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In order to detect the assembly quality of the combine harvester accurately and effectively, a method for the assembly quality
inspection of the combine harvester based on the improved whale algorithm (IWOA) to optimize the least square support vector
machine is proposed. Aiming at the characteristics of whale optimization algorithm’s weak search ability and easy maturity, this
paper introduces the cosine control factor and the sine time-varying adaptive weight to improve it and uses the benchmark
function to verify the general adaptability of the algorithm. Combined with the local mean decomposition (LMD), the assembly
quality inspection model of the combine harvester was established and applied to the Dongfanghong 4LZ-9A2 combine harvester
for experimental verification.*e experimental results show that the IWOA proposed in this paper has better optimization ability
and adaptability. *e average accuracy of the IWOAmodel proposed in this paper reaches 90.5%, which is 4% higher than that of
the WOA model, and the standard deviation of the average accuracy is reduced by 0.15%, which indicates that the IWOA model
has better stability.

1. Introduction

Combine harvester is a large complex agricultural machine
which can harvest, transport, thresh, separate, and clean
crops at one time [1, 2]. *e reliability of its work process is
directly related to the quality and efficiency of crop har-
vesting operations [3]. Due to the complexity of the
transmission system, the assembly failure of the transmis-
sion system will aggravate the wear of parts and components
in the working process of the combine and seriously reduce
the trouble-free working time [4, 5]. *erefore, it is nec-
essary to study the assembly fault detection method of
combine to improve its reliability. At present, there have
been a lot of research on fault diagnosis of rotating ma-
chinery system. At present, most of them build a diagnosis
system through the intelligent algorithm to analyze the
vibration signal of mechanical system. As a pattern recog-
nition process of multimethod fusion, fault diagnosis usually
includes four steps: vibration signal acquisition, signal
preprocessing, fault signal feature extraction, and classifier

construction [6].*e construction of classifier is the last step
to complete fault diagnosis. *e performance of classifier
directly affects the effect of the whole diagnosis process.

As a classical supervised learningmethod, support vector
machine (SVM) has been widely used since it was intro-
duced in 1960. It is often used in the construction of classifier
in fault diagnosis system [7]. Yang, J, and others used SVM
to construct classifier to realize face recognition [8]. Suykens
et al. introduced the least squares linear theory into the
traditional SVM, transformed the original SVM inequality
constraints into linear equality constraints, and proposed the
least square support vector machine (LSSVM), which made
the solution process more efficient and concise, and im-
proved the calculation speed and accuracy [9]. However, the
classification effect of LSSVM is easily affected by the pa-
rameters in the model. *erefore, some scholars use the
metaheuristic algorithm to solve the optimal parameter
optimization problem of LSSVM.

In recent years, the metaheuristic algorithm has been
used to solve various complex problems and achieved good
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results. Alweshah et al. [10] uses the Emperor Butterfly
Optimization (MBO) algorithm to reduce the size of feature
selection for data sets and the calculation time. Fahim et al.
[11] used the hunger game search algorithm to optimize the
proton exchange membrane fuel cell (PEMFC), which im-
proved the accuracy of the final model. Feng and Wang [12]
solved NP-hard combinatorial optimization problems with
many different applications using the improved moth search
algorithm. Gerey et al. [13] used the Harris Hawks opti-
mization algorithm to optimize hydraulic conductivity and
yield-specific parameters of a modular three-dimensional
finite difference (MODFLOW) groundwater model, thereby
minimizing the sum of absolute deviations between ob-
served and simulated groundwater levels, and achieved good
results. Ruan et al. [14] combined the Newmarkmethod with
the fourth-order Runge–Kutta algorithm to carry out
comprehensive simulation calculation for the adaptive fly-
ing-away excitation system, which realizes periodic excita-
tion for the conductor system. In addition, some scholars
[15, 16] use genetic algorithm and particle swarm optimi-
zation to solve multiobjective problems. However, these
algorithms still have some disadvantages such as weak local
capability, general global search ability, and premature
maturity.

