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�is paper proposes a fault diagnosis method for rotating machinery based on evolutionary convolutional neural network
(ECNN). With the time-frequency images as the network input, with the help of the global optimization ability of the genetic
algorithm, the structure of the convolutional neural network can evolve autonomously, and the adaptive con�guration of the
structural hyperparameters for the target task is realized. In this paper, the proposed method is veri�ed by the measured signal of
the planetary gearbox. �e results show that the proposed method is helpful to obtain a convolutional neural network structure
with better performance and achieve higher fault diagnosis accuracy.

1. Introduction

Rotating machinery is widely used in various �elds of in-
dustrial engineering, and its fault diagnosis is particularly
important. In practical industrial applications, mechanical
equipment is often in a state of variable speed operation, and
its vibration signal presents a nonstationary state. Time-
frequency transformation is an important means to analyze
nonstationary signals. By transforming one-dimensional
vibration signals into two-dimensional images, it can show
more abundant time-frequency characteristics of signals.
How to establish the connection between time-frequency
images and fault categories is a hot issue in research [1].

In recent years, there are many remarkable results
achieved in image recognition and other aspects using
convolutional neural network (CNN). CNN has many
variants with di�erent structures for di�erent targets, which
greatly improve the network performance in di�erent ways
[2–6]. However, the design of network structures is often
limited by the researchers’ empirical knowledge of the
disciplines involved in the target task.

Facing the problem of mechanical fault diagnosis, early
researchers designed the network structure by trial and error
to realize the classi�cation of time-frequency images of vi-
bration signals [7–12]. However, the design of the structure

often lacks theoretical support and is rarely mentioned in the
research. Some scholars draw on the network model of CNN
that has outstanding performance in image recognition tasks
and apply it to fault diagnosis. Li et al. [13] modi�ed some
parameters based on LetNet-5 and tried to �nd the network
model suitable for bearing fault diagnosis. Verstraete et al.
[14] designed the network structure based on the idea of VGG
which can realize bearing fault diagnosis well. Hoang and
Kang [15] designed the network structure based on LiftingNet
which has better robustness to noise in signals. Wen et al. [16]
constructed a hierarchical CNN structure based on LetNet-5,
which improved the accuracy of fault diagnosis. Furthermore,
Qian et al. [17] proposed a new deep transfer learning net-
work based on convolutional autoencoder (CAE-DTLN) to
realize mechanical fault diagnosis in target domain without
labelled data. Qin et al. [18] proposed a novel domain ad-
aptation mechanism named intermediate distribution
alignment (IDA) to solve the problems of poor convergence
speed and robustness of existing domain adaptation mech-
anisms in the training process. �e above studies have fully
demonstrated the feasibility and application prospects of
migrating mature CNN models in the �eld of image recog-
nition to mechanical fault diagnosis, but the structural ad-
justment of network models still relies on researchers’
continuous attempts. �is is because the time-frequency
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image of the vibration signal is fundamentally different from
the traditional image. +e vibration signal often contains a
large number of periodic harmonic components, so the time-
frequency image often contains a large number of repeated
and similar components. It is hard to extract the features of
the time-frequency images and often needs a more complex
network structure to distinguish the images.

In the field of computer science, some scholars have
proposed the combination of CNN and evolutionary algo-
rithms to realize the automatic design of network structure.
Bochinski et al. [19] proposed an evolutionary algorithm-
based framework to automatically optimize the CNN
structure by means of hyperparameters in computer vision
tasks. Essiet et al. [20] proposed an ensemble of evolutionary
algorithms which combined with CNN for gas detection.
Zhang et al. [21] built a multilevel convolutional neural
network (ML-CNN) via a hyperparameter importance-
based evolutionary strategy for lung nodule classification.

However, these kinds of research results have not been
applied to the fault diagnosis of rotating machinery. In re-
sponse to this situation, the study encodes the network
structure of CNN and realizes the adaptive evolution of the
CNN network structure for fault diagnosis through supervised
learning based on genetic algorithm. +e rest of this article is
organized as follows. Section 2 describes the basic principles of
the algorithm. Section 3 describes the experimental envi-
ronment in detail and analyzes the experimental results. Fi-
nally, Section 4 gives the phased conclusions and prospects.

