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The accuracy of underwater sound source localization depends on the preprocessing effect of signal denoising and delay es-
timation performance. In order to meet the needs of high-precision underwater positioning, this article studies a time delay
estimation method based on nonlocal mean-enforced mean empirical mode decomposition (NLM-EEMD) autocorrelation
denoising preprocessing and fuzzy C-means clustering (FCM)-generalized quadratic for underwater sound source localization
technology. The theories such as NLM, EEMD, FCM, and generalized quadratic correlation delay estimation are studied in detail,
and the speech signal of the test library in the TIMIT standard library is selected for simulation analysis, which verifies the
correctness of the delay estimation method. Experiments were carried out in a larger outdoor pool. The analysis results show that
the NLM-EEMD adaptive denoising method effectively reduces noise interference and improves the quality of EEMD de-
composition and the FCM-generalized quadratic correlation method increases the correlation between two signals. The time delay
estimation accuracy is improved, and the positioning accuracy is 48.66% higher than that of the direct generalized cross-

correlation method.

1. Introduction

Underwater sound source localization has always been the
focus and hot issue of hydroacoustic research and is widely
used in military and civil fields such as ocean exploration
and development, coastal defense, etc. Sound source lo-
calization techniques based on acoustic sensor arrays can be
divided into three categories: localization methods based on
maximum controllable response power beamforming, lo-
calization methods based on high-resolution spectral esti-
mation, and localization methods based on TDOA. Carter
first proposed the sound source location method of maxi-
mum controllable response power beamforming in 1977 [1]
and later generations continue to optimize and improve it.
Dibiase Joseph Hector proposed the SPR-PHAT method [2];
Wan and Wu proposed the SRP method [3] based on the
principal eigenvector; and Do and Silverman and Lima et al.
proposed an improved search method from coarse to fine,
which greatly reduced the amount of computation [4, 5].
However, this location method requires a priori knowledge

of the sound source and environmental noise, it is sensitive
to the initial search value, and it not only reduces the amount
of calculation but also reduces the accuracy of estimation [6].
The spatial resolution of the positioning method based on
high-resolution spectral estimation is not limited by the
signal sampling frequency, and arbitrary positioning accu-
racy can be achieved under certain conditions. However, this
method relies on searching the entire space to determine the
location of the sound source, which is more expensive and
complex than other algorithms [7, 8]. This method is gen-
erally not used in single sound source positioning. Com-
pared with the first two methods, the positioning technology
based on TDOA is the simplest one, with high positioning
accuracy, less computation, and good real-time perfor-
mance. It can achieve good results in the application of single
sound source positioning [9].

Time delay estimation accuracy is the decisive factor to
determine TDOA positioning accuracy. Preprocessing un-
derwater acoustic signals such as denoising or optimizing
time delay estimation algorithms are effective methods to
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improve time delay estimation accuracy and target posi-
tioning accuracy. Knapp et al. and Mosayyebpour et al.
estimate time delay based on generalized cross-correlation,
cross power spectrum phase, quadratic correlation, adaptive
least mean square (LMS), acoustic transfer function, sub-
space decomposition, and cepstrum filtering methods
[10-16]. Jiafan Yin and Lu Yang et al. used the NLM method
to denoise the human ECG signal and eddy current sensor
signal, respectively [17, 18]. Lu, Liu, and Zhang et al. used the
EEMD method to denoise the microseismic signal, pulse
signal, and blasting vibration signal of underground mines,
respectively [19-21]. Li, Yu, and Su et al. combined the FCM
method to process pipeline leakage signal, EEG signal, and
micro-Doppler radar intermediate frequency signal, re-
spectively [22-24].

Based on the above research, this article proposes an un-
derwater sound source location method based on NLM-EEMD
and FCM-generalized quadratic correlation. First, NLM-EEMD
autocorrelation denoising is performed on the collected signal,
which makes up for the unsatisfactory denoising effect of EEMD
on low SNR signals. Then FCM fuzzy clustering is performed to
adaptively extract the effective segment of the signal, making the
correlation peak after generalized quadratic correlation time
delay estimation more prominent; thus, the accuracy of sound
source location is improved [22].

