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An automatic recognition algorithm based on the feature extraction of working parameters to recognize each state in the loading
cycle process of an electric mining shovel was proposed. The working parameters were collected using the electric shovel’s online
monitoring system. The swing angle of the shovel boom and motor operating signals were used as key recognition objects; the
waveform features of each stage were extracted as recognition marks in the loading cycle of an electric shovel using the time
domain characteristic analysis method. The algorithm was developed to recognize the loading cycles in real time. Moreover, the
dynamic time warping (DTW) algorithm was used to detect and classify the preliminary recognition results by optimizing its
distance threshold parameters, reducing the error rate of the model. The method was validated by comparing synchronous video-
recordings with the results of the algorithm. Results showed that the proposed recognition method of the shovel loading cycle
process exhibited real-time performance and high accuracy in understanding the different work tasks, providing effective data
support for mining and the analysis of shovel working parameters, helping to improve the energy efficiency of electric

mining shovel.

1. Introduction

Electric mining shovel is large and complex engineering
machine, which can directly perceive the blast-pile exca-
vating difficulties and indirectly evaluate the blast-pile
crushing effect during the loading materials in an open-pit
mine [1-4]. The real-time recognition of the electric shovel’s
loading process is the key to customer who needs a sig-
nificant improvement in fuel efficiency and cost. The on-
board monitoring system provides real-time feedback to the
driver. The drivers adjust their loading operation to current
working condition to achieve the highest productivity. Real-
time identification of shovel working states can be used for
construction site supervision and management, resource
allocation, and task scheduling.

At present, the methods used to recognize the loading
equipment’s operation status include the multisensor device
[5, 6], machine vision technology [7], and the device’s own
parameters, for example, the displacement of the equipment

mechanism [8, 9], the hydraulic oil pump pressure [10], the
motor voltage and current [11, 12], and the vibration
spectrum of the chassis [13, 14].

In related work on online working excavators, Oloufa
et al. [15] tracked the location information of equipment to
observe its operation status using GPS. Zhang et al. [16] used
a high-precision positioning and direction-finding control
system to measure the relative rotation angle of an exca-
vator’s boom and chassis to detect the attitude of the ex-
cavator’s working devices and recognize its loading state.
Arsalan et al. [17], Gong, and Caldas [18] used image
processing and computer vision methods to recognize
various equipment activity patterns and measure the idle
time to improve equipment utilization. However, the above
research only focused on the overall excavator operating
mode and did not further examine the single operation cycle
process. References [19, 20] matched images collected in real
time with those of standard operating conditions, proposing
a multiclass support-vector-machine method to recognize
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excavator movements. However, the accuracy of this method
can be greatly affected by the camera resolution, lighting
conditions, and environmental variables. Hao et al. used an
inclination sensor to detect the excavator joint angle,
combining it with the moving direction and speed of the
boom, to determine whether the excavator had entered the
full bucket rotation stage from the excavation stage or
returned from the empty bucket stage during the unloading
stage [21]. Huang et al. realized the intelligent identification
of the operating cycle stage by monitoring the pressure of a
hydraulic excavator’s two main pumps and using the
pressure bands of each stage of the shovel operation as a
distinguishing mark [22]. Branscombe [23] proposed a
multiparameter threshold automatic segmentation method
to recognize the loading cycle using the minimum, maxi-
mum, and amplitude of the motor signal as judgment
conditions for each action state of the shovel. However, due
to the inconsistency of actions during the electric shovel’s
operation, it could be easily affected by the shovel working
environment and the skill of the operator, resulting in false
recognition.

To successfully apply a recognition method, it must be
possible to run the algorithm in real time on an operational
electric shovel. The main challenges are to first define which
parameters are relevant and then to perform online usage
identification that is sufficiently robust in the face of usage
disturbances.

This paper integrates the high-precision positioning data
and the working data of motor to develop a recognition
method for the automatic recognition of shovel operations.
It begins by defining a single shovel loading operation and
then offers a state analysis vis-a-vis the ideal loading cycle
processes. The following sections describe the method used
to extract the characteristic parameters of each stage of
shovel operations and the results of real-time monitoring of
an electric mining shovel. A discussion on using the dynamic
time warping (DTW) algorithm to detect and classify results
is presented.

