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As the key bearing part of the crane, the low-speed hub bearing of the crane exists in special working conditions of low-speed and
alternating heavy load. It is di�cult to extract its fault characteristics accurately by existing analysis methods. e main idea of the
broadband mode decomposition (BMD) method previously proposed is to search in the association dictionary library containing
broadband and narrowband signals. However, when it is applied to the broadband signals interfered by strong noise, the
decomposition is easy to produce modal confusion, so the modulated broadband mode decomposition (MBMD) method is
proposed.  e fault signal just can be analyzed by MBMD, so it is applied to the fault diagnosis of low-speed hub bearing of the
crane. To realize the fault identi�cation of low-speed hub bearing of the crane, �rstly, the original signal is decomposed byMBMD.
Secondly, the eigenvalues of the �rst three-component signals are calculated, the eigenvalue matrix is constructed, and the marked
features are selected by the distance evaluation technique (DET). Finally, the marked features are input into BP neural network for
training and testing to identify the types of bearing fault. Compared with EEMD, VMD, and BMD, the MBMDmethod combined
with BP neural network has good performance in feature extraction and fault identi�cation.

1. Introduction

Crane is the key core equipment in the �eld of iron and steel
manufacturing; its safe and stable operation and product
processing quality greatly a�ect the normal work and
processing cost of steel mills.  e low-speed hub bearing of
the crane is the key bearing component of the crane, which
works in harsh environments and variable working condi-
tions for a long time. Given this, it is necessary to analyze the
hub bearing of the crane failure and take targeted preventive
measures to ensure that its role and value in industrial
production can be fully re�ected.

Hub bearing of the crane has the complex operation
condition of low-speed and alternating heavy load, which
leads to the characteristics of broadband, nonstationary,
and strong noise of vibration signal. When the bearing fails,
the bearing defect pair usually produces periodic impact on
the system, and the impact signal is modulated by the

rotation frequency.  erefore, the bearing fault charac-
teristic frequency band is usually in the form of a nar-
rowband [1]. However, due to low-speed and heavy load,
the impact duration of the main bearing of the crane is
relatively short, which leads to the short-time impact
characteristics of the fault vibration signal. And the fre-
quency spectrum of the short-time impact signal is
broadband, which results in the nonstationary character-
istics of instantaneous amplitude and instantaneous fre-
quency of bearing vibration signal. At the same time, the
hub bearing of the crane carries heavy components such as
gear and gear shaft. During the operation of the crane,
other components will also become strong alternating vi-
bration sources with the change in working conditions.
 is large amplitude alternating vibration will form large
noise pollution when transmitted to the main bearing,
resulting in strong noise characteristics of the hub bearing
vibration signal.

Hindawi
Shock and Vibration
Volume 2022, Article ID 5005263, 15 pages
https://doi.org/10.1155/2022/5005263

mailto:xt5mkhb@sina.com
https://orcid.org/0000-0002-8394-0561
https://orcid.org/0000-0003-1082-8517
https://orcid.org/0000-0002-6658-3750
https://orcid.org/0000-0002-7502-9911
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5005263


In the engineering field, the commonly used time-fre-
quency analysis methods are used to extract fault features
from noise interference [2–9]. It can be roughly summarized
as ways based on Fourier transform and not based on
Fourier transform [10, 11]. +e former includes WT and
VMD. +ese methods used for signal decomposition are
mainly based on the calculation in the frequency domain. It
is proven that VMD shows high accuracy in complex
nonstationary signal processing compared with previous
methods [12–14]. Non-Fourier transform-based methods,
including EEMD, EMD, and LMD, which calculate the
envelope of extreme value points, and the vibration signals
are separated into several intrinsic modal functions [15]. Xue
et al. [16] proposed the EEMD method by mixing diverse
degrees of white noise with the original signal and equally
sharing the decomposition results. Based on the EMD
method, the denoising ability is improved.