2. NLM-EEMD Signal Denoising Algorithm

2.1. NLM Algorithm. Let the signal model be expressed as
y(t) = x(t) + n(t), where y(t) is the sound sensor that
actually collects signals, x (¢) is valid signal, and #n(¢) is noise
signal.

For one-dimensional signals y (¢), denoising processing
[18, 25-30] based on NLM is to eliminate the interference of
noise n(t), it is the process of recovering valid signal x (t),
and is the weighted average of finding all similar blocks in
the entire search area M () [31, 32], the weighted mean K ()
can be obtained by

K(t) = Y w(ts)y(®), (1)

1
Z (t) seM (t)
where Z () represents the sum of the similarity degrees of all
similar blocks, that is, the normalization factor, and the
calculation equation is as follows:

Z(t)= ) w(ts), @)

seM (t)

where w (t, s) is the weight, and the calculation equation is as
follows:

- gA(y(t+8)— v(s+9))> —d (s, t)

(3)
w(t,s)=e h? — e 2L

>

where d? represents the sum of the squares of the Euclidean
distance of the neighborhood blocks of the two sample
points t and s, i controls the decay speed of w (¢, s), the value
is h = A\/2L,, A represents the neighborhood block centered
on the f sample point, L, represents the neighborhood block
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centered on the s sample point, A represents the bandwidth
parameter, and its value is expressed as A = 0.50 according to
the SURE criterion, where ¢ is the signal variance.

The weight w (t, s) depends on the similarity between the
sample points s and ¢ and satisfies the following conditions:

0<w(t,s)

Z(t)<1

. (4)
ij(t,s)
Z(t) =1

The parameter relationship diagram of the NLM algo-
rithm is shown in Figure 1. N represents half of the search
area M, and the parameters P, A, and N jointly determine the
final result of the filtering.

2.2. EEMD Algorithm. Empirical mode decomposition
(EMD) is essentially a method of decomposing the time
domain signal according to the frequency domain scale,
producing a series of intrinsic mode function (IMF) com-
ponents with different characteristics and a residual com-
ponent; it is different from variational modal decomposition
(VMD) [33, 34]. But EMD decomposition may cause modal
aliasing problems and endpoint effects, so the EEMD de-
composition method has been developed. The steps of the
EEMD algorithm [21, 22] are as follows [35-39]:

(1) Gaussian white noise is added to the target signal:
x; (1) =x(t) +m;(¢),i=1,2,---,N. (5)
(2) The noise-added signal x; (¢) is decomposed by EMD

to obtain multiple groups of IMF components IMF,
where k =1,2,---,K, K is the decomposition scale.

(3) The average value of each group of IMF components

is calculated as the final value of EEMD
decomposition:
1 & ,
IMF, =— Y IMF,,k=1,2,---,K. 6
* N; " (6)

The screening process of EEMD is adaptive. In the
decomposition process, the Gaussian white noise signal is
added, and the Gaussian white noise can be used to cancel
each other when multiple trials are superimposed, and the
abnormal events in the original signal are “smoothed.”
Therefore, it is a noise-assisted data analysis method, which
solves the modal aliasing problem that may occur in EMD
and makes the denoising effect better and the final sound
source localization accuracy higher. The EEMD decompo-
sition flow chart is shown in Figure 2.

2.3. Combination of NLM and EEMD to Reduce Noise.
The signal is first preprocessed by NLM denoising, which
can improve the quality of EMD decomposition. To avoid
modal aliasing problems and end effects, the signal is
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FiGURe 1: The relationship between the parameters of the NLM
algorithm.
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FiGure 2: EEMD decomposition flow chart.

decomposed using the EEMD method. EEMD decomposes
the signal into a set of IMF components with frequencies
from high to low, removes some IMF components that do
not meet the threshold condition, and adaptively recon-
structs other remaining effective IMF components to obtain
the final denoised signal.