2. Model of Electric Shovel Operation

2.1. Electric Shovel Working Parameters’ Collection. To rec-
ognize the loading cycles of an electric shovel, one must first
understand how the shovel works and what resistive forces
may be acting on it. A WK-35 electric shovel was tested in an
open-pit metal mine in China, with a nominal dipper ca-
pacity of approximately 80 metric tonnes or approximately
35 cubic meters of material volume. The test monitored the
primary working mechanism of an electric shovel excavating
rock from a muck-pile, before loading it onto a mining
dump truck. The load change characteristics of each actuator
were coupled to the electrical performance parameters
(voltage and current) during digging and hoisting opera-
tions. For example, the loading cycle includes the crowd
motor, which governs the penetration depth of the bucket in
the muck-pile, the hoist motor, which governs the raising of
the bucket after the bucket filling process, and the swing
motor, which moves the bucket. These signals were acces-
sible from the shovel’s programmable logic controller (PLC)
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cabinet in the control room below the operator cab. In
addition, the action information of key components of the
shovel can be obtained by installing a high-precision Global
Navigation Satellite System. The information fusion of po-
sition data and the motor armature parameters can truly
provide feedback for most of the working states of electric
shovel. The shovel monitoring parameters are shown in
Table 1.

As shown in Figure 1, a real-time online monitoring
system can be used to realize data collection, including PLC,
industrial computers, data acquisition equipment, and cloud
server. The data acquisition and control system is installed
on the electric shovel for collecting the motor parameters
and GPS data, sorting and sending them to the cloud server.
The cloud server parses and stores the received data packets,
realizes the real-time display of monitoring data, and sup-
ports the historical data query function. To ensure the
stability of real-time transmission, the monitoring data are
recorded synchronously with a sampling frequency of 1 Hz.

2.2. Electric Shovel Loading Operation. The shovel is
designed to move in a three-dimensional space, which in this
case is consistent with that shown in Figure 2. For example,
the bucket movement of a shovel loading cycle can then be
divided into five stages: digging stage (A—B), load swing
stage (B—C), dump (C), empty bucket return stage (C—A),
and digging preparation (A). In ideal working conditions,
the main actions of the digging and filling process include
bucket pushing and hoist ropes retraction or a combination
of the two. After digging, the bucket moves from the muck-
pile to a position above the dump truck via rotation of the
rotary shaft and the lifting of the hoist ropes or a combi-
nation of the two. And then, the rotating shaft rotates in the
opposite direction, so that the upper body can rotate from
the dump position to the next digging position.

Each motor’s power can be calculated from its voltage
and current. Combined with Figure 3, we can then analyze
the variation characteristics of the swing angle, swing power,
hoist power, and crowd power at each stage of the shovel
loading cycle:

(i) Load swing stage (yellow): the swing angle gradually
increases relatively to the initial value. The swing
power exhibits sine wave fluctuations. Since the
swing torque increases at the beginning of the
swing, the swing power is positive, accelerating the
swing. When the swing is close to the dump po-
sition, the swing stops slowly due to the large inertia
of the load; the braking torque increases; the swing
power is negative and symmetrical. During the
swing, the hoist power and the crowd power are
relatively constant due to the minimal load changes.

(ii) Dump stage (blue): during this process, the swing
angle reaches its maximum value relatively to the
initial position.

(iii) Empty bucket return stage (green): the swing angle
gradually decreases, symmetrically with the wave-
form of the load swing stage. The hoist power is
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TaBLE 1: The shovel monitoring parameters.

