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�e testing machine of shaft bending fatigue is widely used to test the fatigue limit and life of various shaft-type parts in
mechanical engineering. Machine dynamic characteristics and system bending resonant frequency are very important for the
design, testing, and application of the testing machine, but existing complex �nite element calculation and aimless large-range
frequency scanning in testing are the available methods to solve these two problems helplessly and ine�ciently. A novel analytical
model of nonlinear coupling dynamic system is built for the fatigue testing machine in this paper.�e nonlinear dynamic model is
simulated and investigated numerically, then it is reasonably linearized and reduced as a linear one, and the corresponding error
analysis and application range are presented. By using eigenvalue approximation, the shaft bending resonant frequency formula is
obtained, then the formula is compared and veri�ed with the results from the nonlinear system simulation and �nite element
software, and it can improve the machine design and testing e�ciency obviously. �e analytical dynamic modeling and line-
arizing, and the given mode resonant frequency approximating, also provide a reference for many similar vibration machines.

1. Introduction

Shaft-type parts are widely used to transmit motion and
power in mechanical systems. However, most shaft part
failure results from fatigue damage. �e shaft is generally
subjected to bending action in service, and its bending fa-
tigue resistance is a key concern in design and application.
As indicated by Mohammadi et al. [1], improving bending
fatigue strength of a mechanical part and reducing its weight
meet the requirement of lightweight constructional design.
�e bending fatigue test is very essential to bending fatigue
performance of shaft parts from Carpinteri and Spagnoli[2]
and Schmid et al. [3]. Especially, for the shafts with complex
shapes, such as the crankshaft of an internal combustion
engine, the bending fatigue test becomes an indispensable
process in design and manufacture, due to the di�culty in
quantifying the complex shape and impact of various
strengthening processes practically and accurately in Yu
et al. [4].

Shaft resonant bending fatigue test is one of the most
common and e�cient testing ways for the shaft fatigue limit

and life assessments. According to the principle of structural
resonance in Huertas et al. [5], the exciting frequency should
be near the resonant frequency of the fatigue testing system
to just cause the bending resonance of the shaft parts, and
then the tested shaft can be subjected to the largest bending
load. Many researchers have focused on the theory and
experiment of the bending fatigue test. Mohammadi et al. [1]
predicted the fatigue life of a notched shaft under bending
load. Huertas et al. [5] designed, fabricated, and assessed a
resonant plate test bench for shaft fatigue testing to reduce
testing time. Yu et al. [6] researched on the impact of notch
depth on the resonant frequency of the system with notched
crankshaft sections. Zhou and Yu [7] obtained the fatigue
crack propagation characteristics of a crankshaft by the
frequency sweepmethod. Lü et al. [8] studied free and forced
bending vibrations of a crankshaft by a distributed con-
tinuous model. Kasprzyczak and Macha [9] introduced an
electromechanical fatigue stand for polyharmonic bending
and torsion, and its strain energy parameter control algo-
rithm. Bao et al. [10] calculated residual stress and bending
stress of �llet rolled crankshaft by the �nite element method.
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Spiteri and Segar[11] monitored resonance shifts of tested
crankshafts and found that accelerating resonance shift was a
signal of failure. DCX Stress Lab and Tool Development &
Test Support groups developed an efficient automatic
computerized digital resonance fatigue testing system.
Dongfeng Motor Co., Ltd. [12] developed a computerized
electrodynamic resonant fatigue test machine, which is used
for bending, torsional, and bending-torsional complex fa-
tigue tests of crankshaft in Feng [13].

However, until now, few works have been done on a
systematic investigation of machine dynamic characteristics
and an analytical determination of the resonant frequency
for the shaft bending fatigue testing system.

In this paper, a shaft fatigue testing machine is illustrated
and modeled as an 8-degree of freedom (DOF) nonlinear
coupling dynamic system. By solving the nonlinear coupling
dynamic equations numerically, the shaft fatigue testing
system is simulated and analyzed under different shaker
exciting frequencies and amplitudes.,e nonlinear dynamic
model is reduced and linearized, and the corresponding
error analysis and application range are carried out and
presented. An analytical shaft bending resonant frequency is
obtained in a formula, which is very convenient for practical
application and agrees with the finite element software re-
sults very well.