Adaptive signal reconstruction [40, 41] is to select two
evaluation indicators—correlation coefficient and root mean
square error—that determine the effective IMF component by
calculation and reconstructing the signal. The steps are as
follows:

(1) The correlation coefficient between each IMF com-
ponent and the original signal is calculated sepa-
rately, and the calculation equation is as follows. In
the equation, x represents the original signal, j
represents the j—th sampling point of the signal,
and ¢; represents the i—th IMF component

decomposed (i =1,2,---,K); the larger the Corr,
the higher the correlation.

Y (x() = x (D) (e G) - (D)
VEN, () - %O 2 (6 () - ()’

Corr; =

(7)

(2) The root mean square error of each IMF component
and the original signal is calculated separately, and
the calculation equation is as follows. The smaller the
RMSE, the closer it is to the original signal.

N . _% 2
RMSE, = \’IZj—l (X(]Izr ¢j (])) .

(8)

(3) Calculating the adaptive threshold A and , the
equation is as follows. In the equation, K represents
the number of IMF components, and the IMF
components whose threshold satisfies the condition
of Equation (10) are selected to reconstruct the
signal.

i 1 - Zfi}l Corr;
- K-1

5= X' RMSE;
< K-1 (9)

Corr; =,

>

RMSE, <.

The flow chart of EEMD signal reconstruction is shown
in Figure 3.

2.4. Simulation. The voice signal of the test library num-
bered FDAC1-SX304.WAYV in the TIMIT standard library is
selected, Gaussian white noise is added to make SNR =0, the
signal sampling frequency is set as 16000 Hz, and time-
frequency domain analysis and NLM-EEMD noise
reduction processing on the signal are performed. Time
domain diagram, spectrogram, time spectrum, and Hilbert
spectrum of the original signal are drawn in turn, as shown
in Figure 4.

Adding Gaussian white noise to the original signal to
make SNR =0, and the original signal with noise is shown in
Figure 5. The noisy original signal is first preprocessed by
NLM, and the result is shown in Figure 6; then EEMD is



Shock and Vibration

EMD is decomposed to IMF¢; (1), i=1, 2, ...K

| |
e (1) o

l l

Calculate adaptive threshold, select
the IMF component that meets the
conditions (5 (1), ¢, (1), or ¢;(t)(among
them: j, m, [ €1, 2, ...K)

o) w®

l l

Reconstructed signal

FiGure 3: Flow chart of EEMD reconstruction.
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F1Gure 5: Time domain diagram of the original signal with noise. F1GURE 6: NLM preprocessing result of noisy signal.
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FiGURre 7: IMF components after EEMD decomposition. (a) Time domain diagram. (b) Spectrogram.

decomposed, and the decomposed IMF components and the
remaining components and the corresponding spectrum are
shown in Figure 7; the IMF components are distinguished
according to frequency, it is divided into high-frequency
component, low-frequency component, and trend quantity.
The time domain diagram of each component is shown in
Figure 8.

The correlation coefficient and root mean square error of
each IMF component and residual component and the
original signal are calculated, and then the adaptive threshold
A of 0.2692 and & of 0.0074 are obtained. The IMF compo-
nents with correlation coefficient greater than 0.2692 and root

mean square error less than 0.0074 are selected for recon-
struction, and the adaptive reconstruction process is shown in
Figures 9 and 10. According to the result of adaptive re-
construction, the components IMF1, IMF2, and IMF3 are
selected for reconstruction. Figure 11 shows the comparison
diagram of the signal before decomposition and the recon-
structed signal and the reconstruction error diagram.

Figure 12 shows the comparison of original signal with
the original signal with noise and the signal processed by
NLM-EEMD; it can be seen that the denoising effect is very
obvious, and the original signal characteristics are basically
restored.
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3. FCM-Generalized Quadratic Correlation
Adaptive Delay Estimation Algorithm

3.1. FCM Algorithm. FCM algorithm (Fuzzy C-means al-
gorithm) [22] is a clustering algorithm based on flexible
fuzzy partition. This method uses the concept of determining
the geometric closeness of data points in Euclidean space
and obtains the membership degree of each sample point to
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FIGURE 10: Root mean square error of each IMF component.
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F1GURE 11: Comparison of reconstructed signal and original signal.

all class centers by optimizing the objective function, so as to
automatically classify the samples.