Monitoring parameters Collection approach Collection purpose
Time Real-time clock Add time tag
Latitude and longitude GPS module Move position
Direction angle GPS module Motion posture
Hoist armature voltage and current PLC Digging status
Crowd armature voltage and current PLC Digging status
Swing armature voltage and current PLC Wing status

Data acquisition and

Hoist ropes hoist Frequency
motor converter 2

. Swing Frequency

Swmg machmery motor converter 3

PLC acquisition module

= control system
. Crows Frequency
: Serial Hardware system

GPS module
Electric Shovel Propel Frequency 4G communication ((( )))
propel motor converter 4 module
Repeater
Software system
Analog data collection
Navigation satellites program
GPS data collection

GPS base Shovel navigation . program

Data transfer program
GNSS receiver GNSS receiver Crystal reports

Positioning Positioning antenna
antenna

. Orientation antenna
Transmitter

receiver Transmitter receiver

MySQL database

Remote real-time signal monitoring

swing

angle

hoist [
current [y

hoist [

voltage

crowd [

current

crowd

voltage [

swing
current

swing |

voltage PV

FIGURE 1: Data acquisition and remote monitoring system.

loading cycle task

State-space trajectory

(b)

FIGURE 2: (a) Example of a cable shovel performing loading task; (b) diagram of a three-dimensional trajectory of a bucket moving in the
loading cycle. X is the straight-line direction of the bucket rod when unloading; Y is the direction of the vertical excavation surface of the

blasting pile; and Z is the direction perpendicular to the ground.

reduced to its minimum value at the bucket low- to dig, the hoist power quickly changes from neg-
ering stage. ative value to positive value and the crowd power

(iv) Digging preparation (white): there is no prominent

has a negative value.

feature of the swing angle during the adjustment It can be seen from Figure 3 that each stage of the work
process between two work cycles. When preparing  cycle can be distinguished by the swing angle and motor



Swing angle [°]

Time [s]
(a)
E 1500 |
= 1000 |
5
Z 500
A \’\\—/\'
2 o} i
T 500 L. . \ ; |
0 5 10 15 20 25 30 35 40

Time [s]

(©

Shock and Vibration

600 | |
400 :
200 | ]
|
|
I
|

-200
-400 | |

Swing power [KW]

[

(=3

(=]
T

Crowd power [KW]
(=]

0 5 10 15 20 25 30 35 40

Time [s]

(d)

i i

FIGURE 3: Monitoring parameter curves and partitions in a loading cycle. (a) Waveform change of the swing angle; (b) waveform change of
the swing power; (c) waveform change of the hoist power; (d) waveform change of the crowd power. The red, yellow, the blue, and green
zones represent the digging, load swing, dump, and empty bucket return stages, respectively.

power parameters. A single operating cycle comprises the
actions of digging preparation, digging, load swinging,
dump, and empty bucket return in a fixed sequence. The
typical data features of each stage can be extracted to es-
tablish an automatic identification model of the shovel
loading cycle operation.

3. Methodology

3.1. Recognition of Loading Cycle Operations. The time series
data of a single shovel operation can be denoted by
Q = (S, H, CL, T), the subsequence of swing angles can be
denoted by S, = (s, .. ., s;), the subsequence of hoist power
can be denoted by H} = (hy,...,h), the subsequence of
crowd power can be denoted by C, = (c;,...,¢;), and then
time subsequence can be denoted by T! = (t;,...,t). To
characterize the essential characteristics of the signs that may
occur in digging, load swinging, dump, empty bucket return,
and digging preparation stages, parameters such as the
minimum, maximum, zero, and gradient can be selected as
waveform feature vectors to recognize the corresponding
swing angle, hoist power, and crowd power of each stage,
each stage of the loading cycle being a process event, which
should meet the shortest time requirements of the actual
physical process.