2. System Modeling

Similar to the machine structure in References [5, 6, 10–13],
a testing machine of shaft bending fatigue is designed and
illustrated in Figure 1. A tested shaft is fixed at its two ends to
two pendulum blocks (plates or tines), and each pendulum
block is connected to the suspending system (including the
frame, roller, and its bed) by flexible wireropes. ,e sus-
pending rollers, flexible wireropes, and pendulum blocks can
move freely along the roller beds horizontally. ,e sus-
pending frame can be lifted vertically by the elevating system
of wirerope and pulley, and even be fixed by the locking
mechanism. ,e right pendulum block is excited by an
electromagnetic shaker as a harmonic exciting force at an
assigned frequency and amplitude.

A simplified in-plane structural dynamic model of the
shaft bending fatigue testing machine is illustrated in Fig-
ure 2. ,e left/right pendulum block is simplified as a rigid
body with lumped mass m and rotational inertia I with
respect to the centroids C1 andC2. For each pendulum block,
the suspending wireropes are simplified as a spring with an
initial length L and lumped stretching stiffness k, whereas
their mass is very small and negligible. ,e hinge point
between a suspending wirerope end and a pendulum block is
P1 and P2. ,e suspending roller is simplified as a ring with
mass m0 which can move freely along a horizontal rigid
beam modeled from the roller bed. ,e right pendulum
block is excited by the electromagnetic shaker in a way of
harmonic force F�AFsin(ωt) at point Q, and the vertical
distance from the pendulum block centroid to point Q is D.
,e fixing points between a tested shaft and the pendulum
block are Q1 and Q2. ,e vertical distance from the pen-
dulum block centroid to the shaft axis is G, and that to the

wirerope end isH. ,e pendulum block width is 2W, and the
horizontal distance from shaft end Q1,2 to wirerope end P1,2
is B. Compared with the left and right large rigid pendulum
blocks, the mass of tested shaft is so small that it can be
neglected.

In addition, the tested shaft is simplified as three
equivalent in-plane springs, respectively, a force bending
spring with stiffness KF, a moment bending spring with
stiffness KM, and an axial normal spring with stiffness KN,
and with the shaft two fixing ends Q1 and Q2. ,ese three
stiffnesses can be determined by analytical formulas for
regular shape shafts, or by finite element numerical calcu-
lations for complex shape shafts, or even by some experi-
mental measurement results.

In the running process of the shaft bending fatigue
testing machine, some translational and angular displace-
ments appear due to system vibration coupling effects: the
horizontal displacements of suspending roller rings are
assumed as X1 and X2, the suspending wirerope total
elongations are assumed as s1 and s2, the swing angles of
wirerope are assumed as α1 and α2, and the swing angles of
pendulum blocks are assumed as β1 and β2. ,e horizontal
displacements of the left and right pendulum blocks are
assumed as x1 and x2, and the vertical ones are assumed as y1
and y2, as defined in Figure 2(b).

In Figure 2(b) for the system vibrating status of the shaft
bending fatigue testing machine, the coordinates of points
P1,2, Q1,2, and Q can be expressed as follows:

xP1 � X1 − L + s1( 􏼁sin α1( 􏼁 � x1 + H sin β1( 􏼁, (1)

yP1 � L + s1( 􏼁cos α1( 􏼁 � y1 − H cos β1( 􏼁, (2)

xP2 � X2 − L + s2( 􏼁sin α2( 􏼁 � x2 + H sin β2( 􏼁, (3)

yP2 � L + s2( 􏼁cos α2( 􏼁 � y2 − H cos β2( 􏼁, (4)

xQ1 � x1 + G sin β1( 􏼁 + B cos β1( 􏼁, (5)

yQ1 � y1 − G cos β1( 􏼁 + B sin β1( 􏼁, (6)

xQ2 � x2 + G sin β2( 􏼁 − B cos β2( 􏼁, (7)

yQ2 � y2 − G cos β2( 􏼁 − B sin β2( 􏼁, (8)

xQ � x2 − D sin β2( 􏼁 + W cos β2( 􏼁, (9)

yQ � y2 + D cos β2( 􏼁 + W sin β2( 􏼁. (10)