2. Algorithm Principle

2.1. CNN. CNN is a feedforward neural networks that in-
cludes convolution computation and has a deep structure. It
is one of the representative algorithms of deep learning
[22, 23]. An example CNN structure is shown in Figure 1.

2.1.1. Convolutional Layer. +e function of the convolu-
tional layer is to extract features of the input data. It contains
multiple convolution kernels inside. +e neurons in the
convolution kernel are connected to multiple neurons in an
area of the input. +e size of the area depends on the size of
the convolution kernel. +is area is called the receptive field.
When the convolution kernel is working, it will regularly
scan the input features and convolve with the input in the
receptive field to obtain the output. Figure 2 shows a
schematic diagram of a 3∗ 3 convolution kernel and the
input convolution operation.

2.1.2. Pooling Layer. +e function of the pooling layer is to
downsample the input data. +rough the preset pooling
function, the feature statistics of the pooled area in the input
are used as the output, which reduces the amount of cal-
culation and suppresses overfitting to a certain extent. Fig-
ure 3 shows a schematic diagram of the pooling operation.

2.1.3. Fully Connected Layer. +e function of the fully
connected layer is to classify the input feature images. +e

input feature image loses its spatial topology in the fully
connected layer and is expanded into vector output after
activation function.

2.2. Genetic Algorithm. Genetic algorithm is a kind of
evolutionary algorithm proposed by John H. Holland [24].
+e algorithm is an adaptive global search optimization
method which originated from the computer simulation
research of biological evolution and genetic system.

+e flowchart of the genetic algorithm is shown in Fig-
ure 4. For a given initial individual, an initial population is
generated as the first generation by mutation. Taking the
individuals in the initial population as the parent generation,
several new individuals are generated as offspring through
three basic genetic operators: selection operator, crossover
operator, andmutation operator.+e fitness of the parent and
the offspring is evaluated, and the offspring with high fitness
replaces the parent with low fitness and joins the population
to obtain the second-generation population. +e standard of
fitness evaluation depends on the specific optimization
problem. By repeating this process, the individuals with the
best fitness in several generations are retained in the pop-
ulation and the individuals with poor fitness are eliminated.
When the termination condition is met, usually the number
of iterations reaches a preset value or there is no individual
with better fitness in successive generations, the algorithm
terminates, and the individual with the best fitness in the
population at this time is output as the optimal solution. Key
operations in the process are explained later.

2.2.1. Fitness. Fitness is a measure of an individual’s
dominance in surviving in a population. It has different
definitions for different target tasks, and its definition is
directly related to the algorithm’s convergence speed. It is
usually the only criterion for judging the quality of the
solution when the algorithm performs a global search.

2.2.2. )ree Basic Operators

(1) Selection Operator. +e selection operator is responsible
for selecting a suitable individual from the current pop-
ulation as the parent, usually with fitness as the selection
criterion, that is, the higher the fitness of an individual, the
greater the probability of being selected. Suppose the pop-
ulation number is M, and the fitness of the i individual is fi;
then, its probability of being selected is

Input conv1 pooling1 conv2 fcpool2 output

Figure 1: Schematic diagram of convolutional neural network
structure.
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(2) Crossover Operator.+e crossover operator is responsible
for generating a new individual from the selected two parent
individuals by means of crossover combination. In practical
applications, the most common one is the single-point
crossover operator, which randomly selects a crossover
position among the two parents and then crosses the parents
at that position. +e process is shown in Figure 5.

(3) Mutation Operator. +e mutation operator is responsible
for generating new individuals by mutating the selected
individuals, and its purpose is to prevent the algorithm from
falling into the optimal solution during the optimization
process. +e process is shown in Figure 6.