For the fault diagnosis of low-speed or heavy-duty
bearings, some scholars have carried out relevant research
and put forward solutions. Song et al. [17] combined sta-
tistical filtering, wavelet packet transform, and motion peak
preserving method to extract fault signal features, and they
defined frequency domain bearing diagnosis symptom pa-
rameters sensitive to bearing fault diagnosis to identify fault
types. +e experiments verify the effectiveness of the pro-
posed method. In order to effectively extract fault features
from low-speed and nonstationary bearing signals, Han et al.
proposed a fault feature detection method combining Teager
energy operator and complementary ensemble empirical
mode decomposition [18].+e results show that this method
can effectively extract fault features for fault diagnosis. Jiao
et al. [19] solved the wavelet energy spectrum coefficients
under different working conditions by wavelet decompo-
sition of acoustic emission signals collected under different
working conditions. According to the distribution law of
wavelet energy spectrum coefficient under different working
conditions, the judgment basis of slewing bearing fault is
obtained.+us, the fault diagnosis of slewing bearing of low-
speed and heavy-duty crane is realized. +ese methods have
achieved certain diagnostic results, but they are not fully
suitable for the fault identification of low-speed hub bearing.
+e vibration signal of low-speed hub bearing often presents
the characteristics of broadband, nonstationary, and strong
noise. +e existing fault feature extraction methods, in-
cluding [20, 21], will inevitably produce errors in the process
of broadband signal processing. It is difficult to extract the
broadband fault feature information of low-speed hub
bearing signal from nonstationary strong noise. +e mod-
ulated broadband mode decomposition (MBMD) method
[22] was previously used for photovoltaic DC signals, which
is more suitable for processing nonstationary broadband
signals under noise interference. +erefore, this paper uses
this method to decompose and denoise the vibration signals
of the low-speed hub bearing of the crane and calculates the
eigenvalues of the decomposed signals. However, the ei-
genvalues obtained after signal decomposition are not all
conducive to the characterization of the fault characteristics
of the low-speed hub bearing. In order to better extract fault
features, appropriate feature quantities should be selected to

represent them. +e distance evaluation technique (DET)
[23] can select features with small intraclass variation and
large interclass variation using effective factors. +e char-
acteristics corresponding to the effective factors can better
distinguish different fault types. +erefore, this paper uses
this method to select the eigenvalues calculated after signal
decomposition.

+e rest of this paper is summarized as follows. +e
second part introduces the detailed steps of the MBMD
algorithm and DET method. In the third part, simulation
analysis is carried out to compare the decomposition effects
of EEMD, VMD, BMD, and MBMDmethods on simulation
signals. +e fourth part carries on the experimental analysis
and combines the four decomposition methods with the BP
neural network to identify and compare the fault types of the
crane low-speed hub bearing. Conclusions are presented in
the end.

2. MBMD and DET

2.1. MBMD Method. Narrowband signals are defined as
follows [24]:

xnarrow(n) � A(n)cos(wn + ϕ(n)), (1)

where ϕ(n) is a slowly changing function. +e frequency
band limits A(n), and its center frequency w′ of A(n) is far
less than w. +e relative bandwidth is 2w′/w, and it is much
smaller than 1.

+e BMD modulated differential operator given in
formula (1) can accurately decompose narrowband signals
and noise signals because the modulated differential oper-
ator can characterize the flatness of nonstationary signals.
And narrowband or wideband signals are invariably more
relaxative than noise signals. In the BMD algorithm, a
modulated differential operator is constructed; the goal is to
ensure that the decomposed components are gentler than
the original signal. Even though the modulated differential
operator is mainly used to decompose narrowband signals, it
is also applicable to wideband signals.

Common pulse signals such as square wave signals and
sawtooth wave signals are defined as the broadband signals,
mainly because the frequency band of such signals is gen-
erally infinite [25]. +eir Fourier series are as follows:

square(n) � 
+∞

i�1

1
2i − 1

sin[(2i − 1)n], (2)

sawtooth(n) � 
+∞

i�1

(−1)
(i− 1)

(2i − 1)
2 sin[(2i − 1)n]. (3)

From equations (2) and (3), the magnitude of the si-
nusoidal component varies with the frequency. So the
construction of broadband signal is as follows:

xbroad(n) � 
+∞

i�1
Ai sin iwn + θi(n) , (4)

where Ai reduces with the magnify in ω. When ω⟶∞,
A⟶ 0 and θ(n) slowly change.
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Even though the frequency of the wideband signal has
multiple relationships with the frequency of the narrowband
signal in equation (4), the wideband signal still appears more
gentle than other signals with a significant reduction of
frequency amplitude, which makes it possible to decompose
the wideband signal from the strong noise signal. It is worth
noting that the original modulated differential operator is
designed and served for the accurate decomposition of
narrowband signals, so the errors inevitably exist when it is
applied to the decomposition of broadband signals. For
xnarrow(n), in principle, the resulting signal component is
A cos(wn + ϕ(n)) multiplied by an envelope signal A(n)/A,
reflected in the narrowband signal having only one main
frequency w.

But in xbroad(n), containing several principal frequencies
with different amplitudes such as Ai sin[iwn + θi(n)] and
Ai−1 sin[(i + 1)wn + θi−1(n)], Ai−1 sin[(i + 1)wn + θi−1(n)],
the main frequency of a broadband signal is w. However, the
frequency interval between the sinusoidal components is w,
too. +e relative bandwidth is equal to the bandwidth di-
vided by the main frequency, which is w/w � 1. In formula
(1), we prove that the relative bandwidth of narrowband
signals is far smaller than 1. When the broadband signals
affected by huge noise are decomposed, the BMD algorithm
may regard Ai sin[iwn + θi(n)] and
Ai−1 sin[(i + 1)wn + θi−1(n)] as two different components
due to the insufficient relative bandwidth. In addition, the
broadband signal will also be decomposed into some nar-
rowband components.