In addition, some translational and angular displace-
ments in Figure 2 can be related with others due to system
inherent geometric relationships,

s1 �
y1 − H cos β1

cos α1
− L, (11)

s2 �
y2 − H cos β2

cos α2
− L, (12)
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α1 � arctan
x1 − X1 + H sin β1

H cos β1 − y1
, (13)

α2 � arctan
x2 − X2 + H sin β2

H cos β2 − y2
. (14)

With Newton’s second law, the horizontal translational
motions X1 and X2 with damping of the left and right rings

with mass m0 can be governed as (15) and (16) under the
action of suspending wirerope; the horizontal and vertical
displacements x1,2 and y1,2 with damping of left and right
pendulum block centroid with mass m can be formulated as
(17)–(20), respectively, under the action of gravity, sus-
pending wirerope, shaft equivalent forces, and shaker ex-
citing force; the swing angles β1,2 around the centroid point
C1,2 of left and right pendulum blocks with rotational inertia
I can be governed as (21) and (22) with damping under the
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Figure 2: A simplified in-plane model of the shaft bending fatigue testing machine. (a) Equilibrium status, (b) vibrating status.
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Figure 1: A testing machine of shaft bending fatigue. (a),ree-dimensional presentation, (b) two-dimensional schematic diagram. In (b), 1:
machine rack, 2: pendulum block, 3: tested shaft, 4: suspending wirerope, 5: elevating wirerope, 6: elevating pulley, 7: suspending frame, 8:
locking mechanism, 9: suspending roller, 10: suspending roller bed, 11: electromagnetic shaker.
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action of suspending wirerope, shaft equivalent forces, and
shaker exciting moment.

m0
€X1 � −ηX1

_X1 − ks1 sin α1( 􏼁, (15)

m0
€X2 � −ηX2

_X2 − ks2 sin α2( 􏼁, (16)

m €x1 � −ηx1 _x1 + ks1 sin α1( 􏼁 + KN xQ2 − xQ1 + 2B􏼐 􏼑, (17)

m €y1 � −ηy1 _y1 − ks1 cos α1( 􏼁 + KF yQ2 − yQ1􏼐 􏼑 + mg,

(18)

m €x2 � −ηx2 _x2 + 2ks2 sin α2( 􏼁

+ KN xQ1 − xQ2 − 2B􏼐 􏼑 − F,

(19)

m €y2 � −ηy2 _y2 − ks2 cos α2( 􏼁 + KF yQ1 − yQ2􏼐 􏼑 + mg,

(20)

I€β1 � −ηβ1 _β1 + ks1H sin α1 − β1( 􏼁 + KM β2 − β1( 􏼁

+ KN xQ2 − xQ1 + 2B􏼐 􏼑G cos β1( 􏼁

+ KF yQ2 − yQ1􏼐 􏼑B cos β1( 􏼁,

(21)

I€β2 � −ηβ2 _β2 + ks2H sin α2 − β2( 􏼁 + KM β1 − β2( 􏼁

+ KN xQ1 − xQ2 − 2B􏼐 􏼑G cos β2( 􏼁

+ KF yQ1 − yQ2􏼐 􏼑B cos β2( 􏼁 + F D cos β2( 􏼁,

(22)

where the shaker exciting force is written as F�AFsin(ωt) in
the way of harmonic fluctuating; the terms ηX1,2, ηx1,2, ηy1,2,
and ηβ1,2 are the proportional damping parameters for each
displacement vibration. As a result, an 8-DOF nonlinear
coupling dynamic equation system of the shaft bending
fatigue testing machine is modeled with respect to eight
independent translational and angular displacements (X1,2,
x1,2, y1,2, β1,2).

