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As the most basic component of rotating machinery, rolling bearing frequently works in harsh environments and complex
working conditions, and its health status a�ects seriously the working e�ciency.�e health statuses of rolling bearing can not only
reduce equipmentmaintenance costs but also contribute to reducingmajor accidents. Based on this, an adaptive diagnosis method
that combines deep gated recurrent unit (DGRU) with wavelet packet decomposition (WPD) and extreme learning machine
(ELM) is proposed for rolling bearing. Firstly, WPD is utilized to eliminate the noise of data. Secondly, DGRU is designed to
extract the representative features of denoised data. Finally, ELM is utilized to output the diagnosis results. Massive results prove
that the superiority and robustness of our approach outperform existing popular methods. Additionally, the proposedmethod can
also achieve powerful antinoise ability.

1. Introduction

�e health state of rotating parts directly a�ects the oper-
ation reliability of the whole mechanical system [1–3]. Once
the rotating parts fail, it will cause serious accidents. Ma-
chinery and equipment are widely used in various industrial
scenarios and electri�ed transmission systems, and some-
times, this equipment may run under unfavorable condi-
tions, such as high temperature, high humidity, and high
load environment, which will eventually lead to equipment
failure and cause high maintenance of high maintenance
cost, serious property loss, and safety hazards. �e faults of
mechanical equipment can usually be attributed to di�erent
types of faults, including driving inverter faults, stator faults,
rotor faults, and bearing failures. According to statistics,
bearing faults are the most common types of faults, and the
incidence of failure reaches 30% to 40% [4–6]. Since bearing
is the most vulnerable parts of mechanical equipment, the
diagnosis of accurate bearing faults has been a study of

engineers and scientists in the past few decades. �erefore,
an e�ective rotating machinery condition monitoring and
fault identi�cation system are established to ensure the safe
operation of equipment and personnel safety. As the most
basic component, bearings frequently work in harsh envi-
ronments and complex working conditions, and its health
status a�ects seriously the working e�ciency [7–10]. �e
health statuses of rolling bearing can not only reduce
equipment maintenance costs but also contribute to re-
ducing major accidents [11, 12].

Fault diagnosis methods based on deep learning are
booming. �is method is based on data-driven methods and
integrates feature learning and intelligent recognition.
Compared with traditional methods, it gets signal pre-
processing and expert knowledge, especially when analyzing
massive monitoring data. Bearing fault diagnosis has long
been a hot topic of research [13–15]. Deep learning methods
have made lots of achievements on the advent of avoiding
extracting manually features [16–19]. However, most of

Hindawi
Shock and Vibration
Volume 2022, Article ID 4648311, 13 pages
https://doi.org/10.1155/2022/4648311

mailto:munira.batool@uettaxila.edu.pk
https://orcid.org/0000-0001-7818-2578
https://orcid.org/0000-0003-3737-7269
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4648311


these models can exhibit excellent performance under the
premise that the data have the same data distribution.
Unfortunately, it is difficult or even unrealistic to meet the
premise when considering complicated operating condi-
tions, the degradation of equipment performance [20–23].
+e diagnosis performance of most deep learning models
will be greatly reduced when the premise is not accessible.
Some researchers try to use fine-tuning algorithm or
retraining model strategy to tackle the above issue, but a few
labeled target data still need to be provided. Collecting la-
beled data requires lots of expenses or is even impossible in
actual scenarios. Hence, it is very necessary to explore some
promising methods that can apply the knowledge from
relevant areas to solve problems. +e generative adversarial
network (GAN) was innovatively designed by Goodfellow
et al., which utilizes the adversary between generators and
discriminators for generating data with the same distribu-
tion as the raw. However, the adversarial mechanism renders
the model challenging to be in equilibrium. Hence, many
scholars have offered research solutions for further im-
proving the GAN model. Radford et al. [24] proposed deep
convolutional generative adversarial networks (DCGANs)
fusing CNN with GAN, which avoids the GAN model to
converge the learned data distribution to the same one.

Unlike DAE, DBN, CNN, and GAN, RNN is still in its
infancy in diagnosis field. +e main reason is conventional
RNN that has an unignored problem-gradient vanishing
[25]. Gated recurrent unit (GRU) can solve this problem
[26]. GRU, as the newest variant of RNN, has achieved huge
success in fault diagnosis issues [27, 28]. +us, in this paper,
GRU-based network is developed to effectively solve
problems. However, the vibration signals are always con-
taminated by the noise that heavily influence the diagnosis
performance of network [29]. +us, wavelet packet de-
composition (WPD) that has been recognized as an effective
vibration signals denoising method is used for eliminating
the noise of vibration signals [30–34].