Whale optimization algorithm (WOA) [17] is a new
swarm intelligence algorithm obtained by Australian scholar
Mirjalili in 2016 through the study of humpback whale
foraging behavior. Tong, WY, designed a WOA hybrid al-
gorithm with learning and complementary fusion features
for data mining [18]. Elhosseini, MA, uses an improved
whale optimization algorithm to achieve the stability of the
biped robot [19]. *e standard WOA algorithm has the
advantages of fewer parameters and good global conver-
gence, so a large number of scholars use it in practical
applications. Wu et al. [20] used VNWOA to optimize the
regularization parameters and parameters of LSSVM to
achieve fault type diagnosis of bearings and achieved good
classification effect. Although VNWOA has a fast optimi-
zation speed, it still has the problem that it is easy to fall into
local optimal solution.*e assembly quality detection model
of combine is a typical problem of rotating machinery fault
diagnosis, so this paper uses WOA to optimize LSSSVM and
further optimizes the convergence accuracy of WOA.

Although WOA has the advantages of fewer parameters,
simple operation, and strong optimization ability, it still has
problems such as low convergence accuracy and easy to fall
into local optimal solutions. Based on this, some scholars
have carried out improved research onWOA. Some of them
combine WOA with other existing optimization algorithms
and construct a combined optimization algorithm, which
achieves better optimization results [21, 22]. Seyed and
Samaneh [23] proposed a new algorithm that combines
WOA with differential evolution (DE), which improves the
problem that WOA is prone to fall into local optimal so-
lutions. Luo and Shi [24] embedded an improved differential
evolution operator with strong exploratory capability in
WOA, and accelerated the convergence of WOA by using
the asynchronous model, which improved the accuracy of
the algorithm. Others have studied and improved the

optimization method of whale optimization algorithm itself,
mainly for the update method and learning strategy of the
algorithm [25–27]. Li et al. [28] proposed a whale optimi-
zation algorithm using nonlinear adjustment parameters
and Gaussian disturbance operator to locate the critical slip
surface of the soil slope. Khashan et al. [29] and others put
forward a new WOA improvement, which improved the
optimization performance of the algorithm by changing the
parameter “A” nonlinearly and randomly and updating the
parameter “C” by applying inertial weight strategy and was
verified on several benchmark test functions. Yan et al. [30]
proposed a whale optimization algorithm based on lateral
suppression (LI), which combines the optimization effi-
ciency of WOA and the matching accuracy of LI mechanism
and achieves better results in image matching and visual-
guided AUV docking. When improving the algorithm, some
scholars increase the weight factor in the early stage of the
algorithm’s population position update to increase the
population diversity [25, 31], but this will cause the pop-
ulation to be in the late stage of shrinking and envelopment,
the update rate will slow down, and the local search and
global search cannot be well-balanced ability.

In view of the shortcomings in the above problems, this
paper introduces the cosine control factor and the sine time-
varying adaptive weight on the basis of WOA. In the early
stage of the algorithm iteration, the population is relatively
scattered, and the slower change of the cosine control factor
is conducive to the global search of the algorithm. *e
change speed of the cosine control factor increases, and the
local search capability of the algorithm is enhanced. In
particular, this paper only adds sinusoidal time-varying
adaptive weights when the spiral position is updated, which
enhances the algorithm’s ability to search globally and jump
out of the local optimum.

*is article first uses 8 benchmark functions to test the
improved whale optimization algorithm (IWOA), and the
results show that IWOA has a stronger ability to find op-
timization than WOA. *en IWOA was used to optimize
LSSVM and combined with LMD to establish the assembly
quality inspection model of the combine harvester, which
was tested and verified on the Dongfanghong 4LZ-9A2
combine harvester.*e results show that the method used in
this paper can accurately and effectively identify the com-
ponent assembly quality of combine.