In the equilibrium case of pendulum blocks without
swing angles β1,2 � 0 and displacements x1,2 � 0, the hori-
zontal distance between the shaft two fixing ends Q1 and Q2
is the free length Ld of tested shaft. Under the pendulum
block swing angles β1,2 and displacements x1,2, and with
respect to the equilibrium positions of the left and right
pendulum block centroid point C1,2, the horizontal positions
xQ1,2 at the shaft two fixing endsQ1 andQ2 points are written
as (5) and (7). ,en the horizontal distance between Q1 and
Q2 becomes (B+ Ld +B+ xQ2)-xQ1, where B+ Ld +B is the
fundamental structural distance between the left and right
centroid point C1,2. As a result, the distance difference can be
written as ΔN � [(B+ Ld +B+ xQ2)− xQ1]− Ld � xQ2 − xQ1 +
2B. Finally, the axial normal load acting on the tested shaft
can be determined as FN �KNΔN �KN(xQ2 − xQ1 + 2B).

Similarly, the force bending load can be determined as
FB �KF(yQ2 − yQ1), and the moment bending load can be
determined as MB �KM(β2 − β1).

3. Nonlinear Simulation

,e dynamic (15)−(22) are highly nonlinearly coupled, and
it is very hard to obtain an analytical solution. In this paper,
the dynamic equation system is solved by using the nu-
merical Runge–Kutta method to obtain an instantaneous
response of the independent translational and angular
displacements (X1,2, x1,2, y1,2, β1,2).

For a real shaft bending fatigue testing machine, the
system structural inherent parameters are listed in Table 1
for the following numerical simulation and analysis.
Without loss of generality, a crankshaft is selected as a tested
shaft sample for a common dynamic characteristics’ in-
vestigation, and above equivalent shaft stiffnesses can be
determined as KN � 3.1008×109N/m, KF � 2.3256×107N/
m, and KM � 1.7124×106N∙m/rad by using the finite ele-
ment calculation.

,e instantaneous response history of the translational
and angular displacements (X1,2, s1,2, x1,2, y1,2, α1,2, and β1,2)
and the loads (FN, FB and MB) acting on the tested shaft are
illustrated in Figure 3 at the exciting frequency ω� 30Hz
and amplitude AF � 5 kN in the view of engineering practice
of general shaft bending fatigue testing machine and ref-
erences Huertas et al. [5] and Zhou and Yu [7]. Under the
harmonic exciting force F�AFsin(ωt), all responses go
through from initial instantaneous step to steady-state
harmonically fluctuating step just with the frequency ω. In
practice, the testing machine is always running at the steady-
state harmonically fluctuating step, and the harmonically
reciprocating fatigue loads (FN, FB, MB) are induced and
acted on the tested shaft. ,e tested shaft fatigue loads are
caused by the relative motions of the translational and
angular displacements (xQ1,2, yQ1,2, β1,2), respectively, and a
large-amplitude opposite motion can result in a large-am-
plitude fatigue load correspondingly. As a result, a proper
exciting frequency ω should cause the tested shaft bending
resonance with symmetrically large-amplitude opposite
angular displacements β1 and β2, and then a large-amplitude
bending fatigue moment load MB can be obtained in the
tested shaft.

With respect to different values of exciting frequency ω
and amplitude AF of shaker force F, the amplitude of the
roller ring related to translational displacement
Xr �X2 −X1 and the loads (FN, FB,MB) acting on the tested
shaft are illustrated in Figure 4, since the amplitude of the
tested shaft loads is a crucial performance indicator for the
shaft bending fatigue testing machine. As shown in Fig-
ure 4, the amplitudes of Xr and FB are larger, in general, at a
lower exciting frequency ω and a larger exciting force
amplitude AF, but they increase somewhat when the ex-
citing frequency ω approaches 38.5 Hz. In addition, the
local maximum amplitude of FB takes place at the exciting
frequency ω near 125.5Hz. ,e universal maximum am-
plitudes of FN and MB appear at the exciting frequency ω
near 38.5 Hz, and they increase with the increase of AF at
this exciting frequency. ,erefore, the shaft bending res-
onance frequency in the testing system can be recognized as
38.5 Hz.
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Table 1: Structural inherent parameters of the testing machine.