If the incremental swing angle (s;,; —s;) is 0 and if the
hoist power (h;) and crowd power (c;) are constant during
the digging stage, then the digging time should be longer
than the shortest digging time. Formally, there exists an
interval t;(Vt; € TX*, the parameter § being the digging
time), whereby a digging event is generated if

Siy1—$; =0, (1a)
hi 2 hcon’ (lb)
€; 2 Ceons (1¢)

8214 (1d)

A load swing is generated if there exists an interval t;
(Vt; € TF™, the parameter € being the load swing time),
where the incremental swing angle (s;,; — s;) is positive, the
swing angle is greater than constant value, both the hoist
power and the crowd power are within the value threshold,
and the swing time is longer than the shortest swing time. A
corresponding condition for the load swing can be expressed
as follows:

Sy — S >0, (2a)
Sk+d+e ~ Sk+d Z Scom> (2b)
heon = h; > hy, (2¢)

Ceon = €; = Cp» (2d)

€2 tswing' (26)

A dump event is generated when the swing angle re-
mains near the maximum value (s,,,,), and the dump time is
longer than the shortest dump time. Therefore, there exists
an interval t; (Vt; € TK'3*¢*%, the parameter 6 being the dump

time), such that

=5 (3a)

max’>

0>t (3b)

uload*

The empty bucket return event has similar characteristics
with the load swing event, but its direction is opposite to that
of the load swing. If the incremental swing angle (s;,; —s;) is
negative, the swing angle is greater than the constant value,
the hoist power is negative in the end of the interval, and the
empty bucket return time is longer than the shortest return
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time; an empty bucket return event is detected. There exists

an interval t;(Vt; € T§I3" <99 the parameter 9 being the

empty bucket return time), such that

i1 — 5 <0, (4a)
Smax — Smin = Scon> (4b)
h; <0, (4¢)

92 tygying: (4d)

The digging preparation is a complex event. It can be
assumed to have been generated if the hoist power is positive
and the crowd power is negative at a discrete time. Formally,

there exists an interval ¢;(Vt; € T ;. .4.0), such that
h; >0, (5a)
¢; <0. (5b)

Note that the parameters h,,, Ceons Laigs Scon> Ho» €o» £
tuloads aNd Phgying Will be discussed in Section 4.1.

The working parameters of the shovel are collected in
real time in a continuous time series. The end of one shovel
operation is followed by the start of the next. To realize the
recognition of a loading cycle, the digging preparation
characteristic condition is used as a starting (end) point
identification mark; the single loading operation charac-
teristic is being used as a segmentation mark. The segment
flag is associated with a specific operation stage, only
meeting the parameter characteristic conditions of (1a) to
(5b) to complete a prescribed action.

For the processing and analysis of the real-time data, we
developed a model for the automatic recognition of loading
cycles using Python programming language. As shown in
Figure 4, the key parameters such as the swing angle, hoist
power, and crowd power are input first; the value at the
current moment is being used as the initial value. Based on
the characteristics of a single loading operation, the feature
vector recognition can be carried out using the continuous
real-time data stream. If all eigenvalues satisfy the judgment
conditions, the loading cycle recognition task is completed.

It is worth noting that the shovel walking and loading
cycles are two independent operating modes. When the
shovel is walking, the hoist and the crowd motors are
dormant, and the data is null in the real-time data stream.
Therefore, the raw data is cleaned, integrated, and nor-
malized using big-data preprocessing techniques. The data
in a nonshovel operational state are filtered before the shovel
loading state is recognized. In addition, since the shovel
loading operation of the electric shovel can be affected by
subjective operator actions, the results still need to be tested
further to improve the recognition accuracy.

swing>

3.2. Dynamic Time Warping. The DTW is an algorithm for
aligning two time series which are similar, but out of syn-
chronization and generally not of the same length exactly
[24]. It aligns two time series through measuring and

minimizing the distance between each point of the two series
sequences [25]. DTW is applied in speech recognition [26],
feature matching [27], and diagnostic monitoring [28] ap-
plications to recognize the signals with similar shape features
in the time domain. Since then, it has been employed for
classification in electric signal [29] and process monitoring
[30].