2. The Basic Principle of WOA

*e whale optimization algorithm is a metaheuristic opti-
mization algorithm that simulates the hunting behavior of
humpback whale bubble nets. *e hunting process mainly
includes three stages: surrounding prey, bubble attack, and
searching for prey.

2.1. Surrounding the Prey. Humpback whales can recognize
their prey and surround them. Assuming that the current
position of the best population individual is the target prey
position or the closest to the best target prey position, the
rest of the individuals will move towards the target position
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and update their position. *e position update rule in the
following equations (3) and (4) is as follows.

X(t + 1) � X
∗
(t) − A · D. (1)

D � C · X
∗
(t) − X(t)


, (2)

where A and C represent coefficient vectors, X∗(t) repre-
sents the position of the best individual in the population, D

represents the distance between the best individual and the
current individual position, and A and C are defined by

A � 2a × r1 − a. (3)

C � 2 · r2,

a � 2 1 −
t

tmax
 ,

(4)

where the value of a decreases linearly from 2 to 0 with the
increase of t, tmax represents the maximum number of it-
erations, and r1, r2 are random vectors in the range of [0,1].

2.2.BubbleAttack. *epredator model consists of two parts:

*e first part is shrinking and encircling.*e value of A
changes with the parameter a to realize the range of
prey, which is the local search stage.
*e second part is the update of the spiral position. *e
whale uses a spiral motion to achieve envelopment
based on the distance between itself and the target. *e
mathematical model is expressed by equation (6).

D′ � X
∗
(t) − X(t)


. (5)

X′(t + 1) � D′ · e
bl

· cos(2πl) + X
∗
(t), (6)

where D′ represents the distance from i to the target, l is
a parameter generated by random transformation be-
tween [-1,1], and b represents the spiral constant.

When a whale attacks its prey, the contraction encir-
clements and the spiral position updates occur simulta-
neously with the same probability; the model is defined in
equation (7).

X(t + 1) �
X
∗
(t) − A · D, p< 0.5

D′ · e
bl

· cos(2πl) + X
∗
(t), p≥ 0.5

,
⎧⎨

⎩ (7)

where p is a random number between [0, 1].

2.3. Search Phase. Whales randomly search for prey when
they attack. When |A|> 1, randomly select individual po-
sitions for global search so as not to enter the local optimal
solution, which is defined by

D � C · Xrand − X(t)


. (8)

X(t + 1) � Xrand − A · D, (9)

where Xrand represents the position vector of the individual
whale randomly selected and X(t) represents the position
vector of the current individual.

3. Improved WOA

3.1. Cosine Variation of Nonlinear Control Factor. *e whale
optimization algorithm has the advantages of simple and
easy-to-understand principles and fewer hyperparameters,
but it also needs to balance the capabilities of local search
and global optimization in the optimization process, that is,
adjust by changing the value of A. It can be seen from
formula (3) that the value of A is controlled by the parameter
a. *e larger the value of a, the stronger the algorithm’s
global search ability, and the smaller the value of a, the
stronger the algorithm’s local search ability. In the standard
whale optimization algorithm, the value of a is a parameter
that linearly decreases from 2 to 0, and it is easy to fall into a
local optimal solution during operation. *erefore, this
paper uses a nonlinear control factor, which is defined in

a � 2 cos
πt

2tmax
 . (10)

It can be seen from the above formula that in the early
stage of the algorithm iteration, the value of a is larger and
decreases slowly from 2 to make full use of the global search.
In the late stage of the algorithm iteration, the speed of the
value of a decreases, increases, and the local search ability is
enhanced.