Parameters B (m) H (m) G (m) D (m) m0 (kg) k (N/m) m (kg) I (kg∙m2)
Values 0.035 0.670 0.470 0.365 2.20 6×107 171.5 20.54
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Figure 3: Instantaneous response history of the translational and angular displacements and the tested shaft loads. Numerical solution at
ω� 30Hz and AF � 5 kN. Red line: (X1, s1, x1, y1, α1, β1), blue line: (X2, s2, x2, y2, α2, β2).
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4. System Linearization

In the generally practical case of the shaft bending fatigue
testing machine, the amplitude of the shaker acting at the
pendulum block (in meter) is always as small as several
millimeters, then the swing angles α1,2 and β1,2 are small
value items. As a common linearization approximation
process, it can be approximated that sin(α1,2)≈ α1,2,
sin(β1,2)≈ β1,2, cos(α1,2)≈ 1, and cos(β1,2)≈ 1 mathemati-
cally. In addition, the suspending wirerope elongation can be
separated in two parts: a larger gravity deformation and a
very small vibrational elongation, thus s1 �mg/k + z1 and
s2 �mg/k + z2 are introduced to simplify calculation by the
wirerope small vibrational elongation z1,2. In (15) and (16),
one has ks1,2sin(α1,2)�mgsin(α1,2) + kz1,2sin(α1,2), where α1,2
and z1,2 are small items, then the first-order linearization
form can be expressed as ks1,2sin(α1,2)≈mgα1,2 for (23) and
(24). Similarly, after the same operations of substituting the
small items (z1, z2, α1, α2, β1, β2) in (1)−(14) and (17)−(22),
just retaining first-order linearization form, and neglecting
high order terms, then the undamped nonlinear dynamic
system ((15)−(22)) can be reduced and linearized as

m0
€X1 + mgα1 � 0, (23)

m0
€X2 + mgα2 � 0, (24)

m€z 1+kz1 + KFB β1 + β2( 􏼁 + KF z1 − z2( 􏼁 � 0, (25)

m€z 2+kz2 − KFB β1 + β2( 􏼁 + KF z2 − z1( 􏼁 � 0, (26)

mLs€α1 + mH€β1 − m €X1 + KNLs α1 − α2( 􏼁

+ KN(H − G) β1 − β2( 􏼁 + mgα1 + KN X1 − X2( 􏼁 � 0,

(27)

mLs€α2 + mH€β2 − m €X2 + KNLs α2 − α1( 􏼁

+ KN(H − G) β2 − β1( 􏼁 + mgα2 + KN X1 − X2( 􏼁 � F,

(28)

I€β1 + mgH β1 − α1( 􏼁 + KNLsG α2 − α1( 􏼁

+ KNM β2 − β1( 􏼁 + KFB
2 β1 + β2( 􏼁

+ KNG X1 − X2( 􏼁 � 0,

(29)

I€β2 + mgH β2 − α2( 􏼁 + KNLsG α1 − α2( 􏼁

+ KNM β1 − β2( 􏼁 − KFB
2 β1 + β2( 􏼁

+ KNG X2 − X1( 􏼁 � F D,

(30)

where KNM �KNG(H−G)−KM, and Ls � L+mg/k; the
proportional damping terms ηX1,2, ηx1,2, ηy1,2, and ηβ1,2 are
all neglected for the numerical convenience of the following
analytical discussion on system natural frequency.

,e linearized undamped dynamic system ((23)–(30))
can be collected in matrix form as follows:

M€x + Kx � Ff , (31)

where x� [X1, X2, z1, z2, α1, α2, β1, β2]T, f� [0, 0, 0, 0, 0, 1, 0,
D]T;
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Figure 4: Amplitude of the roller ring relative displacement and the tested shaft loads with respect to the shaker exciting frequency and
amplitude.
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Μ �
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0 0 0 m 0 0 0 0
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0 0 0 0 0 0 I 0
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−KN KN 0 0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

K2 �

mg 0 0 0

0 mg 0 0

0 0 KFB KFB

0 0 −KFB −KFB

mg + KNLs −KNLs KN(H − G) −KN(H − G)

−KNLs mg + KNLs −KN(H − G) KN(H − G)