Supposing the signal point sample is X = {x;, x5, - x,,},
c(2<c<n) represents the number of cluster centers,
{A}, A,,--- A} represents the corresponding c categories, U
represents fuzzy classification matrix, and V = [v,v,,---v,]
represents the cluster center vector, we use the weighted sum
of squared distances from the signal point X to each cluster
center v; (1<i<c) as the objective function:

C

JW,V) =Y > uidy, (10)

n
j=li=1

where m is the weighting parameter and u;; and d;; are the
membership degree and Euclidean distance from the signal
point sample x; to the cluster center v;, respectively.

The essence of the FCM algorithm is to repeatedly
modify U and V through iteration. When the algorithm
converges, theoretically, various cluster centers and the
membership degrees of each sample to each pattern class are

obtained, thus completing the fuzzy clustering division.
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F1GURE 12: Comparison of original signal, noisy signal, and processed signal. (a) Time domain diagram. (b) Spectrogram.

3.2. Generalized Quadratic Correlation Delay Estimation
Algorithm. It is assumed that the acoustic signals collected
by the two acoustic sensors are shown in Equation (11). In
the equation, s(n) represents the original sound source
signal, &; and «, represent the attenuation factors of the two
signals, n; (n) and n, (n) are noise, and 7 represents the time
delay difference between the sound source reaching the
signals collected by the two sound sensors.

{ x, (n) = ays(n) + ny (n)

x,(n) =ays(n—1) +n (n)'

(11)

The simplest time delay estimation is to directly perform
cross-correlation processing on the two signals x; (n) and
x,(n), as shown in Equation (12).

Ry (1) = E[x, (n)x, (n-1)]. (12)

Substituting (11) into Equation (13) to get:
R,(m) =aE[s(n—1)s(n—1, - 1)] + ;;E[s(n -7, )n, (n - 7)]
+,E[s(n-1, - 1)n, (n)] + E[n, (n)n, (n - 1)].
(13)

Because (1), n, (n), and n, (n) are not related to each
other, (13) can be further simplified:

7
Comparison of three signal spectrums
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Frequency
(b)
Ry (1) = 010y R (T = T1p) + Ry (), (14)

where R, (7) represents the autocorrelation function of the
sound source s(n), and R,,, (1) is the cross-correlation
function of the two noises n, (n) and n, (n). If n; (n) and
n, (n) are uncorrelated noises, (14) can be further simplified
as: R, (1) = oy, R (T — 715).

According to the properties of the correlation function,
when Ry, (7) takes the maximum value, 7 is the time delay
difference between the sound source signal reaching the two
acoustic sensors.

The generalized cross-correlation algorithm [42-44]
transforms the cross-correlation function into the frequency
domain and then weights the cross power spectrum to
achieve the effect of suppressing noise, and then inversely
transforms it to the time domain to obtain the generalized
cross-correlation function. As shown in (15), G, (w) refers
to the cross power spectrum of the two collected signals,
91, (w) is the weighting function.

s

Ry, () = Jo 01, ()G (W) " deo (15)