3.2. Sine Time-Varying Adaptive Weight Factor.
Literature [32] points out that when the weight factor is
large, it is conducive to the global search of the algorithm,
while when the weight factor is small, it is conducive to the
local search of the algorithm. In order to effectively balance
the local search and global search ability, an adaptive weight
factor is introduced to improve the convergence speed and
accuracy. Only sinusoidal time-varying adaptive weight is
added when the spiral position is updated, which enhances
the ability of the algorithm in global search and jumping out
of local optimization. *e mathematical model is defined by

X(t + 1) �
X
∗
(t) − A · D, p< 0.5

X
∗
(t) + w(t) · D′ · e

bl
· cos(2πl), p≥ 0.5

,
⎧⎨

⎩

(11)

where w(t) is defined by

w(t) � sin
πt

2tmax
+ π  + 1. (12)

3.3. IWOA Complexity Analysis. Time complexity reflects
the operating efficiency of the algorithm and is an important
factor in judging the performance of the algorithm. In the
improved whale optimization algorithm, the population size
of the whale algorithm is N, and the set dimension of the
individual is n. *e time to set the initial position of the
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optimal individual and the initial value of the fitness is t1,
and the time to initialize each dimension of the whale in-
dividual position is t2; then the time complexity of the
initialization phase is as follows:

T1 � O t1 + N n · t2( ( . (13)

After starting the iteration, the total number of iterations
is M. Assuming that the time for each whale in the pop-
ulation to calculate the fitness value of the objective function
is f(n), the replacement time compared with the current best
fitness value is t3, and the calculation time of the coefficient
vectors A and C is t4; then the time complexity at this stage is
as follows:

T2 � O N f(n) + t3 + t4( ( . (14)

Suppose there arem1 whales in the population searching
for food, the location update time is t5,m2 whales shrink and
surround the prey, the location update time is t6, and m3
whales perform spiral position update, and the execution
time is t7. During the update, the introduced sine time-
varying adaptive weight w increases the calculation time of
t8, and the head whale spirally moves and attacks its prey
(N�m1+m2+m3, 0≤m1,m2,m3≤N); then at this stage, the
time complexity is as follows:

T3 � O N
m1 n · t5(  + m2 n · t7( +

m3 n · t7 + t8( ( 
  . (15)

In summary, the total time complexity of IWOA is as
follows:

T � T1 + M T2 + T3( . (16)

In addition, the space complexity S(n) is mainly affected
by the size of the population N and the dimension of the
search space Dim and can be expressed as

S(n) � O(f(n)) � O(N × Dim). (17)

As shown in Table 1, the increased complexity of the
algorithm has a certain impact on the running time of the
algorithm.

3.4. Performance Test. In order to verify the performance of
the IWOA algorithm, the 8 benchmark test functions shown
in Table 2 are tested and compared with theWOA algorithm.
*e average and standard deviation of the optimal values
obtained by the two algorithms are used as evaluation in-
dicators. In this paper, the number of populations is set to
30, the maximum number of iterations is 100, and the di-
mension is 30. In Table 2, F1–F4 are continuous single-mode
functions, and F5–F8 are nonlinear multimode functions.
Taking into account the validity and accuracy of the ex-
perimental results, the mean, standard deviation, and
running time of the two algorithms running 30 independent
optimization calculations on 8 benchmark test functions are
shown in Table 1.

Analysis of the results in Table 1 shows that the IWOA
algorithm is better than the WOA algorithm in the 8 test

functions. Among them, F5 and F6 are nonlinear multi-
modal functions. Under normal circumstances, it is difficult
to find the global optimal solution, and the IWOA algorithm
is not only short. *e optimal solution was found within
time and the theoretical value was reached. From the per-
spective of optimized mean and standard deviation, the
IWOA algorithm is significantly better than the WOA al-
gorithm, so the IWOA algorithm has higher convergence
accuracy and better optimization capabilities. From the
perspective of running time, the optimization time of IWOA
is longer than WOA. *is is because after IWOA introduces
the cosine control factor and the sine time-varying adaptive
weight coefficient, the complexity of the algorithm is in-
creased, and the optimization time is increased.