−mgH − KNLsG KNLsG mgH − KNM + KFB
2

KNM + KFB
2

KNLsG −mgH − KNLsG KNM − KFB
2

mgH − KNM − KFB
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

,e stiffness matrix K is deduced originally from the
solid physical nonlinear dynamic system (15)–(22) with
sophisticated mechanic modeling, then some common ap-
proximation and linearization are used mathematically with
some small value items and neglecting high order terms in
the formula. In the stiffness matrix K mathematical de-
duction, the approximation and linearization may be a
reason to result in its asymmetry. In addition, different from
the common dynamic system with complete constraints and
boundary conditions with a symmetrical stiffness matrix, the
structure of shaft bending fatigue testing machine is a special
problem as shown in Figures 1 and 2, it can have free motion
freedom X1,2 at least, and even the common constraints and
boundary conditions cannot be found. ,is may be another
reason to result in the unsymmetrical stiffness matrix K.

5. Resonant Frequency

As indicated in Figure 4, a quite exciting frequency should be
selected and generated by the shaker in the view of energy
conservation and efficiency improvement, and the right
exciting frequency can just cause the shaft part bending
resonance in the testing machine.

For the linearized undamped dynamic system (31),
system natural frequency ωr and mode shape vector z can be
determined by an eigenvalue problem,

K − ω2
rM􏼐 􏼑z � 0. (34)

Without any analytical deduction, derivation, and nu-
merical assumption, but just using the solved eigenvector in
(32) and the geometric relations in (1)–(14), the mode shape

1st to 8th is solved in Figure 5. In Figures 5(e) and 5(h), the
shaft bending resonance takes place with symmetrically large
opposite angular displacements β1 and β2, and the case in
Figure 5(e) is more efficient and effective than that in
Figure 5(h) because of a relatively larger swing angle β1,2 of
pendulum block, i.e. β1,2> α1,2. An animation of system
vibration mode shape 1st to 8th is made and attached in
Video 1.

In the view of solution comparison and verification, a
three-dimensional model of the main parts of the shaft
bending fatigue testing machine is built and analyzed by the
finite element commercial software ANSYS. In the ANSYS
calculation, the top suspending roller bed is set as a rigid
plate without deformation, the tetrahedral element is ap-
plied to the suspending wirerope, and the hexahedral el-
ement is applied to the tested shaft and pendulum block
systems. In addition, the tested shaft and the pendulum
block systems are modeled as a whole, since the tested shaft
is fixed and clamped very solidly to the pendulum blocks in
practice.

Convergence of the finite element result is studied in the
view of the element size in Table 2. With the same element
types presented in this table, the bending natural frequency
as the machine working mode is used to indicate the finite
element convergence with the element size selection in
ANSYS. In addition, a more fine element size is selected
around the connection between the suspending wirerope
and pendulum block. As listed in Table 2, the calculation is
convergent with the decrease of element size, and then the
10mm element size is used as the final selection in the view
of calculation accuracy and time consumption.
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,e natural frequency and mode shape results from a
linear finite element analysis are illustrated in Figure 6,
where the freely moving roller rings are neglected, and the
suspending wireropes are connected to a fixed plate due to
the limit of finite element available boundary condition.

As shown in Figures 5 and 6, the mode shape in
Figure 5(c) with the natural frequency 8.58Hz is identical to
that in Figure 6(c) with the natural frequency 8.0022Hz; the
mode shape in Figure 5(e) with the natural frequency
38.51Hz is identical to that in Figure 6(g) with the natural
frequency 38.601Hz, and that in Figure 4(c) with the natural
frequency 38.5Hz. However, other mode shapes in Figure 5
cannot be related to those given in Figure 6 directly, since the
assumptions of structural in-plane motion, freely moving
roller ring, rigid pendulum blocks, and lumped spring
simplification of tested shaft are selected in this paper.