Now the specific method of how to construct the
modulated differential operator will be given.

First, multiply the broadband component signal by the
high-frequency sinusoidal signal, as shown in the formula:

xbroad′ (n) � xbroad(n)sin w′n(  � 
+∞

i�1
Ai sin iwn + θi(n)  sin w′n( . (5)

In the equation, xbroad′ (n) is a modulated signal, sin(w′n)

is a high-frequency single-frequency signal with w′ � Mw,
and M is a presupposed positive integer. In addition,
xbroad′ (n) can be converted into the following shape:

xbroad′ (n) �
1
2



+∞

i�1
Ai cos w′ − iw( n − θi(n) 

+
1
2



+∞

i�1
Ai cos w′ − iw( n − θi(n) .

(6)

+e main frequency is shifted from w to w′ − w and
w′ + w. +is leads to the relative bandwidths becoming
w/(w′ − w) and w/(w′ + w), which are far smaller than 1. It
is obvious that when the relative bandwidth of the nar-
rowband signal is modulated by the modulated differential
operator, it is also far less than 1. So the modulated dif-
ferential operator can be constructed as follows:

Tj � D
(2)IMFj

i (n)
�����

�����
2

2

+ λ D
(2)

x(n)sin w′n(  − IMFj
i (n) 

�����

�����
2

2
.

(7)

+erefore, the broadband modal decomposition method
based on the modulated differential operator is constructed
as follows.

According to the meaning of modulated differential
operator given in formula (7), the main iterative process of
the MBMDmethod is shown as follows, and the flowchart of
this method is introduced in detail in Figure 1.

(1) Set r0(n) to be equivalent to r(n).
(2) Decompose the DC component signal from the

original signal.

IMF0(n) � ifft r
∧
0(1) ,

r1(n) � x(n) − IMF0(n),

(8)

where i is set to 1, fft[r
∧
0(1)] is the IFTof r

∧
0(1), and

r
∧
0(k) is the FT of r0(n).

(3) +e structure of optimization problem P1 is as
follows:

P1: MinimizeT1 A1, w1, θ1, D1( , T2 A2, w2, θ2, D2( ,

· T3 A3(n), w3(n), θ3(n)(  

STx(n) � 
N

i�0
IMFi(n) + res(n), IMFj

i ∈ Dicj,

Tj � D
(2) IMFj

i (n) 
�����

�����
2

2

+ λ D
(2)

x(n)sin w′n(  − IMFj
i (n) 

�����

�����
2

2
,

(9)

where Tj is the modulated differential operator, and
it is given in equation (7), w′ � Mw, where w is
equivalent to the biggest frequency of ri(n), λ> 0 can
be set to 1, and D(2) is the second-order differential
operator.

(4) Obtain the optimal value Tj(j � 1, 2, 3) by solving
for P1 using ACROA, find the minimum value Tj,
and select the optimal value IMFi(n) of Tj.

(5) Renew ri(n): ri+1(n) � ri(n) − IMFi(n).
(6) If the end condition of formula (10) is met, the it-

erative process is terminated. Otherwise, go back to
Step 3.

IMFi(n) − IMFi−1(n)
����

����
2
2

IMFi−1(n)
����

����
2
2

≤ ε. (10)

2.2. DETMethod. When the fault of low-speed hub bearing
of the crane occurs, the time-frequency domain distribution
and amplitude of the signal are quite different from the
normal state. At this time, the corresponding spectrum
distribution and amplitude will also change. Bearing fault
diagnosis often uses statistical parameters in the time do-
main and frequency domain to characterize fault charac-
teristics [26–29]. +e statistical parameters selected in the
paper are shown in Table 1.
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+e MBMD method adaptively decomposes an original
signal into a chain of intrinsic mode components, with each
IMF representing the inherent vibration modes in the
original signal. So features extracted from the IMF are
sometimes more efficient than those extracted directly from

the original signal. Although the statistical parameters given
in Table 1 can be used to identify the fault types from
different angles, not all the characteristics can have a positive
effect on the identification of low-speed hub bearing faults of
cranes. Some parameters are closely correlated with the

End

No

Continue or end the
iteration process

Obtain the minimum value Tj between the optimized T1, T2, T3

Extract IMFi

Yes

i=i+1

Choose the best IMFi(n) Corresponding to Tj

Optimized by ACROA 

IMFi
1(n) = A1square (ω1n+θ1, D1) IMFi

2(n)=A2sawtooch (ω2n+θ2, D2) IMFi
3(n)=A3(n)cos [(ω3+θ3(n)]

Minimize T1 (A1, ω1, θ1, D1), T2 (A2, ω2, θ2, D2), T3 [A3(n), ω3, θ3(n)]

ri+1(n) = ri(n)–IMFi(n)

||IMFi(n)–IMFi–1(n)||22

||IMFi–1(n)||22

Dose ≤ε

Tj = ||D(2)[IMFi
j(n)]||22+λ||D(2) [x (n)sin (ω'n)–IMFi

j(n)]||22

Extract the DC Component

r0(n) = x (n)

IMF0(n) = IFFT [r0(1)]

Construct the high 
frequency signal

High frequency 
signal sin (ω'n)

r1(n) = x (n)–IMF0(n)

ω=2πfmax

ω'=Mω

Figure 1: +e iteration procedure of MBMD.

