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Since the degradation process of fan slewing bearings is easily infuenced by the external environment, it is difcult to estimate its
remaining useful life (RUL) accurately. A nonlinear Wiener degradation model considering the infuence of random covariate is
established for the prediction of the RUL of fan slewing bearings in this study. Firstly, considering the nonlinear and non-
monotonic properties of the operation process of fan slewing bearings, the degradation model of the nonlinear Wiener process of
fan slewing bearings is established. Secondly, the combination of random covariate models and the nonlinearWiener degradation
process is researched. Te stress efect which is used as a random covariate is introduced into the nonlinear Wiener degradation
model in the form of the additive hazard model. Moreover, the closed expression for the RUL probability density function(PDF) is
derived for the random variation of drift coefcients, the individual diferences and the random variation of covariates. Tirdly,
the maximum likelihood estimation algorithm is used to estimate the RUL parameters depending on the historical degradation
data. Finally, the vibration data of fan slewing bearings monitored by sensors are used to verify the efectiveness of the proposed
method. Te results show that the proposed method can be used to improve the ftting degree of the model and the accuracy of
RUL estimation.

1. Introduction

In recent years, with increasing concern to environmental
and energy issues, wind energy as renewable energy has
attracted more and more attention. Wind power genera-
tion is an important new power source in the world. Since
2005, the average annual growth rate of wind power ca-
pacity has reached 20%. It is estimated that wind power
will account for 12% of the global power supply by 2030
[1]. In Europe, about 7.7% of total electricity consumption
will be generated by ofshore wind turbines, and the in-
stalled capacity is 66 GW [2].Te slewing bearings is one of
the key components of the fan, which is used for the pitch
and yaw system. For driving the pinion and gearbox, the
gear is designed on the inner ring or outer ring (see
Figure 1).

Unlike general-purpose industrial bearings, the large-
scale fan slewing bearings is designed to be operated under
harsh conditions with a high failure rate and maintenance
cost [3]. During the operation of slewing bearings, the parts
are subjected to alternate stress for a long time, which will
cause wear and damage. At the same time, the fan slewing
bearings are with low speed and under heavy load operation
conditions. It is difcult to identify the faults formed and
some faults can cause malignant accidents. Terefore, it is
important to estimate the RUL of slewing bearings accu-
rately [4, 5].

Te widely used RUL estimation methods of slewing
bearings mainly include the physical model method and the
data-driven method. Te physical model method is mainly
based on a large number of tests and statistical analysis of
engineering data. It is usually based on stress and strain,
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critical plane model, material structure, etc. However, the
physical model method is based on a large number of tests
and statistical analysis of physical fault model data. Due to
the large volume, various specifcations as well as the
complex load of slewing bearings, it is difcult to build the
test platform and the cost is also very high. Tese factors
hinder researchers from carrying out the experimental test.

For data-driven method, attempts to derive models di-
rectly from collected degradation data or life data, which
does not depend on physical or engineering principles
completely. Monitoring signal changes with the develop-
ment of wear. Trough researching the change of moni-
toring signal, the degradation process can be analyzed.

Zhang et al. [6] introduces the mixed distribution of
Gaussian distribution as a distribution describing random
efects in the degradation model of the difusion process. Its
drift coefcient is a linear combination of some known time-
varying functions. Finally, the RUL PDF is derived. Zhang
et al. [4] proposes that the features of temperature, torque, and
vibration signal of the service sample and reference sample are
extracted separately. PCA-based multiple sensitive features
are used to establish performance decline indicators. Ten,
similarity between samples and reference samples can be
calculated. Te RUL of the sample is predicted based on the
similarity. Feng et al. [7] establishes the relationship between
bearing life and maximum load through the small sample
bearing parameter estimation method. Te RUL model of
slewing bearings is established based on the Weibull distri-
bution method. Ten, the experimental analysis is performed
on QNA-730-22 slewing bearings. Lu et al. [8] fuses the
characteristics of vibration and other signals through prin-
cipal component analysis, including the health state of op-
eration, azimuth, peak value, wavelet energy entropy, and
inherent mode function energy. Ten, particle swarm opti-
mization is used to optimize the degradation model of the
least squares supporting vector machine. Aye and Heyns [9]
obtains the optimal Gaussian process regression(GPR) by
combining the existing simplemean and covariance functions
to obtain the irregularity in the data of bearing degradation.
GPR is improved to realize the estimation of the low error rate
for the RUL of the low-speed bearing.