For example, set two time series (C,T): C(i)iI=1 is an
ordered length of I real value and C( j);z1 is an ordered
length of | real value. To measure the minimizing distance
between the C and T, an I x J distance bs is constructed,
where d (i, j) is the local distance between C (i) and T (j).
Suppose that two time series are of equal length (I=]); the
EU-distance ED (C, T) is given by

ED(C,T) = (6)

Suppose that two time series are of different length
(I#]); the distance is calculated by a warping path W. The
warping path is restricted by the continuity, monotonicity,
and endpoint constraints [31]. W(k)kK:1 is calculated from
matrix D which consists of a set of table elements that defines
a mapping and alignment between C (i) and T (§), k as path
length meets (max(I,]) <K <I+]-1), the k element are
expressed as W (k) = (wy;, wy ;) wy; is an index of the time
series C and meets (wy; € Z|1<wy;<I), and wy; is an
index of the time series Tand meets (wk,j eZ|1< wy ;i < N.If
the above three conditions are met, the distance D(C,T)
between time series C(i) and T(j) is found by the warping
path W minimizes in equation (7). The symbol dis(...) de-
notes a suitable element-wise distance measure:

K
D(C, T) = minZdis(cw(k’i),tw(k’j)) (7)
k=1

The DTW algorithm solves the optimal solution of a path
using dynamic programming methods. The cumulative
length of the optimal regular path (DTW(I,])) can be
obtained by calculating the minimum cumulative distance of
three adjacent elements using recursive algorithm [32], as
follows:

D(i-1,)
DTW(I,J) =d(i,j)+min{ D(i-1,j-1) {.  (8)
DG, j-1)

The similarity between signals can be judged by calcu-
lating the distance or concentration of distribution. The
DTW algorithm is a local distance measurement tool. It
calculates the regular path of the matrix to determine the
distance between a sample sequence and a test sequence [32].
The minimum DTW distance is the optimal similarity.

DTW(I, ]) can be used to compare the similarity of the
data of two classes and normalize them within the range
[0, 1]. During the loading cycle, the swing angle has con-
siderable periodicity, so the DTW distance between the test
sequence and the typical class sequence is calculated to
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FIGURE 4: Logical diagram of recognition algorithm for loading cycle operation.

determine whether it exceeds the threshold, and the test
sequence can be classified.

4. Results

4.1. Finding Loading Cycles. Based on the test sample data,
the performance indicators of the loading cycles were
measured; the digging time interval was more than 5s, the
swing speed was 0~7°/s, the swing angle was more than
35°, the bucket unloading time was more than 2 s, each truck
was loaded with 4~5 shovels, and the amplitude of the motor
power in each stage was monitored. The values of the
constants in this case are listed in Table 2.

The results of online recognition of the loading cycles
within a time period based on multiparameters feature
fusion are shown in Figure 5, which illustrates 18 shovel
loading cycles; mark 13, however, is an incorrect recognition
result, although the rest of the results are correct. Based on
the correct recognition results, from a comparison of the

TaBLE 2: Working cycle algorithm input parameters.

Constants Symbols  Value
Threshold of hoist power in digging stage heon 400 kW
Threshold of crowd power in digging stage ¢, 200 kW
Threshold of swing angle in swing stage Scon 40kwW
Threshold of hoist power in load swing stage  h, 0
Th.reshold of crowd power in load ¢ _100kW
swing stage

Threshold of digging time Lig 5s
Threshold of load swing time fowing 6s
Threshold of dump time t uload 2s
Threshold of empty buck return time Foswing 5s

operation cycle and the overall waveform changes, it can be
seen that the loading cycle operation can be divided into long
loading cycles (1, 5, 9, and 17) and short loading cycles (2, 3,
4, 6, 7, 8, 10, 11, 12, 14, 15, 16, and 18); the difference
between the two categories is that the swing angle increases
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FIGURE 5: Automatic identification of the loading cycles based on monitoring data.

discontinuously and forms a step-like waveform during the
load swing period, reflecting the process of the shovel
waiting for the next transport truck to reverse into position
actual production.

4.2. Detection. The test sequence is detected by determining
whether the DTW distance between the test sequence and
the class sequence exceeds the threshold. Because the ac-
curacy of detection results is related to the selection of
threshold parameters, if the threshold is set too small, much
of the shovel loading waveform may be missed. Moreover, if
the threshold is set too large, the waveform recognition may
not belong to the shovel loading operation.