An analytical shaft bending resonant frequency given
through a formula would be very convenient for practical

application. As observed in Figures 3, 4(d), and 5(e) and the
attached mode shape animation audio video interleaved
(AVI), just for the shaft bending vibration mode, the
translational displacements X1,2 and z1,2 are so small that
they can be neglected, i.e. X1,2 � z1,2 � 0. ,e swing angles of
the suspending wirerope and the pendulum block are almost
symmetric, i.e. α1≈−α2 and β1≈−β2. ,e suspending
wirerope and the pendulum block almost swing around the
shaft clamping ends Q1,2 proportionally, i.e.
Lα1,2≈−(H−G)β1,2; By comparing with the wirerope initial
length L, the pendulum block’s gravitational displacement
mg/k and related terms are also so small and can be
neglected. Finally, substituting above assumptions and small
term reductions into the eigenvalue problem (32), using the
symbolic calculation functions in Matlab software, and
finding the eigenvalue and eigenvector just with respect to
the shaft bending vibration mode, an analytical bending
resonance frequency ωn can then be obtained as

ωr=0 Hz

(a)

ωr=1.15 Hz

(b)

ωr=8.58 Hz

(c)

ωr=8.84 Hz

(d)

ωr=38.51 Hz

α
β = 0.80

(e)

ωr=94.14 Hz

(f )

ωr=125.43 Hz

(g)

ωr=1615.27 Hz

α
β = 3.51

(h)

Figure 5: Natural frequency and mode shape results from the in-plane linearized model. (a) Mode 1st, (b) mode 2nd, (c) mode 3rd, (d)
mode 4th, (e) mode 5th, (f ) mode 6th, (g) mode 7th, and (h) mode 8th.

Table 2: Convergence of bending natural frequency with element size selection.

Element size (mm) 20 18 16 14 12 10
Frequency (Hz) 37.509 38.950 38.326 38.758 38.501 38.601
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B : Modal (ANSYS)
Total Deformation
Type : Total Deformation
Frequency : 0 Hz
Unit : mm
Time : 0

1.5227 Max
1.3535
1.1843
1.0151
0.84592
0.67674
0.50755
0.33837
0.16918
0 Min

(a)

B : Modal (ANSYS)
Total Deformation 2
Type : Total Deformation
Frequency : 3.8756e-004 Hz
Unit : mm
Time : 3.8756e-004

1.5227 Max
1.3535
1.1843
1.0151
0.84592
0.67674
0.50755
0.33837
0.16918
0 Min

(b)

B : Modal (ANSYS)
Total Deformation 3
Type : Total Deformation
Frequency : 8.0022 Hz
Unit : mm
Time : 8.0022

2.5945 Max
2.3062
2.0179
1.7297
1.4414
1.1531
0.86483
0.57655
0.28828
0 Min

(c)

B : Modal (ANSYS)
Total Deformation 4
Type : Total Deformation
Frequency : 8.8708 Hz
Unit : mm
Time : 8.8708

2.6466 Max
2.3525
2.0584
1.7644
1.4703
1.1763
0.88219
0.58813
0.29406
0 Min

(d)

B : Modal (ANSYS)
Total Deformation 5
Type : Total Deformation
Frequency : 15.317 Hz
Unit : mm
Time : 15.317

1.5229 Max
1.3536
1.1844
1.0152
0.84603
0.67682
0.50762
0.33841
0.16921
0 Min

(e)

B : Modal (ANSYS)
Total Deformation 6
Type : Total Deformation
Frequency : 20.952 Hz
Unit : mm
Time : 20.952

4.7976
4.4549
4.1123
3.7696
3.4269
3.0842
2.6557 Max

2.0561
1.7134
1.3708
1.0281
0.68538
0.34269
0 Min

(f )

B : Modal (ANSYS)
Total Deformation 7
Type : Total Deformation
Frequency : 38.601 Hz
Unit : mm
Time : 38.601

3.1221 Max
2.7752
2.4283
2.0814
1.7345
1.3876
1.0407
0.69379
0.3469
0 Min

(g)

B : Modal (ANSYS)
Total Deformation 8
Type : Total Deformation
Frequency : 82.369 Hz
Unit : mm
Time : 82.369

3.3876 Max
3.0112
2.6348
2.2584
1.882
1.5056
1.1292
0.7528
0.3764
0 Min

(h)

B : Modal (ANSYS)
Total Deformation 9
Type : Total Deformation
Frequency : 193.27 Hz
Unit : mm
Time : 193.27

2.8363 Max
2.5211
2.206
1.8908
1.5757
1.2606
0.94542
0.63028
0.31514
0 Min

(i)