An adaptive diagnosis method that combines deep gated
recurrent unit (DGRU) with wavelet packet decomposition
(WPD) and extreme learning machine (ELM) is proposed
for rolling bearing. Firstly, WPD is utilized to eliminate the
noise of data. Secondly, DGRU is designed to extract the
representative features of denoised data. Finally, ELM is
utilized to output the diagnosis results. Massive results prove
that the superiority and robustness of our method outper-
form existing popular methods. Additionally, the proposed
method can also achieve powerful antinoise ability.

+e specific arrangements of this paper are as follows:
Section 2 describes basic theoretical knowledge. A concrete
introduction of our method is given in Section 3. Section 4
analyzes the effectiveness. Conclusions are generalized in
Section 5.

2. The Brief Theory of Gated Recurrent Unit

Similar to long short-termmemory neural network (LSTM),
gated recurrent unit (GRU) is also a method proposed to
solve the problem, but it is simpler than LSTM [25, 26]. GRU
uses an update gate and a reset gate.+ese two gates together

determine the output of GRU [35]. +e specific structure is
shown in Figure 1.

zt � σ EzXt + FzYt−1( ,

rt � σ ErXt + FrYt−1( ,

Ht � tanh Ext + F rtYt−1( ( ,

Yt � 1 − zt( Yt−1 + ztHt,

(1)

where σ and tanh denote the sigmoid and tangent activation
functions. Ez, Er, E, Fz, Fz, and F are the weight matrices
and element-wise multiplications.yt is an activation at time
t, and ht means a candidate activation.

3. The Proposed Method

Rotating machinery is applied to many fields. Rolling
bearing is a necessary component to ensure the normal
operation of rotating machinery. It has a direct impact on
the accuracy and reliability of rotating machinery equip-
ment. +erefore, rolling bearing faults are one of the most
common reasons for rotatingmechanical failures. Due to the
long-term operation of rotating machinery under harsh and
complex conditions, it is inevitable that faults will occur.
+erefore, the state of machinery must be monitored in time
to diagnose faults as soon as possible. One of the four key
tasks is to find out whether the rotation of the machine is
abnormal or not, and to predict the severity of the rotation of
the machine. Due to the higher requirements for high
performance, safety, and reliability, fault diagnosis of ro-
tating machinery becomes not only more and more im-
portant but alsomore andmore difficult.+erefore, in recent
decades, rotating machinery fault diagnosis has received
more and more attention and considerable development.
+is paper develops a new rotating machinery fault diag-
nosis method that combines a deep gated recurrent unit
(DGRU) with wavelet packet decomposition (WPD) and
extreme learning machine (ELM) to identify locomotive
bearing fault conditions.

3.1. Wavelet Packet Decomposition Denosing. WPD is gen-
erally used to deal with nonstationary signals. It can analyze
both time domain and frequency domain, and analyze the
characteristics of signals locally. Wavelet transform de-
composition mainly focuses on low-frequency signals and
cannot decompose high-frequency signals containing a large
amount of detailed information, such as rolling bearing
vibration signals, remote sensing images, seismic signals,
and biomedical signals. WPD is based on the idea of
multiresolution analysis, that is, the signal can be decom-
posed and reconstructed in different frequency bands under
the wavelet basis, which is suitable for dealing with dis-
continuous and nonstationary signals. WPD makes up for
the shortcomings of wavelet transform. It can solve the
signal energy from different decomposition scales. +e
multilevel division of frequency band can decompose not
only low-frequency signals but also high-frequency signals,
making the division of signals more precise. +e signal
decomposition process reflects the relationship between the
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wide-band signal and the fine band signal.+e nonstationary
vibration signal can approach the fault characteristic fre-
quency of the system through WPD to obtain the instan-
taneous signal containing stationary signal components.+e
decomposition algorithm principle is to calculate the average
and the difference between the first number and the average,
and the system fault can be detected by analyzing the energy
distribution in different frequency bands; WPD has neither
redundancy nor omission. +e vibration signals often
contain noise that greatly influences the diagnosis accuracy.
+us, it is essential to eliminate the noise firstly. WPD is
viewed as an effective method for vibration signal denoising
[31]. WPD splits into two branches, low and high fre-
quencies at all decomposition processes [36].+e three-layer
binary trees of WPD are shown in Figure 2. +e steps of
signals denoising using WPD is illustrated in Table 1.