The test compares the waveform of the monitoring data
to generate statistics of the on-site loading cycles and
nonloading operation and calculates the missed recognition
and overrecognition rate under different threshold
conditions.

As shown in Figure 6, the error rate refers to the error
statistics of the shovel loading cycles not fully identified in
the field test sample data, which shows the fitting curve of the
missing and overrecognition rates’ statistical results; the
missing recognition rate decreases with increasing thresh-
old; the overrecognition rate increases with increasing
threshold. The analysis shows that the error rate is the lowest
when the normalized DTW distance threshold is 0.54.

4.3. Classification. The purpose of classifying the loading
cycles is to create labels that assign a class to each test
subsequence. The experiment used four datasets to record
the loading cycles of the operator loading different rocks. A
total of 161 shovel loading cycles were recognized using the
algorithm; the DTW algorithm is being used to calculate the

100
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R [%]

40

20

L L L L L L Ix L

0
0 01 02 03 04 05 06 07 08
Normalized DTW distance threshold

—%— Missing recognition rate
—— Opver-recognition rate

—--- Error rate

FIGURE 6: The relationship between the different DTW distance
thresholds and error rates. The missing recognition rate is the ratio
of the number of missed recognitions to the actual number of
loading cycles. The overrecognition rate is the ratio of the number
of nonloading cycles to the actual number of loading cycles. The
error rate is the sum of them.

DTW distance score, which was calculated twice for com-
parison; the smallest DTW distance value is being classified
as the label to which the sequence belonged. A time series of
the swing angles with typical long (short) loading cycles was
selected from the test samples. Figure 7 shows the loading
model data with long (short) loading cycles.

The algorithm found and classified all the loading cycles
present in the database correctly, an example of which can be
seen in Figure 8, which summarizes the online identification
of 22 short loading cycles (blue) and 8 long loading cycles
(red). The starting point of each loading cycle is denoted by a
circle; a dotted line indicates that the cleaning blast-pile
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FiGure 8: Classifying different loading cycles in a time series. The circle (°) denotes the starting point of a found loading cycle.

TaBLE 3: Verification of loading cycle recognition algorithm (video).

Loading cycles recognized by the algorithm

Video records results

Number  Begin loading  End loading L The start of The end of loading L. Ideal cycles
(hh:mm:ss) (hh:mm:ss) Loading time (s) loading (hh:mm:ss) Loading time (s)
(hh:mm:ss)
142 12:25:33 12:26:10 37 12:25:32 12:26:07 35 Yes
143 12:26:12 12:26:52 40 12:26:13 12:26:50 37 Yes
144 12:26:53 12:27:42 49 12:26:56 12:27:37 41 Yes
12:27:58 12:28:33 35 No
145 12:28:33 12:29:05 32 12:28:38 12:29:06 28 Yes
146 12:29:07 12:29:41 34 12:29:44 12:30:12 28 Yes
148 12:36:59 12:37:48 49 12:37:01 12:37:48 47 Yes
149 12:37:55 12:38:39 44 12:37:56 12:38:41 45 Yes
150 12:38:41 12:39:21 40 12:38:45 12:39:21 36 Yes
151 12:39:23 12:40:37 74 12:39:25 12:40:10 45 Yes
12:42:35 12:43:21 46 No
152 12:43:24 12:44:08 44 12:43:31 12:44:08 37 Yes
153 12:44:16 12:45:00 44 12:44:16 12:45:03 47 Yes
154 12:45:08 12:45:50 42 12:45:09 12:45:49 40 Yes
155 12:46:10 12:46:50 40 12:46:12 12:47:08 56 Yes
156 12:47:09 12:47:49 40 12:47:12 12:47:46 34 Yes
12:48:00 12:48:30 30 No
157 12:48:32 12:49:13 41 12:48:33 12:49:09 46 Yes
158 12:50:03 12:50:40 37 12:50:07 12:50:41 34 Yes
159 12:50:55 12:51:36 41 12:50:57 12:51:35 38 Yes
160 12:51:38 12:52:08 30 12:51:40 12:52:25 45 Yes
161 12:52:28 12:53:02 38 12:52:33 12:53:08 35 Yes
162 13:02:24 13:03:02 38 13:02:25 13:03:03 38 Yes
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TaBLE 3: Continued.