2.3.EvolutionaryConvolutionalNeuralNetworks. +is paper
proposes an evolutionary convolutional neural network
(ECNN) that combines genetic algorithm and CNN. +e

genetic algorithm is used to optimize the structure of a given
network and find the optimal solution of the network
structure when facing the problem of gearbox fault diag-
nosis. +e pseudocode of the algorithm is shown in Figure 7.
Subsequent parts of this section describe the key steps in the
algorithm.

2.3.1. Encoding. Encoding is the process of converting
candidate solutions of specific problems into machine codes
and establishing the mapping relationship between the so-
lution space and the coding space. +ere are many types of
encoding, such as binary encoding, real vector encoding,
general data structure encoding, and so on. Common binary

three basic genetic 
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mutation

initial 
individual

calculate fitness as
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update the 
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Figure 4: Genetic algorithm flowchart.
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Figure 2: Schematic diagram of convolution operation.

input output

y11 = pooling (x11, x12, x21, x22)

Figure 3: Schematic diagram of pooling operation.
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encoding is more complex and less readable. With the help
of TensorFlow framework, in this paper, the general data
encoding method is adopted. +is encoding method stores
the single-layer network structure in the convolutional
neural network as a separate list object, which contains the
type and specific parameters of the network structure of this
layer as shown in Table 1. A complete CNN structure can be
represented as shown in Figure 8. Taking a list object as a
gene, the genetic algorithm is used for the middle layer
structure of CNN as an individual.

2.3.2. Fitness. For the target, optimize the CNN structure for
gearbox fault diagnosis, and the fitness function is defined as
the reciprocal of the loss function of the network on the test
set of the data:

fitness �
1

testloss
. (2)

+e higher the fitness of the network structure, the better
the performance of the structure on the test set.

2.3.3. Crossover. +is paper adopts a single-point crossover.
Different from the general way, the crossover positions taken
by the two parents do not have to be unified, as shown in
Figure 9.+e advantage is that the number of network layers
contained in the generated child network may be different
from that of the parents. +is avoids the fixed depth of the
network, which is one of the keys to affecting the perfor-
mance of the network.

2.3.4. Mutation. To enhance the randomness of individuals,
two methods of mutation are adopted in this paper. +e first
method is layer mutation as shown in Figure 10. Randomly
pick a gene, delete it, or add a new gene which deepcopied it.
It is important to note that layer mutation does not occur in
the pooling layer, since successive multiple pooling can be
equated to one larger pooling of a core. Also, to ensure the
integrity of the network structure, deletion does not occur
when the selected gene is a single fully connected layer or
convolutional layer. +e second method is parameter mu-
tation. Randomly pick a gene and change its parameter by
multiplying by the coefficient 1/2 or 2 as shown in Figure 11.
When the selected gene is convolution layer, the changed
parameter is the kernel number. When the selected gene is a
fully connected layer, the parameter changed is the unit
number.

3. Experiment

3.1. Experimental Design

3.1.1. Experimental Data. +e experimental data come from
the measured vibration signal of the planetary gearbox
experimental bench, as shown in Figure 12. +ere are 5 sun
gears under different kinds of health conditions in the ex-
periment, namely, healthy gear, worn gear, root crack gear,
tooth broken gear, and tooth missing gear. Under each
health condition, 10 independent experiments were carried
out on the experimental bench for a total of 50 experiments.
Every time the experimental sun gear is disassembled and
assembled. In each experiment, the operating speed of the
experimental bench is 0–50Hz variable speed, the effective
duration of each experiment is 40 s, the sampling frequency
is 48000Hz, and the sampling length is 1,920,000.

After slicing the vibration signal, discrete wavelet
transform is performed to obtain a time-frequency image
matrix of 50∗ 50. +e matrix is normalized to 0-1 and then
used as a sample. Figure 13 shows randomly selected sample
images of five different health conditions. 100 samples can be

0 1 0 0 0 0 1 0

Individual A

0 1 0 0 0 1 0 1

Individual B

Figure 6: Schematic diagram of mutation operator operation.