Common weighting functions and their characteristics
[45-49] are shown in Table 1.
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TaBLE 1: Common weighting functions and their characteristics.
Name Weighting function Basic features
It is equivalent to Wiener filtering, which can effectively suppress areas with
B high noise power and error-prone signal estimation (i.e., areas with low
ROTH Gt (©) = VG (@) signal-to-noise ratio) but will expand the peak of the cross-correlation
function.
It is an improvement on ROTH weighting, considering the effects of both
SCOT Gy (@) = /4G4 (0)G gy (0) channels, but when G, (w) = G,,,, (w), SCOT is equivalent to ROTH, so it
will also expand the peak of the cross-correlation function.
It is equivalent to whitening filtering, which has a better effect on large
signal-to-noise,ratios and is suitable for broadband signals. However, when
_ G152 (0) #G, 4, (w), the correlation function is not a § function; in
PHAT Gtz (@) = V1Gi12 (@)] addition, it is weighted by G,,,, (w). When the signal energy is small, the
denominator approaches 0, thereby increasing the error. It can be improved
by adding a fixed constant to the denominator.
Iy(w)l2 is the modulo-squared coherence function, defined as
Maximum [y (@)1* = |G 100 (@G 11 (@)G iz (0); the maximum likelihood
likelihood 2 2y weighting function gives a large weight to the frequency band with a large
S G = G 1-
weighting st (@) = Iy (@G0 (@A =y (@)F) signal-to-noise ratio and a small weight to the frequency band of a small
(ML) signal-to-noise ratio. In this way, the influence of noise can be better

suppressed, and it is the optimal filter in the statistical sense.

HB weighted

It has a suppressing effect on the periodic components in the signal, and the

G w) =|G w)|/G w)G 0] o . . . . .
3132 (©) = [Ga1az (@G (@)Crzz (@) effect is similar to that of direct cross-correlation at low signal-to-noise ratio.

WP weighted G,,,, () = |G, (w)lz/G,d,cl (0)Gx2 (W)

When there are obvious periodic components in the signal, it fails; when the
signal-to-noise ratio is low, the performance is not as good as PHAT.

x; (n) Fourier transform
® power spectrum
function G, (w) ;
take the generalized cross
X, (n Fourier transform .
2 (n) urier transfor: —— power spectrum
Generalized Weighting
Function
Peak Generalized
Delay value deteecation cross-correlation Inverse Fourier Transform

function Ry, (7)

F1GURE 13: The principle block diagram of the generalized cross-correlation delay estimation algorithm.

The principle block diagram of the generalized cross- correlation operation on the autocorrelation function and
correlation delay estimation algorithm is shown in Figure 13.  the cross-correlation function of the two time domain
The quadratic correlation algorithm [50-52] is also a  signals to improve the time delay estimation accuracy.

common time delay estimation method. It performs a

[ Ry, (1) = E[x; (n)x; (n—1)]
Ry, (1) = E[x; (n)x, (n—1)]
1 Reg(7) = E[Ryy (W)Ry, (- 7)) . (16)
_ E{ [Ry, (1) + Ry, () + R,y (n) + Ry, ()] }
[Rs(n-D+1)+R

(n—-D+71)+ Ry, (n+ 1)+ R,,p (n+7)]

nls
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— Delay value
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FIGURE 14: The principle block diagram of quadratic correlation delay estimation.
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FiGgure 15: The principle block diagram of the generalized quadratic correlation delay estimation algorithm.
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FI1GURE 16: Schematic diagram of the experimental site.

FiGure 17: Outdoor pool panorama.

Ignoring the cross-correlation function of signal and  where Ry represents pure signal for secondary correlation
noise, (16) can be simplified as and Rpy represents noise for secondary autocorrelation.
Compared with the primary correlation, the secondary

Rig () = Res (7 = D) + Ry (), (17) " correlation reduces the influence of noise on the signal and
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FIGURE 18: Heavy object falling into water arouses water column diagram.
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FIGURE 19: Time domain diagram and spectrum diagram of experimental signal.

can estimate the delay value more accurately in the low
signal-to-noise ratio environment.

The block diagram of the quadratic correlation delay
estimation is shown in Figure 14.

In this article, the advantages of generalized cross-cor-
relation and quadratic correlation are combined for time
delay estimation, that is, generalized quadratic correlation
time delay estimation [50]. The principle block diagram is

shown in Figure 15. The weighting function of generalized
cross-correlation chooses SCOT weighting function.