3.2. Deep Gated Recurrent Unit Construction. +e operating
conditions of mechanical equipment are changing, and the
data label information of the training set data under most of
the working conditions is unknown, and it is difficult to
effectively train intelligent identification models. However,
the training process of the above methods uses a small
amount of labeling data, so it cannot be used to solve the
problem of health status recognition under the case of
unknown label information. Rotatingmachinery plays a vital
role in the application of coal industry. Due to the long-term
operation of rotating machinery under harsh and complex
conditions, it is inevitable that faults will occur. +erefore,
the state of machinery must be monitored in time to di-
agnose faults as soon as possible. One of the four key tasks is
to find out whether the rotation of the machine is abnormal
or not, and to predict the severity of the rotation of the
machine. Due to the higher requirements for high perfor-
mance, safety, and reliability, fault diagnosis of rotating
machinery becomes not only more and more important but
also more and more difficult. +erefore, in recent decades,
rotating machinery fault diagnosis has received more and
more attention and considerable development.

+e health state of rotating parts such as bearings and
gears directly affect the operation reliability of the whole
mechanical system. Once the rotating parts fail, it will

cause serious safety accidents and huge economic losses.
+erefore, the establishment of an effective rotating
machinery condition monitoring and fault identification
system is of great significance to ensure the safe operation
of equipment and personnel safety. Signal processing
technology is an important subject of rotating machinery
fault diagnosis, which has been widely used in various
industrial fields. In addition, due to more and more at-
tention, artificial intelligence technology has also been
applied to rotating machinery fault diagnosis. Based on
this, the illustration of DGRU is presented in Figure 3.
X(s) means the denoised data processed by WPD. Y(s) and
Z(s) represent the extracted first-layer and second-layer
features.

σ(t) �
1

1 + e
− t. (2)

+e loss function is cross-entropy loss function that
estimates the difference between the predicted label and
actual label.

L(x, y) � − 
N

i�1
yilog2xi, (3)

where xi denotes the actual label and yi is the predicted label.

3.3. Extreme Learning Machine Classification. ELM is the
result of improving the algorithm [37]. +e structure is
shown in Figure 4. x and t are the input vectors and output
labels respectively, (W, b) are the weights and bias of input
layer and hidden layer, β is the value of the implication
layer and the output layer. +e difference from the BP
neural network trained by gradient descent is that the
weights generated during the training of the limit learning
machine, and there is no need to adjust after generation.
+e specific calculation formulas are shown in equations
(4), (5), and (6), the hidden layer vector hi (i � 1, 2, . . ., n),
where n is the number of input samples. T is the matrix
composed of sample label vector, and H+ is the gener-
alized inverse matrix of H. Based on the principle of the
least square method, the whole process does not need
feedback iterative adjustment.

× +

× 1-

σ σ
tanh

×

Yt–1
Yt

Ht

rt

Xt

zt

Figure 1: Structure of GRU.
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H �
F β1, c1, y1( ) · · · F βK, cK, y1( )
⋮ ⋮ ⋮

F β1, c1, yM( ) · · · F βK, cK, yM( )



M×K

, (4)

β �
α1
⋮
αK



K×N

, andT �
t1
⋮
tM



M×N

. (5)

Known from Reference [38], β can be represented by

β � H+T, (6)

where H+ is the Moore–Penrose generalized inverse of H.

3.4. General Steps. �e health state of rotating parts directly
a�ects the operation reliability of the whole mechanical
system. Once the rotating parts fail, it will cause serious
accidents. �erefore, the establishment of an e�ective ro-
tating machinery condition monitoring and fault identi�-
cation system is to ensure the safe operation of equipment
and personnel safety. An adaptive diagnosis method that
combines DGRU with WPD and ELM is proposed. �e
updating process of our method is described in Figure 5 with
the following three steps.

(i) Step 1: measure data from rotating machinery
(ii) Step 2: eliminate the noise of vibration signals by

using WPD
(iii) Step 3: divide the denoised signals into trained and

tested samples
(iv) Step 4: DGRU with ELM is constructed to diagnose

railway locomotive bearing faults

X(s)
Input
layer

Hidden
layer1

Hidden
layer2

Y(s)

Z(s)

Learned
features

Figure 3: Structure of DGRU.

Learned features

Hidden layer

Diagnosis result

Figure 4: �e basic framework.

S

A1 D1

AA2

AAA3

DA2 AD2 DD2

DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

Figure 2: �ree-layer binary trees WPD.

Table 1: �e steps of signals denoising using WPD.

Steps Detailed description
A. Signal
decomposition

Select the wavelet function to decompose the noisy signals. �erefore, the wavelet packet coe�cients at each level
are obtained.