4. Test and Analysis

4.1. Test Procedure. *e tested prototype model is the
Dongfanghong 4LZ-9A2 combine harvester. *e engine
speed is 780r/min, and all working parts of the combine
harvester work without load. *e signal acquisition device
is the DH5902 dynamic signal test analyzer of Donghua
Test, and the sensor adopts the IEPE piezoelectric ac-
celeration sensor of Donghua Test. *e assembly quality
problem in this test is manual injection. *e specific types
and effects are as follows: 1. Misalignment of the auger will
cause grain accumulation and clogging of the auger. 2.
Misalignment of the cutting knife will cause missing
cutting and cutting knife blockage during the working
process of the combine. 3. *e loosening of the cutter
drive pinch wheel will cause insufficient power trans-
mission of the cutter. Figure 1 shows the manual injection
assembly quality problem.

*is paper detects the assembly quality of combines by
collecting vibration signals. *e time-domain and fre-
quency-domain characteristics of random vibration signals
and decomposed information entropies are fused into fea-
ture vectors and classified by using the IWOA-LSSVM
model. *e potential application of the IWOA optimization
algorithm proposed in this paper in the field of fault di-
agnosis is verified. *e inspection process of assembly
quality of combines is shown in Figure 2. *e steps are as
follows:

(1) Inject assembly faults into the combine harvester and
collect signals

(2) Divide the samples of the original signal and use
LMD [33, 34] to decompose to obtain several IMF
components

(3) Use the correlation coefficient to select IMF com-
ponents, extract the information entropy of each
component and the time and frequency features of
the signal, and fuse them into a mixed feature set as
the final feature vector

(4) Input the training set data into IWOA-LSSVM for
training to obtain the optimal model and save it

(5) Input the test set data into the optimized LSSVM for
classification
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4.2. Model of IWOA-LSSVM. *e regularization parameters
c and kernel function parameters σ of the least square
support vector machine directly affect the classification
accuracy of the model. *erefore, this paper uses IWOA to
optimize the parameters above.*e IWOA-LSSVMmodel is
shown in Figure 3. *e specific process is as follows:

(1) Initialize the algorithm parameters, set the pop-
ulation number N, the maximum number of itera-
tions tmax, logarithmic spiral constant b, random
number l, and other parameters

(2) Randomly generate a population in the solution
space, take the classification accuracy error of
the least square support vector machine as the
fitness function of the individual, calculate the
fitness value of each individual, and take the
optimal position of the fitness as the target
position

(3) Update the parameters a, A, C, l, p, and update the
position of the whale according to the rules to obtain
the optimal position and record it

Table 1: Comparison of experimental results.

Function
IWOA WOA

Mean value Standard deviation Optimization time (s) Mean value Standard deviation Optimization time (s)
F1 1.47E-48 7.88E-48 6.26E+01 7.03E-11 2.25E-10 6.06E-01
F2 1.60E-25 8.17E-25 6.03E+01 1.41E-08 2.50E-08 6.38E-01
F3 2.88E+01 3.52E-02 6.27E+01 2.88E+01 4.54E-02 6.15E-01
F4 3.17E+00 1.27E-01 6.22E+01 1.88 E+00 4.81E-01 5.78E-01
F5 0.00E+00 0.00E+00 6.17E+01 8.57 E+00 3.69E+01 9.23E-01
F6 0.00E+00 0.00E+00 6.62E+01 3.15E-12 1.66E-11 3.73 E+00
F7 5.73E-16 6.48E-16 5.96E+01 5.47E-07 1.03E-06 6.62E-01
F8 −8.43E+03 7.20E+02 5.92E+01 −9.57E+03 1.60E+03 1.11E+00

Table 2: Benchmark function.