4 Shock and Vibration



Ta
bl

e
1:

Ti
m
e-
fr
eq
ue
nc
y
do

m
ai
n
st
at
ist
ic
al

pa
ra
m
et
er
s.

Fr
eq
ue
nc
y
do

m
ai
n
st
at
ist
ic
al

pa
ra
m
et
er
s

Ti
m
e-
do

m
ai
n
st
at
ist
ic
al

pa
ra
m
et
er
s

M
ea
n

Sk
ew

ne
ss

Sp
ec
tr
al

am
pl
itu

de
m
ea
n

Sp
ec
tr
al

ro
ot

4/
2-
m
om

en
t
ra
tio

p
1

�
1/

N


N n
�
1

x
(

n
)

p
7

�
1/

N
−
1


N n

−
1

x
(

n
)

−
p
1/

p
63 .

p
13

�
1/

M


M k
�
1

s(
k

)
p
19

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��


M k

�
1

f
4 (

k
)s

(
k

)/


M k
�
1

f
2 (

k
)s

(
k

)



.

Ro
ot

m
ea
n
sq
ua
re

K
ur
to
sis

Sp
ec
tr
al

am
pl
itu

de
st
an
da
rd

de
vi
at
io
n

Sp
ec
tr
al

st
an
da
rd

de
vi
at
io
n
fr
eq
ue
nc
y

p
2

�

�
�

�
�

�
�

�
�

�
�

�
��

1/
N


N n

�
1

x
2 (

n
)



p
8

�
(
1/

N
−
1)


N n

−
1

(
x

(
n

)
−

p
1/

p
6)

4
p
14

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

1/
M

−
1


M k

�
1

(
s(

k
)

−
p
13

)2


p
20

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��


M k

�
1

(
f

(
k

)
−

p
17

)2
s(

k
)/


M k

�
1

s(
k

)



Sq
ua
re

ro
ot

am
pl
itu

de
C
re
st

fa
ct
or

Sp
ec
tr
al

am
pl
itu

de
sk
ew

ne
ss

Sp
ec
tr
al

fr
eq
ue
nc
y
sk
ew

ne
ss

p
3

�
(
1/

N


N n
�
1

�
�

�
��

|x
(

n
)|


)2

p
9

�
p
5/

p
2

p
15

�
1/

M
−
1


M k

�
1

(
s(

k
)

−
p
13
/p

14
)3

p
21

�


M k
�
1

(
f

(
k

)
−

p
17
/p

20
)3

s(
k

)/


M j�
1

s(
j)

M
ea
n
am

pl
itu

de
C
le
ar
an
ce

fa
ct
or

Sp
ec
tr
al

am
pl
itu

de
ku

rt
os
is

Sp
ec
tr
al

fr
eq
ue
nc
y
ku

rt
os
is

p
4

�
1/

N


N n
�
1

|x
(

n
)|

p
10

�
p
5/

p
3

p
16

�
1/

M
−
1


M k

�
1

(
s(

k
)

−
p
13
/p

14
)4

p
22

�


M k
�
1

(
f

(
k

)
−

p
17
/p

20
)4

s(
k

)/


M j�
1

s(
j)

M
ax
im

um
pe
ak

Sh
ap
e
fa
ct
or

Sp
ec
tr
al

gr
av
ity

fr
eq
ue
nc
y

p
5

�
1/
2(
m
ax

(
x

(
n

))
−
m
in

(
x

(
n

))
)

p
11

�
p
2/

p
4

p
17

�


M k
�
1

f
(

k
)s

(
k

)/


M k
�
1

s(
k

)

St
an
da
rd

de
vi
at
io
n

C
re
st

fa
ct
or

Sp
ec
tr
al

ro
ot

m
ea
n
sq
ua
re

fr
eq
ue
nc
y

p
6

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

1/
N

−
1


N n

�
1

(
x

(
n

)
−

p
1)

2


p
12

�
p
5/

p
4

p
18

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�


M k

�
1

f
2 (

k
)s

(
k

)/


M k
�
1

s(
k

)



N
ot
e.

x
(

n
)

(
n

�
1,
2,

..
.,

N
)
is
th
e
pr
im

ar
y
sig

na
l,
an
d
N
is
th
e
nu

m
be
r
of

da
ta

po
in
ts
.s

(
k

)
(

k
�
1,
2,

..
.,

M
)
is
th
e
am

pl
itu

de
of

th
e
or
ig
in
al
sig

na
ls
pe
ct
ru
m
,a
nd

M
is
th
e
nu

m
be
r
of

sp
ec
tr
al
lin

es
.f

(
k

)
is
th
e

am
pl
itu

de
of

th
e
fr
eq
ue
nc
y
of

th
e
kt
h
sp
ec
tr
al

lin
e.