Input: basic CNN architecture net_1
population size P, number of generation G, offspring size O

mutate net_1, generate net_{1,2,…,P} as intial population P1

for i = 1:G
for j = 1:O

if fitness child_j>net_P
net_P = child_j

end
sort Pi by fitness

end
generate Pi+1 = Pi
i = i+1

end
Output:the individual with the highest fitness from PG

Algorithm: Evolutionary Convolutional Neural Network

selecte two individuals from Pi as parents
cross and mutate the parents to get child_j

Figure 7: Pseudocode of ECNN.
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0 1 0 0 1 0 1 1

Parent A

Parent B

0 1 0 0 0 0 1 0

Child C

Figure 5: Schematic diagram of crossover operator operation.
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obtained for each kind of experimental data, 5000 samples
can be obtained in 50 experiments, and the samples are
labelled according to the health status of the gears. +e
training set and the test set are randomly divided according
to the ratio of 9 :1.

Input conv1 pooling1 conv2 pool2 fc output

outputlist 1 list 2 list 3 list 4 list 5input

encoding

gene sequence

Figure 8: Schematic diagram of encoding of ECNN.

list 1 list 2 ··· list i ··· list n

list 1 list 2 ··· list j ··· list m

list 1 list 2 ··· list i list j ··· list m

Parent A

Parent B

Child C

crossover

depth of the network

n

m

i+(m-j+1)

Figure 9: Schematic diagram of crossover of ECNN.

list 1 list 2 list 3 list 4 list 5

list 1 list 2 list 3’ list 3 list 4 list 5 list 1 list 2 list 4 list 5

list 3deepcopy

Individual A

Individual B Individual C

mutate
add delete

Figure 10: Schematic diagram of layer mutation of ECNN.

list 1 list 2 list 3 list 4 list 5
Individual A

kernel=a;
mutate

Individual B

kernel=a*2;
or kernel=a*1/2;

list 1 list 2 list 3 list 4 list 5

Figure 11: Schematic diagram of parameter mutation of ECNN.

Frequency
converter Motor

Planetary
gearbox Reducer Load

Figure 12: Planetary gearbox experimental bench.

Table 1: Storage content of one list object.

Structure Parameter Statement

Conv Kernel number, kernel size, stride size, padding type List� [convolutional(kernel� a, kernel_size�(),
stride_size�(), padding� ’’)]

Pooling Pooling size, stride size, padding type List� [pooling(pool_size�(), stride_size�(), padding� ’’)]
fc Unit number List� [FullConnected(unit� b)]
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3.1.2. Experimental Environment. +e experiments in this
paper are carried out under the TensorFlow-GPU frame-
work, and the configuration environment is CUDA 11.6, C
UDNN v 8.4.1. +e device graphics card is NVIDIA GeForce
GTX 1660 SUPER.

3.1.3. CNN Architecture. VGG network model is a CNN
model jointly developed by the Computer Vision Group of
Oxford University and DeepMind, which has a good per-
formance in transfer learning tasks. Its structure is simple
and regular, and the structure of convolutional layer consists
of kernel 3∗ 3, stride 1, and padding (same), and the pooling
layer consists of pooling 2∗ 2 and stride 2. Such a archi-
tecture means that fewer parameters need to be concerned in
the evolution of the genetic algorithm. +is paper chooses
VGG-5 as the initial network net_0, and its architecture is
shown in Table 2.

3.1.4. Parameter Design. Considering the computational
scale of the experiments in this paper, the design of the
algorithm parameters is shown in Table 3.

3.2. Experimental Results. Including the initial network
structure, the algorithm generated a total of 32 network
structures. During the operation of the algorithm, the fitness
showed an upward trend of oscillation, showing the global

optimization process of the algorithm, as shown in Fig-
ure 14. +e fitness of the first offspring reached a peak value
of 4.81 in the 12th generation evolution, which was greatly
improved compared with the fitness of the initial VGG-5
network of 1.19. +e loss function and accuracy value of the
network on the test set during the evolution process are
plotted as shown in Figure 15.

In this experiment, the first offspring in the evolution of
the 12th generation is the optimal solution, and its cor-
responding network structure is shown in Table 4. It can be
seen that the model adds two convolutional layers com-
pared to VGG-5 and adjusts the number of convolution
kernels in the convolutional layer and the number of
neurons in the fully connected layer. +e computational
parameters are also reduced from 346,240 to 229,413,
which also improves the computational efficiency of the
network.