Function Expression Dimension Search interval *e optimal value
F1 

n
i�1 x2

i 30 [−100, 100] 0
F2 

n
i�1 |xi| + 

n
i�1 |xi| 30 [−100, 100] 0

F3 
n−1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [−30, 30] 0
F4 

n
i�1 ([xi + 0.5])2 30 [−100, 100] 0

F5 
n
i�1[x2

i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0
F6 1/4000

n
i�1 x2

i − 
n
i�1 cos(xi/

�
i

√
) + 1 30 [−600, 600] 0

F7 −20 exp(−0.2
�����������
(1/n) 

n
i�1 x2

i


) − exp((1/n) 

n
i�1 cos(2πxi)) + 20 + e 30 [−32, 32] 0

F8 
n
i�1 −xi sin(

��
xi

√
) 30 [−500, 500] −1.2569

Loose
fault of
driving
wheel

Cutter faultAuger fault

Figure 1: Fault injection.
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Figure 2: *e flow chart of assembly quality inspection.
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(4) Determine whether the maximum number of iter-
ations is reached, if the conditions are met, and
output the optimal value and the optimal individual
position; otherwise, return to step (2) to continue the
search

4.3. Signal Acquisition. Separately select normal signals and
fault signals and perform time-frequency-domain analysis.
Figures 4 and 5 are the time-domain diagram and the
frequency spectrum diagram of the normal signal and the
fault signal, respectively. By comparing Figures 4 and 5, it
can be seen that the amplitude of the normal signal and the
fault signal is not obvious. It is difficult to distinguish the
signal through observation in the time domain. By com-
paring the frequency-domain diagrams, we can see that the
frequency-domain information of the two signals is complex
and there are many interference signals. It is difficult to
distinguish fault signals accurately only by time-domain and
frequency-domain characteristics. In this case, LMD is used
to decompose the signal, extract information entropies and
time-domain and frequency-domain characteristics, and
construct a mixed feature set.

4.4. Feature Extraction. LMD is used to process the origins
signals to extract energy entropy.*e length of single sample
data is 2000. *e normal state was identified as category 1. If
the auger is not aligned, it is identified as category 2. If the
cutter is not aligned, it is identified as category 3. Loose drive
wheels are identified as category 4. *e sample length of the
four categories is 200, and the total sample length is 800.
Among all kinds of samples, 1–150 are training samples and
150–200 are test samples. *e total number of training
samples is 600, and the total number of test samples is 200.
*e data set is shown in Table 3.

LMD decomposes four types of signals: normal, auger
failure, cutter failure, and transmission system failure to
obtain multiple IMF components and uses correlation co-
efficients to analyze and select the IMF components that
contain the main fault information. *e correlation coeffi-
cient between the original signal and the false component
and noise is relatively small, and the correlation coefficient
with the real component is relatively large. Table 4 shows the
correlation coefficients between the original signal and the
IMF components of each order under each working
condition.

*e correlation coefficient between the original signal
and IMF6 under each working condition is less than 0.2, so
only the first 5 IMF components are extracted for infor-
mation entropy. *e information entropy and signal peak
value, root mean square value and form factor, and other
time-domain features and frequency-domain features such
as center frequency, frequency root mean square, and fre-
quency kurtosis are fused into a mixed feature set as the final
feature vector.

4.5.Classification-Based IWOA-LSSVM. Use the training set
to train IWOA-LSSVM and use the test set to verify the

accuracy of the trained model. In order to verify the ef-
fectiveness of the optimization algorithm proposed in this
paper, the three methods of particle swarm optimization
(PSO), genetic algorithm (GA), and WOA are tested and
compared. GA parameter setting: p_1� 0.6, p_2� 0.01; PSO
parameter setting: c_1� 0.5, c_2� 0.3, w � 0.9; the total
number of population individuals of the four algorithms is
set to 30, and the maximum number of iterations is 100. *e
classification accuracy of each method when using different
features is shown in Table 5. Use the training set to train
IWOA-LSSVM and use the test set to verify the accuracy of
the trained model. In order to verify the effectiveness of the
optimization algorithm proposed in this paper, the three
methods of particle swarm optimization (PSO), genetic
algorithm (GA), and WOA are tested and compared. GA
parameter setting: p_1� 0.6, p_2� 0.01; PSO parameter
setting: c_1� 0.5, c_2� 0.3, w � 0.9; the total number of
population individuals of the four algorithms is set to 30, and
the maximum number of iterations is 100. *e classification
accuracy of each method when using different features is
shown in Table 5.