Shock and Vibration 5



faults, while others are not. If all the features are applied to
train the classifier, the fault identification precision will be
reduced. +erefore, to increase the precision of the classifier,
marked features matching the fault information should be
selected during the calculation, and irrelevant or redundant
features should be removed. In this paper, the distance
evaluation technique (DET) method is used to select marked
features. +e basic idea of the DET method is to select
characteristics with small intraclass variation and large in-
terclass variation using effective factors. Features corre-
sponding to effective factors can better distinguish different
categories [30, 31]. Set pi,j,k as the jth statistical parameter of
the kth sample in the ith category. C and Ni are categories
and number of samples, respectively. +e effective factor is
calculated as follows.

First, calculate the average distance of samples of the
same category:

di,j �
1

Ni Ni − 1( 


Ni

k,l�1
pi,j,k − pi,j,l



 (k≠ l). (11)

+en, get the average distance for all categories:

d
w
j �

1
C



C

i�1
di,j. (12)

+e mean value of each parameter of the same category
sample is as follows:

ui,j �
1

Ni



Ni

k�1
pi,j,k. (13)

+e average distance between the mean values of dif-
ferent categories of parameters is shown as follows:

d
b
j �

1
C(C − 1)



C

i,m�1
ui,j − um,j



 (i≠m). (14)

Finally, the effective factor is obtained:

αj �
d

b
j

d
W
j

. (15)

To select features, the maximum value is used to nor-
malize the effective factor:

αj
′ �

αj

max αj  
, (16)

where αj is the effective factor of the jth statistical parameter.
+e upper and lower bounds of the normalized effective
factors are 0 and 1. +ere is no general threshold for the
selection of effective factor. In this paper, the normalized
effective factor value is set as 0.6, and statistical parameters
with an effective factor greater than 0.6 are regarded as
marked characteristics. Different marked features have
different amplitude ranges, so the normalization of marked
feature parameters is shown as follows:

fi,j
′ �

fi,j

maxi�1,2,···,l fi,j



  

, j � 1, 2, . . . , J′( , (17)

where fi,j is the jth marked parameter of the ith data sample,
J′ is the number of marked features, and lis the number of
samples. maxi�1,2,...,l( |fi,j| ) is the maximum value of the
absolute value of the jth marked parameter for all categories.
Formula (16) normalized all marked parameters.

3. Simulation Analysis

To compare the decomposition effects of the different al-
gorithms and to highlight the effectiveness and accuracy of
theMBMD algorithm, the BMD, VMD, and EEMDmethods
are analyzed in comparison with them. First, without loss of
generality, the mixed signal shown in the following equation
is examined:

x(t) � sawtooth(200t, 0.5) + cos(8πt) · cos(200πt)

+ n(t), t ∈ [0, 1].
(18)

x(t) given in the formula consists of a sawtooth wave
signal, AM-FM signal, and noise signal with a signal-to-
noise ratio (SNR) of 10, and the sampling frequency is
12 kHz. +e time-domain waveforms of the mixed signal
x(t) and its three single components are shown in Figure 2.
+e MBMD, BMD, VMD, and EEMD methods are used to
decompose the mixed signal, respectively, and the decom-
position results are taken from the first three components, as
shown in Figures 3–6.

As can be seen from Figure 4, when the BMD algorithm
decomposes simulation signals, the signals of each com-
ponent of the mixed signal are not completely decomposed.
+ere are still large noise signals in the component signals,
and some errors exist in the decomposition results. +is is
because when mixed signals are interfered by strong noise,
the BMD method may treat sawtooth signals as multiple
narrowband components. As can be known from the de-
composition results of the MBMD algorithm in Figure 3, the
decomposed signals of each component are almost identical
to the real components contained in the simulation signals.
As for the MBMD algorithm, because the sawtooth signal is
modulated by a high-frequency signal, MBMD can obtain
more precise decomposition components. +e major ad-
vantage of the MBMDmethod over the BMDmethod is that
this method can effectively deal withmixed signals with huge
noise or signals relative bandwidth not small enough. Fig-
ure 5 shows that when the VMD algorithm decomposes the
simulation signal x(t), it has some obvious disturbances in
the component signal, and the sawtooth wave signal com-
ponent has not been decomposed. It can be seen that IMF2 is
the closest to the real component of the AM-FM signal. But
the signal component is still disturbed by the noise signal.
+at is because the thought of the VMD method is adaptive
filtering. Figure 6 is the result of the decomposition of the
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original signal by using the EEMD algorithm. Obviously,
there is a large error in the obtained decomposition com-
ponent signal, and the sawtooth wave signal is not