In order to further verify the feasibility of this method,
the network structure obtained in this experiment is com-
pared with the deeper VGG structure network because in-
creasing the network depth is an important means to
improve the performance of VGG structure network. +e
depth of the network obtained in this experiment is 10, so
the VGG-11 network with similar depth and the deeper
VGG-16 network are selected as the comparison networks.
Under the same environment configuration, the test results
(10 times) of each network structure on the experimental
data test set are shown in Table 5.
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Figure 13: Time-frequency matrix under different health conditions (from left to right, healthy, worn, root cracks, tooth broken, and tooth
missing).

Table 2: Architecture of VGG-5 network.

Layer Parameter and value
Conv 1 Kernel 3∗ 3∗ 32, stride 1, padding(same)
Conv 2 Kernel 3∗ 3∗ 32, stride 1, padding(same)
Pooling 1 Size 2∗ 2, stride 1
Conv 3 Kernel 3∗ 3∗ 32, stride 1, padding(same)
Conv 4 Kernel 3∗ 3∗ 32, stride 1, padding(same)
Pooling 2 Size 2∗ 2, stride 1
fc Units 128

Table 3: Design of algorithm parameter.

Framework Parameter Value

GA
Population size 2

Number of generation 15
Offspring size 2

CNN Batch size 64
Epoch 10

6 Shock and Vibration



+e results show that with similar training time, the
network structure obtained in this experiment is superior
to the network structure obtained by the general

optimization method in mean and variance of accuracy on
the test set. It is proved that the method presented in this
paper has certain guiding significance in solving the
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Figure 15: Loss and accuracy of generated networks on test set.

Table 4: Optimal solution network structure.

Layer Parameter and value
Conv 1 Kernel 3∗ 3∗ 16, stride 1, padding(same)
Conv 2 Kernel 3∗ 3∗ 16, stride 1, padding(same)
Pooling 1 Size 2∗ 2, stride 2
Conv 3 Kernel 3∗ 3∗ 32, stride 1, padding(same)
Conv 4 Kernel 3∗ 3∗ 8, stride 1, padding(same)
Conv 5 Kernel 3∗ 3∗ 8, stride 1, padding(same)
Conv 6 Kernel 3∗ 3∗ 64, stride 1, padding(same)
Conv 7 Kernel 3∗ 3∗ 128, stride 1, padding(same)
Conv 8 Kernel 3∗ 3∗ 64, stride 1, padding(same)
Pooling 2 Size 2∗ 2, stride 2
fc Units 256

Table 5: Test results on the experimental data test set.

Network structure Computable parameters Min accuracy Max accuracy Mean of accuracy Variance of accuracy Training time (s)
VGG-5 28064 0.770 0.876 0.824 0.00168 25
ECNN 159336 0.878 0.914 0.901 0.00023 28
VGG-11 83232 0.880 0.904 0.888 0.00027 26
VGG-16 129472 0.818 0.920 0.864 0.00162 28
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Figure 14: Fitness of offspring.

Shock and Vibration 7



problem of network structure design in the fault diagnosis
of rotating machinery.

4. Conclusion and Outlook

In this paper, aiming at the problem of neural network
structure design in rotating machinery fault diagnosis, we
proposed an ECNN model by combining genetic algorithm
with CNN, which realized the automation of network
structure design in mechanical fault diagnosis. +e idea of
this paper is using the genetic algorithm to code and op-
timize the network structure of the preset basic CNNmodel.
+e optimization process is a global optimization, which
ensures that there will be no overfitting or falling into a local
optimal solution. Although the global search of the algo-
rithm has a certain randomness, taking the fitness as the
return value provides guidance for the search direction.
Experiments show that the method proposed in this paper
can adaptively optimize the network model according to the
time-frequency dataset of vibration signals, and the final
diagnosis effect of the network model is higher than that of
the initial model. Future work will consider adding more
evolvable parameters to the algorithm and expanding the
search range.
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