B. �resholding A threshold rule is used to decompose the coe�cients to eliminate most of noisy coe�cients
C. Signal
reconstruction

�e inverse WPD of each scale is performed by using the obtained approximate coe�cients and the detailed
coe�cients of denoising.
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(v) Step 5: the constructed model is used for learning
the trained-samples features and verified by the
tested-samples features

(vi) Step 6: output the diagnosis result.

4. Experimental Verification

4.1. Experimental Data Description. Because rotating ma-
chinery under harsh and complex conditions, it is

inevitable that faults will occur. +erefore, the state of
machinery must be monitored in time to diagnose faults
as soon as possible. One of the four key tasks is to find out
whether the rotation of the machine is abnormal or not,
and to predict the severity of the rotation of the machine.
Due to the higher requirements for high performance,
safety, and reliability, fault diagnosis of rotating ma-
chinery becomes not only more and more important but
also more and more difficult.

Use WPD for signals denosing

Feature learning layer by layer

Vibration signals acquisition Railway locomotive bearings

Vibration signals acquisition and signals denosing

Trained sam
ples

Tested sam
ples

D
e-noised signals

 Deep features

Condition 1

Condition 1

Train the ELM classifier

 Deep features

ELM classifier
(already trained)

 fault diagnosis result

Bearing condition Output ELM classifier

S

A1 D1

AA2

AAA3

DA2 AD2 DD2

DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

100
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70
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40
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Figure 5: +e framework of our approach.
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In this section, a representative simulating high-speed
bearings dataset is selected to validate the feasibility of the
proposed method. Various indicators are adopted to prove
the effectiveness of data augmentation. Simulated fault di-
agnosis experiments are conducted separately with other
approaches to corroborate the superiority of the algorithm in
this paper. +e simulated high-speed bearing dataset is
applied to the laboratory dataset. +e dataset is provided by
railway locomotive bearing. According to different health
conditions and three damage levels, 9 health categories with
12.8 kHz sampling frequency are obtained to form the
dataset. +e experimental platform presented in Figures 6
and 7 represents the specific faults of rolling bearings.

4.2. Compared with Traditional Methods. To evaluate the
effectiveness of our approach for noisy signals, the collected
data are added white Gaussian noise (WGN) in this part as
shown in Figure 8. +e noisy signals are described as

V(s) � v(s) + k × n(s), (7)

where V(s) represents the noisy signals, v(s) is the collected
vibration signals, n(s) is the WGN, and k is the coefficient.
Larger k means heavier noise.

In this part, k is 0.4 and then we obtain the noisy signals.
+en, the noisy signals are one input. +e denoised signals
that are processed by WPD are another input. Figure 9
describes the noisy data and the denoised data of each
condition, each condition contains 8,192 data points. +ere
are two important points to be explained: (1) For the pro-
posed method and DGRU with SVM classifier, the only
input is the noisy signals. (2) SVM and ANN both have two
inputs, the noisy signals and the denoised signals.

To demonstrate the superiority of our, six methods are
considered as the comparison methods. More details about
these methods are provided as follows. As in this article, the
optimization algorithm is the Adam algorithm. +e learning
rate is 0.0002 in all experiments. +e relevant parameters of
these methods are determined by relevant literature and ex-
periments so that these methods could achieve the best rec-
ognitionperformancefordifferentdiagnosis tasks.+eseresults
are depicted in Figure 10.+e confusionmatrix is illustrated in
Figure 11. Table 2 shows the results per method in all tasks.

It is obviously observed from Table 3 that the average
accuracy of the proposed method is 94.98%, which is ob-
viously higher than the other five methods, which are
78.64%, 55.47%, 73.95%, 44.61%, and 58.85%, respectively.
+e standard deviation is only 1.10, obviously lower than the
other five methods which are 2.35, 3.28, 2.25, 3.96, and 3.22.
+e results present that: (1) Comparing all the methods, we
can clearly observe that DGRU, SVM, and ANN are all
sensitive about the noise. (2) Comparing Method 1 with
Method 2, it can be known that the denoised signals could
make much better diagnosis accuracy. It also proves the
necessity and effectiveness of the noisy signals processed by
WPD. (3) By comparing Method 1, Method 4, and Method
6, it can be seen that the proposed method has much more
accurate and robust performance than SVM and ANN. +e

main reason is that the deep architecture has a more
powerful ability to learn functions. +erefore, it can auto-
matically learn more appropriate internal error character-
istics from the inputs and provide more reliable conclusions.