Loading cycles recognized by the algorithm

Video records results

Number  Begin loading  End loading Loading fi Thle S(t;rt of The end of loading ding i Ideal cycles
(hh:mm:ss) (hh:mm:ss) oading time (s) 0ading (hh:mm:ss) Loading time (s)
(hh:mm:ss)
163 13:03:04 13:03:42 38 13:03:06 13:03:41 35 Yes
13:03:45 13:04:16 31 No
164 13:04:20 13:05:11 51 13:04:23 13:05:01 38 Yes
165 13:05:13 13:05:43 30 13:05:15 13:05:43 28 Yes
166 13:05:45 13:06:17 32 13:05:48 13:06:18 30 Yes
167 13:06:18 13:07:08 50 13:06:21 13:07:07 46 Yes
168 13:07:10 13:07:59 49 13:07:14 13:08:01 47 Yes
169 13:08:01 13:08:36 35 13:08:05 13:08:38 33 Yes
170 13:08:38 13:09:09 31 13:08:41 13:09:11 30 Yes
171 13:09:11 13:10:14 63 13:09:13 13:09:46 33 Yes
172 13:10:16 13:10:57 41 13:10:17 13:10:50 43 Yes

No: shovel clearing of muck-pile or digging loose material from two.

TaBLE 4: Algorithm recognition and classification loading cycle verification results.

Operators Video record number of loading cycles Algorithm recognized number of loading cycles Correct rate (%)
Operator A 55 50 90.9
Operator B 31 26 83.9
Operator A 62 55 88.7
Operator C 32 30 93.7

180 161 89.4

operation remains unrecognized. Three short loading cycles
at an interval generate a long loading cycle, suggesting that it
takes four loading operations to complete the loading vol-
ume of each truck, in a total time of approximately 180s.

4.4. Evaluation of Cycle Recognition Algorithm. The recog-
nition accuracy of the method was evaluated by examining
the video records. The results are shown in Table 3. It may be
noted that the goal of developing the loading cycle recog-
nition algorithm was not to recognize all loading cycles but
to recognize the cycles corresponding to full face only. The
loading time based on algorithmic recognition result is
slightly longer than the actually recorded time. One reason is
that the positioning time of bucket is short, which is rec-
ognized as the starting time of shovel loading by algorithmic
program; another reason is the delay error in manual
recording.

In order to verify the accuracy of the algorithm, Table 4
lists the four datasets collected in the test for verification
purposes. The video recorded 180 shovel loading operations;
the algorithm identified 161 of them, with a recognition rate
of 89.4%.

5. Conclusions

In this paper, a waveform at the beginning or end of each
stage of electric loading cycles was used as a segment mark to
realize the division of operation cycle and the identification
of each stage by shovel monitoring parameters.

Through the construction of a shovel operation model
and field tests, a recognition algorithm based on multipa-
rameter feature fusion could recognize the start (end) times
of each shovel operation of an electric shovel in real time and
count the number of shovel loading cycles.

The DTW detection and classification algorithm was
used; the effective distance threshold parameter was set to
0.54; this value improved the accuracy of the shovel loading
operation recognition, accurately dividing the data into long
and short loading cycles. The on-site video verification
demonstrated that the algorithm was robust under different
working conditions, showing that the algorithm’s charac-
teristic parameters and thresholds selected were reasonable.
It had a recognition accuracy of 89.4%.

The automatic loading cycle recognition method took
both real-time requirements and accuracy into account,
realizing real-time statistics of operator loading efficiency
and loading cycles. It has great significance for mine
management personnel to better understand mining and
loading production, control loading quality, and standardize
operation skills.

Data Availability

The authors provided details regarding where data sup-
porting reported results can be found, including links to
publicly archived datasets analyzed and written Python
programming code during the study (https://github.com/
wangbonanl1/Real-Time-Recognition-of-Loading-Cycles-
Process).
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