decomposed but mixed in the original simulation signal.
Moreover, the AM-FM component signal has been com-
pletely submerged by noise and has not been decomposed.
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Figure 4: +e decomposition result of x(t) generated by BMD.
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Figure 2: +e time-domain waveforms of x(t) and the three components. (a) Mixed signal (SNR� 10); (b) sawtooth wave signal; (c) AM-
FM signal; (d) noise signal.
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Figure 3: +e decomposition result of x(t) generated by MBMD.
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+is is because EEMD uses interpolation methods to get the
extreme value point envelope. +is will come into being the
gentle IMF components.

For a more precise comparison, Table 2 gives the pre-
cision parameters of IMF decomposition gained by four
methods, including the energy error Ei, correlation coeffi-
cient ri, and time T, T, where ri and Ei are the comparison
results between the ith actual component obtained by de-
composition and its corresponding decomposed compo-
nent. Meanwhile, for the sake of comparing the computation
time of different decomposition methods, the decomposi-
tion process is performed on the same computer. +e
analysis results in Table 2 once again show that the MBMD
algorithm can obtain signal components that are closer to
the actual signal, with the smallest error of decomposition
and more precise decomposition results. However, because
of the complex optimization program, theMBMD algorithm
will take more computing time than the other three
methods.

4. Experimental Analysis

4.1. Experimental Equipment and Data Acquisition. In this
paper, the low-speed hub bearing of the crane on the
production line of steel companies is used as a research
object, and its fault identification is carried out. +e analysis

data came from low-speed hub bearing vibration signals
collected in the laboratory, and Figure 7 is the fault test
bench. +e test bench consists of an acceleration sensor,
experimental bearing, load pressurization device, coupling,
gearbox, alternating current motor, and signal acquisition
system. +e supporting shaft is driven by the motor, and the
rotation rate is determined by the alternating current drive.
+e speed working condition can be set by adjusting the
frequency converter indicator. Two low-speed hub bearings
are installed on the support shaft, with the healthy bearing
on the left and the experimental bearing on the right for
setting different fault types of bearings. +e load state of the
experimental bearing is set by pressing the pressure handle,
and an acceleration sensor is placed on the shell of the
experimental bearing to collect vibration signals.

During the experiment, the sampling frequency was set
to 1 kHz, and for each group of experiment data, the
sampling time is 10minutes. Before the start of the exper-
iment, the acceleration sensor was installed on the bearing
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Figure 5: +e decomposition result of x(t) generated by VMD.
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Figure 6: +e decomposition result of x(t) generated by EEMD.

Table 2: Evaluation parameters of decomposition accuracy.

Method r1 E1 T (s)
MBMD 0.9921 0.0025 23.2473
BMD 0.8863 0.1591 16.4287
VMD 0.7549 0.2827 10.5492
EEMD 0.5024 0.5283 5.9216
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seat, and the load pressure on the bearing was set to 25MPa.
Since the low-speed hub bearing of the crane in the steel mill
mainly works at 38 r/min, the bearing speed is treated
similarly in the experiment. Before each group of data
collection, the experimental bearings with different fault
states that had been set in advance were replaced. Finally,
three groups of experimental data were taken under normal
state, inner race fault, and outer race fault, respectively, for
experimental analysis. +e relevant parameters of low-speed
hub bearing of the crane are shown in Table 3. According to
the known conditions in the table and the theoretical for-
mula calculation, fault characteristic frequencies of inner
race, outer race, rolling element, and cage, respectively, are
6.84Hz, 5.19Hz, 2.22Hz, and 0.27Hz.

4.2. Signal Decomposition and Denoising Analysis. Firstly,
MBMD, BMD, VMD, and EEMD methods are used to
decompose a total of 90 experimental signals in three states
to extract fault characteristic information. Figures 8–11 show
the decomposition results of a randomly selected set of
samples in class 3 outer race fault data using four methods.

Compared with the decomposition diagrams, it can be
seen that the components decomposed by the MBMD
method are more stable, and the decomposition results are
relatively more accurate. In addition, the vibration signal
collected during the experiment contains a lot of noise
interference. +erefore, in order to illustrate the denoising
effect of the decomposition method adopted in this paper,
we compare and analyze the vibration signal with noise in
the experiment part. Generally speaking, the better the
denoising effect of the vibration signal, the clearer its en-
velope spectrum. +erefore, we choose the first signal
component decomposed by MBMD, BMD, VMD, and
EEMDmethods for envelope spectrum analysis. +e specific
results are shown in Figures 12–16.