In the above research process, random and dynamic
characteristics are not considered for the degradation pro-
cess of fan slewing bearings. Te random process can be
better used to describe its degradation state [10–12].
Terefore, the random process is used to describe the
degradation process of fan slewing bearings in this study.

Stochastic processes mainly include Wiener, Gamma,
Markov, and other methods [13]. Since fan slewing bearing
is infuenced by internal or external factors, it has non-
monotonic characteristics [14]. Te Wiener process is
suitable to describe the nonmonotonic nonlinear degrada-
tion process. Terefore, the Wiener process is established to
estimate the RUL of fan slewing bearings. Considering the
efect of historical degradation data on the degradation
model, Si et al. [15] proposes a Wiener degradation process
with a recursive model, in which, the drift coefcient is
updated by the recursive flter and other parameters are
updated by the expectation maximization (EM) algorithm.
At the same time, the distribution of the drift coefcient is
also considered. Finally, the RUL distribution with high
precision is obtained.

Man and Zhou [16] establishes the Wiener degradation
modeling with drift and uses the nonparametric baseline
hazard model to build a joint modeling framework. Ten, it
is used to estimate the RUL of the system. However, the
efect of multiple monitoring signals on the RUL is not
considered. Paroissin [17] regards the Wiener process as a
degradation model that starts at any time and regards the
degradation process as a random delayed Wiener process.
Assuming that the sample path is observed instantaneously
under the same rules, statistical judgment is made according
to the sampling scheme, and some progressive results are
obtained. To simulate the degradation trajectory of indus-
trial equipment, Huang et al. [18] establishes an adaptive
skew-Wiener model. Making full use of prior knowledge and
historical information, an online fltering algorithm for state
estimation is proposed. Te two-stage algorithm is used to
estimate the unknown parameters. Finally, it is applied to
motor bearings. Wang et al. [19] analyzes the impact of
failure on the degradation process, establishes a degradation
model based on the composite process and predicts the RUL
distribution of the system without measuring noise online.

In these models, parametric random variables and in-
dividual diferences are considered only. Te efect of the
external environment acting on the system degradation is
ignored. Terefore, these models cannot fully refect the
process of system degradation. However, the operating
environment of wind power equipment is changeable and
complex, including the continuous changes of strong wind,
tropical high temperature, lightning, snow, and so on [20].
In this study, the degradation efect of the external envi-
ronment acting on the slewing bearing through the blade
propeller is considered (such as wind speed and change of
wind direction). Te variety of external environments leads
to changes in the speed and rotation direction of the blade.
Consequently, it produces the stress efect on the slewing
bearing device which is connected to the blade. When the
external environment changes, the stress efect changes
randomly. And, the degenerate state of slewing bearing is
infuenced. Ten, the stress efect, which is used as a random
covariate [21], is introduced into the nonlinear Wiener
degradation model.

Scholars have also conducted some research on the
degradation model based on covariates. Sun et al. [22]
proposed that the efect of an external factor on degradation,

Figure 1: Fan structure with (i) pitch bearing and (ii) yaw bearing.
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which is used as covariates, is introduced into the nonlinear
Wiener process in the form of proportional hazard models.
Te proportional hazards model requires that the rela-
tionship between the failure rate function and covariates is
proportional. However, in general, the degradation process
of the device is randomly varying, and the relationship
between the failure rate function and covariates is not strictly
proportional. Terefore, proportional hazards models are
not suitable for engineering practice. Si et al. [13] analyzed
Wiener process-based degradation models with covariates.
Te combination of covariates, which is in the form of a
proportional hazards model and difusion coefcient, is
studied. In [21], the proportional hazards models of fxed
covariate models and time-varying covariate models are
analyzed. Te proportional hazard models and the additive
hazardmodels is compared. However, it is necessary tomake
further research to the combination of random covariate
models and the nonlinear Wiener degradation process.

Moreover, in many literature, when the efect of an
external factor on degradation is considered, it is introduced
into the degradation model in form of additive hazard
models. Sun et al. [23] considers the impact of random
shocks on the increments and rate of a degradation process,
and the impact of random shocks is taken into a nonlinear
Wiener process model in form of additive model. Chen et al.
[24] proposes a nonlinear adaptive inverse Gaussian process
along with the corresponding state space model considering
measurement errors. Te measurement errors is introduced
into the degradation model in form of additive model.
Terefore, the stress efect of the external environment
acting on the fan slewing bearing through the blade pro-
peller, which is used as the random covariates, is introduced
into the nonlinear Wiener degradation model in the form of
additive hazard models in this study. And, it provides a
better estimation of the RUL of the slewing bearing.