3.3. Combination of Delay Estimation of FCM and Gener-
alized Quadratic Correlation. This article uses the FCM
algorithm to adaptively extract the effective segment
signal and then performs generalized quadratic
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FIGURE 21: Comparison of the original value of the three-way signal and the NLM processing value.
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Time domain diagram of each IMF component after
EEMD decomposition
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F1GURE 22: Three-way signal EEMD decomposition. (a) Time domain diagram of the IMF component of the EMD decomposition of the first
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domain diagram of the IMF component of the EMD decomposition of the third signal. (f) Spectrogram of the IMF component decomposed

by EMD of the third signal.

correlation processing, which can sharpen the correlation
peak and improve the accuracy of delay estimation. The
steps are as follows [22]:

(1) In the FCM algorithm, the weighting parameter m =
3 is set, and the number of cluster centers is ¢ = 3.
The acoustic signal used for underwater positioning
studied in this article is the shock signal, so it is
divided into three categories: the front part of the
shock signal, the shock signal generation segment,
and the post-impact signal segment.

(2) Using FCM to process the acquired signal, the ef-
fective segment signal point samples are extracted
and reconstructed, and the shock generation seg-
ment signal is obtained.

(3) For the acoustic signals received by other acoustic
sensors, the same processing methods of steps (1) to
(2) are adopted. In this way, each acoustic sensor
corresponds to a signal of an impact generation

segment, and the minimum value of the start point
and the maximum value of the end point of these
signals are taken as the final start point and end
point, respectively, that is, the segment
min (x (tsturtl)’ x(tstartZ)’ """ ) to max (x (tendl)’
X(topaz)r-eeee ) is intercepted from the received
signal of the acoustic sensor. The signal is processed
as the final pending delay estimation.

(4) The generalized quadratic correlation delay estima-
tion is performed to obtain the delay difference
between the signals.

4. Experiment and Performance Analysis

4.1. The Principle and Process of Underwater Sound Source
Localization. In this article, the ternary acoustic sensor
array is used to collect the underwater sound source signal,
and the time delay between the signal processing and the
signal is estimated, and finally the underwater sound source
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FIGURE 23: The process of adaptively selecting IMF components.

position is calculated by using the time delay difference.
The schematic diagram of the experimental site is shown in
Figure 16.

The azimuth distance equation used by the ternary
acoustic sensor array for sound source localization is as
follows:

2 3
| ed Ty = T Ty
¢ = cos 3 2.2 2N |
2d° —c¢ d(r12 + 123)
(18)
2P (2, 4 72)

R =
2¢(7y5 — T23)

>

where ¢ is the azimuth of the explosion point to be es-
timated; R, = R is the distance of the explosion point to be
estimated; ¢ is the speed of sound; d is the distance be-
tween the array elements; and 7,,, 7,3, and 7,; represent
the time delay difference of the three-channel signals,
respectively.

4.2. Experimental System Construction. The experimental
device is built as shown in Figure 16, and the sound source
localization experiment is conducted in a large outdoor
pool. The underwater sound source signal is generated by
throwing heavy objects at different angles and distances
relative to the ternary array. The distance between the

elements of the ternary acoustic sensor array is 10 m and
arranged in a straight line. The sensitivity of the acoustic
sensor is less than —200dB when detecting the sound
source in the frequency range of 10Hz-50000Hz, the
sampling frequency of the acquisition instrument is
128k Hz, and each acquisition time is set to 10 s (Figures 17
and 18).

4.3. Experimental Signal Processing. The collected acoustic
signals at different locations are first analyzed in the time-
frequency domain, and then NLM preprocessing, EEMD
decomposition, and adaptive reconstruction are performed
to obtain denoised signals. Finally, combined with the FCM
algorithm, based on the generalized quadratic correlation
delay estimation, the algorithm estimates the time delay of
the three-channel signal in pairs and then solves the sound
source position.

Taking the acoustic signal collected in an experiment as
an example, the above analysis and processing are carried
out. The time domain diagram and spectrogram and time
spectrum of the signals collected by the three hydrophones
are shown in Figures 19 and 20, respectively.