Figure 6: Natural frequency and mode shape results from the three-dimensional finite element model. (a) Mode 1st, (b) Mode
2nd, (c) mode 3rd, (d) mode 4th, (e) mode 5th, (f ) mode 6th, (g) mode 7th, (h) mode 8th, and (i) mode 9th.
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ωn �

�������������������������

2 KN/m( 􏼁 KM/I( 􏼁

KN/m( 􏼁 + KNG
2/I􏼐 􏼑 + KM/I( 􏼁

􏽶
􏽴

. (35)

With current machine parameters in this paper, the
bending resonance frequency ωn is predicted as 38.49Hz
from (33). Compared with the resonance frequency 38.51Hz
from the in-plane linearized undamped model in
Figure 5(e), or that 38.601Hz from the finite element un-
dampedmodel in Figure 6(g), or that about 38.5Hz from the
in-plane nonlinear coupling damped model in Figure 4(c),
the predicted resonance frequency ωn from the analytical
formula ((33)) is acceptable.

As indicated in above assumptions from the nonlinear
dynamic system (15)–(22) to the linearized one (23)–(30),
the bending resonance frequency ωn in (33) would be ac-
curate just at small swing angles α1,2 and β1,2, that is to say,
the exciting amplitude AF of shaker force should be small.
However, as shown in Figure 4(c), the prediction of bending
resonance frequency ωn is acceptable even at the force ex-
citing amplitude AF as big as 20 kN≈ 2 ton force; however,
Huertas et al. [5] are with the maximum 10 kN, Zhou and Yu
[7] is with 4318 Nm (about 4318/0.8≈ 5.4 KN). Even at the
20 kN force that is commonly out of range of an electro-
magnetic shaker’s maximum output in the testing machine
practice, effects of system nonlinearity on the natural fre-
quency are not obvious as shown in Figure 4(c), and the
prediction error of bending resonant frequency ωn is not big
and acceptable in practice.

6. Conclusions

In this paper, the testing machine of shaft bending fatigue is
modeled as an eight degree-of-freedom (DOF) nonlinear
coupling dynamic system with in-plane structures. Nu-
merical simulation of the nonlinear system is carried out, the
response history of system translational and angular dis-
placements is analyzed, and the resonant frequency and
corresponding vibration mode shape are observed and
studied. Under the practical condition of small swing an-
gular displacements, the nonlinear system is reasonably
reduced as an in-plane linearized one. By comparing with
the results from nonlinear system simulation and three-
dimensional finite element software, the natural frequency
and mode shape of linearized system are verified. With
eigenvalue approximation, an analytical formula of the shaft
bending resonant frequency is presented in this paper, and it
can improve machine design and testing efficiency
obviously.

Abbreviations

AF: Exciting amplitude of shaker force
B: Horizontal distance from shaft end to wirerope end
C1,2: Pendulum block centroid point
D: Vertical distance from pendulum block centroid to

shaker force
F: Shaker exciting force
FB: Shaft bending force load

FN: Shaft axial normal load
g: Gravity acceleration
G: Vertical distance from pendulum block centroid to

shaft axis
H: Vertical distance from pendulum block centroid to

wirerope end
I: Rotational inertia of pendulum block
k: Suspending wirerope stiffness
KF: Equivalent force bending stiffness of shaft
KM: Equivalent moment bending stiffness of shaft
KN: Equivalent axial normal stiffness of shaft
KNM: Compound moment stiffness
L: Wirerope initial length
m: Pendulum block mass
m0: Suspending roller mass
MB: Shaft bending moment load
P1,2: Wirerope end point
Q: Shaker force point
Q1,2: Shaft end point
s1,2: Suspending wirerope total elongation
t: Time
W: Half width of pendulum block
x1,2: Horizontal displacement of pendulum block centroid
X1,2: Horizontal displacement of suspending roller ring
y1,2: Vertical displacement of pendulum block centroid
z1,2: Wirerope vibrational elongation
α1,2: Swing angle of suspending wirerope
β1,2: Swing angle of pendulum block
ω: Exciting frequency of shaker force
ωn: Shaft bending resonant frequency.
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