Comparing the envelope spectrum of the experimental
signal finally obtained by the above different decomposition
methods, we can see that the relative frequencies in the
envelope spectrum of the original signal are mainly modu-
lated by the rotation frequency, while the fault frequencies are
covered by a large number of noise signals and are not ob-
vious. In the envelope spectrum obtained after decomposing

the vibration signal by the MBMD method, the valuable
frequency information is mainly concentrated in the low-
frequency band, and the envelope spectrum is also relatively
clear, which achieves a good denoising effect. In the envelope
spectrum obtained after decomposing the vibration signal by
BMD and VMDmethods, there are different degrees of noise
interference, resulting in the drowning of important fre-
quency information in the low-frequency band. At the same
time, from the envelope spectrum obtained after decom-
posing the vibration signal by the EEMD method, it can be
seen that the denoising effect of this method is not obvious,
and the envelope spectrum is similar to the original signal
without denoising. +erefore, through the analysis of the
vibration signal with noise, we can find that the MBMD
method adopted in this paper can denoise effectively.

4.3. Fault Identification of Low-Speed Hub Bearing of Crane.
+e vibration signals of the experimental bearing in the three
states of normal, inner ring fault, and outer ring fault are
selected for fault identification of the low-speed hub bearing
of the crane. Firstly, the signals of experimental bearing in
three health states under the same speed and load conditions
were intercepted at equal times, and the vibration signals of
each state were equally divided into 30 groups. +e detailed
introduction of the experimental data set is shown in Table 4;
that is, the data set in Table 4 contains three states of ex-
perimental bearing, and each state contains 30 samples.

To prove the validity of the method used, the paper
contrasts the four algorithms of MBMD, BMD, VMD, and
EEMD, combined with the DETmethod for the extraction
of fault characteristics of the experimental signals of low-
speed hub bearing of crane, and uses BP neural network for
fault identification. To begin with, we set the hyper-
parameter of the BP neural network. +e detailed settings
are as follows. Sigmoid function is selected as the activation
function. +ree layers are selected for the number of
network layers, including input layer, hidden layer, and
output layer. Since the experimental data includes three
healthy states of normal, inner race fault, and outer race
fault, the number of neurons in each layer is determined to
be 3, 7, and 3. +e initialized weights of the input layer are
all set to 0.1, 0.1, 0.2, 0.2, 0.2, 0.1, and 0.1. +e learning rate

7

6 5 4

1

2

3

Figure 7: Fault test bench.①Acceleration sensor.② Experimental bearing.③ Load pressurizing device.④Coupling.⑤Gearbox.⑥ 3 kW
AC motor. ⑦ Signal acquisition system.
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is set to 0.1. +e target error for iteration termination is set
to 10−6.

Although the statistical parameters given in Table 1 can
be featured from different angles for fault types, most of the
vibration signals are interfered by noise signals. +erefore,

for the sake of improving the recognition accuracy of the
classifier, it is required to select marked features matching
the fault information and remove irrelevant or redundant
features during the calculation. +erefore, this paper com-
bines the DET method to select marked features for the

Table 3: Experimental bearing data parameters.

Bearing type Pitch diameter Ball diameter Number of balls Contact angle
SKF22238-MB 265 (mm) 37 (mm) 19 10°
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Figure 8: +e decomposition results generated by MBMD of a vibration signal from class 3.

2 4 6 80 12 14 16 18 2010
Time (s)

-0.1
0

0.1

Re
sid

ue
A

m
pl

itu
de

2 4 6 8 10 12 14 16 18 200
-0.2

0
0.2

IM
F 4

A
m

pl
itu

de

-0.2
0

0.2

IM
F 3

A
m

pl
itu

de

-0.5
0

0.5

IM
F 2

A
m

pl
itu

de

-0.5
0

0.5

IM
F 1

A
m

pl
itu

de

16141210 18 20642 80

16141210 18 20642 80

16141210 18 20642 80

Figure 9: +e decomposition results generated by BMD of a vibration signal from class 3.
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characteristic values obtained in Table 1. Finally, the ob-
tained marked features are input into BP neural network for
training and testing, and the recognition effects are com-
pared. +e specific steps of the low-speed hub bearing fault
identification method are as shown as follows:

(1) +e original signals of the experimental bearings in
three states are decomposed to obtain a series of
signal components IMFs.

(2) All the eigenvalues (22 time-frequency domain sta-
tistical parameters in Table 1) are calculated by taking
the first three IMFs components as eigenvalue vectors,
so there are 66 eigenvalues in each group of signals.