The comparison between the original signal of the three-
channel signal and the NLM preprocessing results is shown
in Figure 21, the NLM-EEMD denoising results are shown in
Figure 22, and the signal adaptive reconstruction process is
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Time domain diagram comparison of the third signal
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FIGURE 24: Comparison of three-way NLM processing signal and reconstructed signal. (a) Comparison of the first NLM processing signal
and the reconstructed signal. (b) Comparison of the second NLM processing signal and the reconstructed signal. (c) Comparison of the third
NLM processing signal and the reconstructed signal.
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Cluster diagram after FCM optimization of the first signal
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Direct cross—correlation of the first and second signals
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TaBLE 2: Comparison of positioning results of three delay esti-
mation methods.

Distance Azimuth Error (meters,
(m) (degrees) degrees)

Theoretical calculation 85.1131  109.9209.
Direct correlation Invalid  Invalid
Generalized cross- 821087 110.7588 3.0044,0.8379
correlation
NLM-EEMD-FCM-
generalized quadratic 83.5707 110.6450 1.5424, 0.7241

correlation

shown in Figure 23. The comparison between the recon-
structed signal and the NLM processed signal is shown in
Figure 24, and the reconstruction error is shown in Fig-
ure 25. It can be seen that the NLM preprocessing has an
ideal de-drying effect. In the process of EEMD signal de-
composition and reconstruction, the three signals are
decomposed into 10 IMF components, adaptive threshold A,
is 0.2291, 4, is 0.0019, A, is 0.2954, §, is 0.0072, A; is 0.2872,
05 is 0.0026, the first channel signal selects the 2nd, 3rd, 8th,
9th, and 10th components for reconstruction, the second
channel signal selects the 3rd, 4th, and 8th components for
reconstruction, the third channel signal selects the 2nd, 3rd,
4th, 8th, 9th, and 10th for reconstruction, and the original
signal is basically restored, and the reconstruction error
meets the requirements.

Figure 26 shows the clustering diagram and the change
diagram of the clustering objective function after the three-
channel signal is processed by FCM. Finally, the generalized
quadratic correlation delay estimation is performed as
shown in Figure 27.

4.4. Algorithm Verification and Analysis. In order to further
verify the superiority of the algorithm in this article for
underwater sound source localization, three different
methods of direct cross-correlation method, generalized
cross-correlation method, and generalized quadratic cor-
relation method based on NLM-EEMD-FCM were used for
the acoustic signals of the experiments in the previous
section. The time delay estimation algorithm is used to
calculate the sound source position. The delay estimation
diagrams of direct cross-correlation and generalized cross-
correlation are shown in Figures 28 and 29, respectively.

The positioning results of the three delay estimation
methods are shown in Table 2.

It can be seen from Table 2 that the error is extremely
large when using direct cross-correlation, which is ba-
sically invalid; for this group of collected signals, after the
signal is processed by NLM-EEMD-FCM, the azimuth
error is slightly improved, but compared with the dis-
tance error reduced by nearly 1.5 meters, it is negligible,
so in general, the generalized quadratic correlation delay
estimation method based on NLM-EEMD-FCM sharpens
the peak value, improves the delay estimation accuracy,
and reduces the underwater sound source localization
error.

Shock and Vibration

5. Conclusions

In order to improve the accuracy of underwater sound
source location, an underwater sound source location
method based on nonlocal mean overall average empirical
mode decomposition (NLM-EEMD) autocorrelation
denoising preprocessing and fuzzy C-means clustering
(FCM)-generalized quadratic correlation time delay esti-
mation is studied in this article. The experiment was carried
out in a large outdoor pool. Through the analysis of the
collected signal data, it was found that the NLM-EEMD
adaptive denoising method has good effect, which improves
the decomposition quality of EEMD. The FCM-generalized
quadratic correlation method increases the correlation be-
tween two signals, sharpens the correlation peak, and im-
proves the accuracy of time delay estimation. Taking the
signal data analyzed above as an example, when the sound
source distance is about 85 meters, the sound source location
error based on NLM-EEMD and FCM-generalized qua-
dratic correlation method is only 1.81%, which is 48.66% less
than that of direct generalized cross-correlation method.
This article provides a new idea to improve the accuracy of
time delay estimation and also provides a certain reference
for the research of high-precision positioning of underwater
sound sources.
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