It can be seen from Table 5 that the accuracy of clas-
sification when using various single features is lower than the
accuracy when using mixed feature sets. *is is because the
vibration signal of the combine harvester is relatively
complicated. *e signal of the vibration measuring point is
coupled by the excitation of multiple vibration sources, and
the signal of the vibration measuring point is easily inter-
fered by the vibration of other parts. *erefore, the use of a
single feature cannot accurately identify the fault type. *is
paper uses a mixed feature set as the final feature vector.
Figure 6 shows the confusion matrix of the classification
results of the four methods.

It can be seen from Figure 7 that the classification
accuracy of category 1 and category 2 is higher, and
category 3 and category 4 are not easy to distinguish, and
the classification error is relatively large. Figure 7(a)
shows the confusion matrix using PSO to optimize
LSSVM. *e classification effect of category 3 is poor, and
about 29% are misclassified into category 4. Figure 7(b)
shows the confusion matrix of LSSVM optimized by GA,
in which the classification accuracy of category 4 is low,
while the classification accuracy of category 3 is improved
compared with the PSO algorithm. Figure 7(c) shows the
confusion matrix of LSSVM optimized with WOA, in
which category 4 has the worst classification effect, with
about 35% wrongly classified into category 3. It can be
seen from Figure 7(d) that compared to the WOA algo-
rithm, IWOA has improved recognition of category 3 and
category 4, and the classification accuracy of category 4
has increased by about 18%.

As can be seen from Figure 8, GA, WOA, and IWOA are
better than PSO in terms of convergence speed and fitness
value. *e optimization speed of GA and WOA is faster and
iterates to about 20 times to find the optimal solution, and
the fitness value tends to be stable. IWOA jumps out of local
optimal solution to convergence from iteration 25 times.
Although the optimization speed is not as fast as GA and
WOA, the final fitness value is better than other algorithms.
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In order to avoid the interference of random factors, the
stability and generalization ability of the proposed model are
analyzed, and different test sets are constructed to conduct
10 experiments on various methods, and the average ac-
curacy and standard deviation are recorded. *e results are
shown in Table 6 and Figure 6.

It can be seen that the average accuracy of the proposed
method is 90.5%, which is better than WOA. It shows that
WOA can not balance the local and global search ability well
in the iterative process, and it is easy to converge to local
optimal solution early. *e average accuracy of PSO is the
lowest, only 86.1%, which is far less than the method
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Figure 4: Waveform of normal signal. (a) Time-domain diagram of normal signal. (b) Frequency-domain diagram of normal signal.

-0.5

0

0.5

A
m

pl
itu

de

2000 4000 6000 8000 100000
t (s)

(a)

0

0.005

0.01

0.015

0.02

0.025

A
m

pl
itu

de

200 400 600 800 10000
f (Hz)

(b)

Figure 5: Waveform diagram of cutter fault signal. (a) Time-domain diagram of cutter fault signal. (b) Frequency-domain diagram of cutter
fault signal.

Table 3: Data set presentation.

Condition Training set Test set Label
Normal state 1–150 50–200 1
Auger fault 1–150 50–200 2
Cutter fault 1–150 50–200 3
Transmiss-ion fault 1–150 50–200 4

Table 4: Correlation coefficient.

Condition IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Normal state 1 0.8407 0.3838 0.2473 0.2041 0.1215
Auger fault 1 0.8255 0.3968 0.3623 0.2358 0.1259
Cutter fault 1 0.7882 0.4042 0.2903 0.2274 0.1966
Transmiss-ion fault 1 0.8064 0.4067 0.2826 0.2532 0.1819
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Table 5: Classification accuracy using different features.

