCPA-S at the first (c) and
(d) second mode.
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Figure 4: +e (a) normalized deflection and (b) normalized strain distribution of the first two modes are simulated by MATLAB and FEM.
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thickness ratio is constant (h � 0–2.3), the tip deflection
increases with the increase of Young’s modulus
(r � 0.8–2.4). In the downward region, when h is constant

(h � 2.3–5), the tip deflection decreases as r increases
(r � 0.8–2.4). For MCPAs at the first and second mode, the
change tendencies of tip deflections with h and r are

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

The first mode

Ti
p-

de
fle

ct
io

n 
(µ

m
)

L1(mm)

1 V
2 V
3 V

4 V
5 V

(a)

0

2

4

6

8

100

Ti
p-

de
fle

ct
io

n 
(µ

m
)

1 V
2 V
3 V

4 V
5 V

0.0 0.2 0.4 0.6 0.8 1.0
L1(mm)

The second mode

(b)

Figure 5: Effect of the segmented electrode length L1 on tip deflection for the first (a) and second (b) modes under different applied voltages.
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Figure 6: Tip deflection of the MCPA with the continuous and segmented electrodes for the first mode under different excitation fre-
quencies at (a) V� 1V, (b) V� 2V, (c) V� 3V, (d) V� 4V, and (e) V� 5V.
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similar through theoretical calculation and simulation.
+e tip deflection of MCPA-S is good with that of MCPA-
C at the first mode. Obviously, with a smaller thickness
ratio and a larger Young’s modulus ratio, the curve in the
upward region has a larger slope; i.e., in this region the tip
deflection is more sensitive to the thickness change,

which is beneficial for position sensing [24]. At the
second mode, the slopes of the tip deflection curves for
MCPA-S are significantly larger than that of the curves
for MCPA-C, as shown in Figure 12. It indicates that the
tip deflection of MCPA-S is more sensitive to change of
thickness ratio and Young’s modulus ratio. A smaller
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Figure 7: Harmonic response of the MCPA with the continuous and segmented electrodes for the second mode at (a) V� 1V, (b) V� 2V,
(c) V� 3V, (d) V� 4V, and (e) V� 5V.
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thickness ratio and larger Young’s modulus ratio can
achieve the maximum tip deflection, thereby improving
the actuation performance of the MCPAs [25].

5. Conclusions

In summary, by considering the influence of the strain node
on the beam at the high modes for the MCPAs, the optimal
position of segmented electrode should be at the strain node.
At the high modes of MCPAs, the tip deflections of the
MCPA-S are larger than that of the MCPA-C, so the ac-
tuation performance can be improved.+e strain node of the
MCPA-S is 0.216mm at the secondmode, and the developed
complete electromechanical coupling model can predict the
tip deflection at the first twomodes.+e results of theoretical
calculation and simulation indicate that the tip deflections of
the MCPA-S are consistent with the MCPA-C at the first
mode. +e tip deflection of the MCPA-S is almost 100%
larger than that of the MCPA-C at the second mode, and the
tip deflection at the second mode has a maximum error of

6.8% between the theoretical and simulation results. Ob-
viously, the theoretical values and the simulation results are
relatively close, indicating that the proposed model can
precisely estimate the tip deflection of MCPAs. +e reliance
of tip deflection on segmented electrode length, actuation
frequency, voltage, beam length, substrate/piezoelectric
thickness, and Young’s modulus ratio are also discussed.+e
results indicate that, for the MCPA-S, under a certain beam
length and high voltage pressure, a smaller thickness ratio
and a larger Young’s modulus ratio of the substrate/pie-
zoelectric layer are beneficial to gain a larger tip deflection.
+e proposed model verifies the mechanism of MCPA-S to
avoid the modal displacement offsets at the high modes, and
predicted results can provide valuable guidance for opti-
mizing the construction and efficiency of MCPAs.

Data Availability

+e data that support the findings of this study are available
from the corresponding author upon reasonable request.

1

4

7

10

13

Theory

Continuous

Segmented

The second mode

Ti
p-

de
fle

ct
io

n 
(µ

m
) 

0 1 2 3 4 5
Thickness ratio (h)

r = 0.8
r = 1.2
r = 1.6

r = 2
r = 2.4

(a)

2

6

10

14

Segmented

Continuous

The second mode
FEM

Ti
p-

de
fle

ct
io

n 
(µ

m
) 

0 1 2 3 4 5
Thickness ratio (h)

r = 0.8
r = 1.2
r = 1.6

r = 2
r = 2.4

(b)

Figure 12: +eoretical (a) and FE simulation (b) results of the dependence of tip deflection on thickness ratio h at the second mode under
different Young’s modulus ratios r.

0 1 2 3 4 5
35

50

65

80

95

Theory FEM

Continuous/Segmented

r = 0.8
r = 1.2
r = 1.6
r = 2
r = 2.4

The first mode

Thickness ratio (h)
Ti

p-
de

fle
ct

io
n 

(µ
m

) 

Figure 11: +eoretical and FE simulation results of the dependence of tip deflection on thickness ratio h at the first mode under different
Young’s modulus ratios r.

12 Shock and Vibration



Conflicts of Interest

+e authors declare that there are no conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

Acknowledgments

+is work was supported by NNSF of China (11832016 and
51775471), Hunan Innovative Province Construction Special
Major Landmark Innovation Demonstration Project,
Changsha Zhuzhou Xiangtan Landmark Engineering
Technology Project (2019XK2303 and 2020GK2014), Hefei
General Machinery Research Institute Co., Ltd Project
(2021ZKKF043), and Postgraduate Scientific Research In-
novation Project of Hunan Province (CX20200642).

References

[1] Z. Xu, Z. Yang, K. Wang et al., “A bionic inertial piezoelectric
actuator with improved frequency bandwidth,” Mechanical
Systems and Signal Processing, vol. 156, Article ID 107620,
2021.

[2] S. J. Behrouz, O. Rahmani, and S. A. Hosseini, “On nonlinear
forced vibration of nano cantilever-based biosensor via couple
stress theory,” Mechanical Systems and Signal Processing,
vol. 128, no. 3, pp. 19–36, 2019.

[3] Y. B. Chen and Z. Yan, “Investigation of pull-in behaviors of a
nanoswitch tuned by piezoelectric and flexoelectric effects,”
International Journal of Mechanical Sciences, Article ID
107620, 2019.
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