(3) Get the normalized eigenvalue vector
αj
′(j � 1, 2, . . . , 66). DETmethod is used for feature

selection, and features with normalized effective
factor value greater than 0.6 are selected as marked
features.
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Figure 10: +e decomposition results generated by VMD of a vibration signal from class 3.
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Figure 11: +e decomposition results generated by EEMD of a vibration signal from class 3.
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(4) BP neural network is used to train and test the
marked features and realize the identification and
classification of low-speed hub bearing fault types.

In order to analyze and compare, in each of the 30 sets of
data in the three healthy states, 20 sets of data are randomly
determined for training, and the rest 10 sets of data are
served as test samples, that is, a total of 60 groups of training
samples and 30 groups of test samples. Four decomposition
methods are used in the experiment and combined with the

DET method to screen the eigenvalue matrix for marked
features, and the selection of salient features is shown in
Figures 17–20 (the salient features are marked with blue
circles). It can be seen that EEMD decomposition combined
with DETmethod finally obtained 9 marked features, VMD
decomposition combined with DETmethod finally obtained
15 marked features, BMD decomposition combined with
DET method finally obtained 24 marked features, and
MBMD decomposition combined with DETmethod finally
obtained 32 marked features, indicating that the MBMD
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Figure 12: +e envelope spectrum of the raw signal of a vibration signal from class 3.
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Figure 13: +e envelope spectrum of the first component derived
from MBMD decomposition of a vibration signal from class 3.
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Figure 14: +e envelope spectrum of the first component derived
from BMD decomposition of a vibration signal from class 3.
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Figure 15: +e envelope spectrum of the first component derived
from VMD decomposition of a vibration signal from class 3.
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Figure 16: +e envelope spectrum of the first component derived
from EEMD decomposition of a vibration signal from class 3.
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method combined with DET can extract more fault char-
acteristic information. +e identification effects of the BP
neural network for test samples are shown in Figure 21. As
can be known from the identification figure, the identifi-
cation results obtained by combining EEMD and VMD
methods with BP neural network have many errors, among
which there are 12 errors in the identification results of
EEMD-BP and 9 errors in the identification results of VMD-
BP. +ere are 5 classification errors in BMD-BP identifi-
cation results, while in the identification results of test
samples obtained by MBMD-BP, only 1 case of misclassi-
fication occurred in state 2, while other states are accurately
classified, with a total accuracy of 96.67%. Table 5 shows the
specific classification obtained by four decomposition
methods combined with the BP neural network, indicating

that the MBMD-BP method can identify the fault types of
low-speed hub bearing of the crane more accurately and
effectively. However, the time required by this method for
classification and recognition is significantly higher than the

Table 4: Experimental data set.

Fault class Number of data sets Class label
Normal 30 1
Inner race fault 30 2
Outer race fault 30 3
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Figure 17: +e marked features of IMFs components derived from
MBMD decomposition.
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Figure 18: +e marked features of IMFs components derived from
BMD decomposition.
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Figure 19: +e marked features of IMFs components derived from
VMD decomposition.
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Figure 20: +e marked features of IMFs components derived from
EEMD decomposition.
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Figure 21: Fault identification diagram of low-speed hub bearing
of the crane.
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other three methods, which is mainly related to the complex
internal optimization of the MBMD method when
decomposing vibration signals.

5. Conclusion

Low-speed hub bearing, as the key bearing component of the
crane, is prone to different types of faults in special working
environments such as low speed and complex alternating
heavy load. To solve this problem, the BMD method is
combined with a modulation differential operator; that is,
the MBMD method is used to process vibration signals. By
decomposing the vibration signals of low-speed hub bearing
of crane, using the DET method to screen the marked
features of the calculated eigenvalue matrix, combined with
the BP neural network, the accurate identification of fault
types of low-speed hub bearing of crane is realized.

(1) Aiming at the difficulties of fault features extraction
under the influence of noise on low-speed hub bearing
of crane, the modulated broadband mode decom-
position (MBMD) method is adopted. +e MBMD
method is compared with EEMD, VMD, and BMD
methods. And the simulation analysis shows that the
MBMDmethod has good decomposition precision, is
superior to EEMD, VMD, and BMD methods in
suppressing mode aliasing, orthogonality, and anti-
noise performance, and can accurately extract the
effective components of mixed signals.

(2) MBMDmethod combined with BP neural network is
applied to identify the fault types of low-speed hub
bearing of the crane. Experimental analysis shows
that the MBMDmethod is better than EEMD, VMD,
and BMD in extracting fault features accurately, and
the DETmethod can screen out more representative
marked features from vibration signals. +e MBMD
method combined with BP neural network shows
good performance in identifying fault types of low-
speed hub bearing of the crane and can achieve high
identification accuracy.

Of course, theMBMDmethod also has some shortcomings.
For example, the internal optimization process of the MBMD
method is complicated, the calculation time will be relatively
long, and so on. +erefore, we will conduct more in-depth
research and improvement on these problems in the future.
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