Method Information entropy Time-domain characteristics Frequency-domain characteristics Mixed features
LSSVM 0.645 0.615 0.69 0.825
GA-LSSVM 0.69 0.64 0.805 0.875
PSO-LSSVM 0.665 0.63 0.7 0.86
WOA-LSSVM 0.67 0.665 0.805 0.865
IWOA-LSSVM 0.69 0.67 0.815 0.905
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Figure 6: Diagnosis accuracy for 10 tests.
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Figure 7: Continued.

Shock and Vibration 9



proposed in this paper. However, the average accuracy of GA
is slightly higher than PSO and WOA, but the standard
deviation is 1.47%. *e standard deviation of the proposed
method is only 0.77%, indicating that it can stably diagnose
the assembly quality problems of combine under different
faults.

Table 7 shows the comparison of comprehensive
performance data of various methods. It can be seen that
although IWOA adopted in this paper is not as good as GA
and PSO in optimization time, its optimization effect is

better than other methods. *is proves that the LMD-
IWOA-LSSVM model proposed in this paper can effec-
tively identify the assembly fault types of combine
harvester.

Although the method proposed in this paper has
achieved the best diagnostic effect in comparative analysis,
the accuracy of 90.5% still has room for improvement be-
cause the feature extraction method has a greater impact on
the diagnosis result, the amount of data, the number of
model iterations, and batch samples. *e number will have a
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Figure 7: Confusion matrix of four methods. (a) PSO-LSSVM. (b) GA-LSSVM. (c) WOA-LSSVM. (d) IWOA-LSSVM.

GA-LSSVM
PSO-LSSVM

WOA-LSSVM
IWOA-LSSVM

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fi
tn

es
s v

al
ue

5020 4010 300
Number of iterations

Figure 8: Fitness curve.

Table 6: Diagnosis result for 10 tests.

Method Average accuracy (%) Standard deviation of accuracy (%)
PSO-LSSVM 86.1 1.93
GA-LSSVM 87.2 1.47
WOA-LSSVM 86.5 0.92
IWOA-LSSVM 90.5 0.77
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great impact on the final result, and there is still room for
optimization in the current model.

5. Conclusions

*is paper mainly focuses on the research of combine as-
sembly quality detection and puts forward a method of
combine assembly quality detection based on LMD and
IWOA-LSSVM. *e effectiveness of the method is verified
by experiments:

(1) In order to solve the problems of WOA such as easy
to fall into local optimum and unbalanced searching
ability, a nonlinear control factor and adaptive
weight are introduced to improve the algorithm.*e
general applicability of the improved algorithm is
verified by eight universal test functions, and its
overall optimization effect is better than that of
WOA algorithm.

(2) *e problem of combine assembly quality detection
was studied, and amethod of combine assembly fault
diagnosis based on LMD information entropy ex-
traction, time-frequency feature fusion, and IWOA-
optimized LSSVM was put forward.

(3) *e validity of IWOA and fault diagnosis method is
verified by the test. *e test results show that the
method proposed in this paper can diagnose the
assembly failure of combine parts stably and accu-
rately, providing a feasible method for the inspection
of assembly quality of combine.

In general, the IWOA proposed can be applied to
general optimization problems, and the diagnostic model
in this paper can be applied to fault identification in the
field of complex rotating machinery.*ere is still room for
further optimization of the final optimization results.
Considering the shortcomings of this method, the main
ideas for improvement include two points: firstly in-
creasing fault types and batch samples to improve the
generality of models and secondly extract deep features
with more advanced feature extraction methods to im-
prove the final diagnostic accuracy.

Data Availability

*e authors have uploaded the programs and examples to
the GitHub (https://github.com/zhaosixia/Assembly-qual-
ity-inspection).
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