4.3.:eAntinoiseAbility of the ProposedMethod. +is part is
mainly to research the influence of different noisy signals
and the antinoise ability of the proposed method. To avoid
the chance of result, each condition runs 5 times. +e de-
scription of each condition and the average accuracy is
shown in Table 4. +e noisy signals represent the signals
contain noise; the denoised signals represent the noisy
signals processed by WPD. +e concrete diagnosis result of
each trail is shown in Figure 12.

+e average accuracy and standard deviation of each
condition are shown in Table 4. It can be known that for
the DGRU with ELM classifier, the denoised signals could
lead to much better accuracy and robust performance
than the noisy signals. With more noise of the vibration
signals, the diagnosis accuracy becomes lower and more
and more unstable. No matter how powerful the
denoising method is, the denoised signals could not be
better than the normal vibration signals. It also can be
found that with the increase of noise, the result of WPD
dealing with noisy signals is also getting worse. However,

Accelerometer

Load

Figure 6: Experimental locomotive bearing device.

Inner race Roller race

Serious outer race Slight outer race

Figure 7: Four types of rolling bearing faults.
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the diagnosis result is also higher than 90%. According to
the above-mentioned and diagnosis results, it can be
confirmed that the proposed method has a powerful
antinoise ability.

+e classifiers with the identical parameters are employed
for the same purpose. Ablation experiments are required for
the CNN classifier to ensure that it is resistant to engineering
noise interference. +e settings and results of the ablation
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Table 2: Comparison of methodologies.

Method Description Inputs
1 Suggested technique Noisy signals
2 DGRU+ELM classifier Noisy signals
3 SVM Noisy signals
4 SVM Denoised signals
5 ANN Noisy signals
6 ANN Denoised signals

Table 3: +e concrete classification accuracy and standard deviation per method.

Method Average accuracy (%) Standard deviation
1 94.98 1.10
2 78.64 2.35
3 55.47 3.28
4 73.95 2.25
5 44.61 3.96
6 58.85 3.22
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experiments are listed in Table 5. CNNs with different
frameworks and parameters are adopted to fault diagnose on
the dataset to select the best CNN diagnostic model. From
Table 5, it is clear that framework A is more robust for better
fault diagnosis compared to other structures. Accordingly, an
alternative ablation experiment is conducted on the key pa-
rameters of CNN with framework A as the basis.

5. Conclusion

In this paper, an adaptive diagnosis method that combines deep
gated recurrent unit (DGRU) with wavelet packet

decomposition (WPD) and extreme learning machine (ELM) is
proposed for rolling bearing. Firstly, WPD is utilized to elim-
inate the noise of data. Secondly, DGRU is designed to extract
the representative features of denoised data. Finally, ELM is
utilized to output the diagnosis results. Massive experimental
results prove that the superiority and robustness of the proposed
method outperform existing popularmethods. Additionally, the
proposed method can also achieve powerful antinoise ability.

In conclusion, we will further improve our model to deal
with the challenge of transfer experimental data knowledge
to diagnose practical engineering equipment faults in future
research [39].

Table 5: +e framework of CNN for ablation experiment.

Parameter profile Framework A Framework B Framework C Framework D
Input 1024 1024 1024 1024
Convolution 32, 3, 1, same 32, 5, 1, same 32, 3, 2, same 48, 3, 1, same
Maxpooling 2 2 — 2
Convolution 64, 3, 1, same 64, 5, 1, same 64, 3, 2, same 96, 3, 1, same
Maxpooling 2 2 — 2
Convolution 128, 3, 1, same 128, 5, 1, same 128, 3, 2, same 192, 3, 1, same
Maxpooling 2 2 — 2
Fully connection 1024 1024 1024 1024
Fully connection 9 9 9 9
Keep_prob 0.9 0.9 0.9 0.9
Learning rate 0.1 0.1 0.1 0.1
Accuracy 95.18%±1.64 94.22%± 1.84 93.16%± 1.86 92.52%± 1.98

Table 4: Average accuracy and standard deviation of each condition.

Condition k Inputs Average accuracy (%) Standard deviation
1 0 Collected signals 96.69 1.47
2 0.2 Noisy signals 82.46 2.45
3 Denoised signals 92.39 1.17
4 0.4 Noisy signals 79.57 2.57
5 Denoised signals 95.03 1.10
6 0.6 Noisy signals 74.15 2.93
7 Denoised signals 91.93 1.10
8 0.8 Noisy signals 67.80 6.31
9 Denoised signals 90.36 1.25
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Figure 12: Diagnosis accuracy of the 5 trials.
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