Based on the above analysis, a nonlinear Wiener deg-
radation model considering the efect of random covariate is
established for the estimation of the RUL of fan slewing
bearing in this study. Firstly, the nonlinearWiener process is
established to estimate the RUL of fan slewing bearing. Next,
the combination of random covariate models and the
nonlinear Wiener degradation process is researched in this
study. Te degradation efect of the external environment
acting on the slewing bearing through the blade propeller is
considered. To improve the accuracy of model estimation,
the stress efect, which is used as a random covariate, is
introduced into the nonlinear Wiener degradation model in
the form of additive hazard models. Moreover, a closed
expression for the RUL probability density function (PDF) is
derived for the random variation of drift coefcients, the
individual diferences, and the random variation of cova-
riates. Tirdly, the maximum likelihood estimation algo-
rithm is used to estimate the parameters of the PDF
depending on the historical degradation data. Finally, the
vibration data of the fan slewing bearings monitored by
sensors are used to verify the efectiveness of the proposed
method.

2. Fan Slewing Bearing Degradation Model

2.1. Nonlinear Wiener Degradation Model. Assuming that
the degradation value of the parameter at time t is X(t), the
random Wiener degradation process can be expressed as
follows:

X(t) � X(0) + αΛ(t, θ) + σB(τ(t, c)), (1)

where X(0) is the initial degenerate state. When X(0) � 0,
the system is in a healthy state. α is the drift coefcient.
Λ(t, θ) � 

t

0 λ(u, θ)du, λ(t, θ), and τ(t, c) is the continuous
nondecreasing function about time t. θ and c are the pa-
rameter vectors. σ is the difusion coefcient. B(τ(t, c)) is
the Brownian motion and it follows Gaussian distribution.

Te forms of Λ(t, θ) are t, tr, and exp (bt). Since the
degradation of slewing bearings is a nonlinear process, and
tris widely used because of its fexibility in describing linear
degradation paths with r � 1, nonlinear concave paths with
r> 1, and nonlinear convex paths with r< 1. Terefore, it is
selected as Λ(t, θ) � tr. Te nonlinear Wiener degradation
process is as follows:

X(t) � X(0) + αt
r

+ σB(τ(t, c)). (2)

Due to diferences in the production materials and
production processes of the system, the degradation rate in
the degradation process of each system is diferent. Gen-
erally, the random parameter α represents diferent degra-
dation rates, α ∼ N(μα, σ2α). Suppose, r follows Gaussian
distribution, N(0, 1).

Property 1. the properties of theWiener process are given as
follows:

(1) Increment, X(t1) − X(0), X(t2) − X(t1), . . . ,

X(tn) − X(tn−1) on diferent intervals is independent
of each other

(2) X(ti) − X(ti−1) follows Gaussian distribution, with
expectation α(Λ(ti, θ) − Λ(ti−1, θ)) and variance
σ2|τ(ti; c) − τ(ti−1; c)|

According to Property 1, in the Wiener process, X(t) is
not a Gaussian process, and it is a degradation value.

2.2. Nonlinear Wiener Degradation Model Based on Random
Covariate. To estimate the RUL of a random degenerate
system accurately, in practice, random variation of pa-
rameters, individual diferences, and covariates efect are
mainly considered [13, 25]. Parameter random variation
means that the system degradation process is usually
characterized by a random process.Te individual diference
means that the degradation paths of diferent equipment in
the same system are diferent due to diferences in working
environment and load. Te covariate efect means that the
randomness of the external environment changes strongly,
and it impacts on equipment degradation process through
other components [20].
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Te degradation process of the fan slewing bearing is
infuenced by the external environment (such as the change
of wind speed and wind direction). Te variety of external
environments leads to changes in the speed and rotation
direction of the blade. Consequently, it produces the stress
efect on the slewing bearing device that is connected to the
blade. It infuences the degenerate state of slewing bearing.
Te stress efect is a random variation.

Moreover, the proportional hazards model of covariates
requires that the relationship between the failure rate function
and covariates is proportional. However, in this study, the
degradation process of slewing bearing is a random variation,
and the relationship between the failure rate function and
covariates is not strictly proportional. Generally, when the
efect of an external factor on degradation is considered, it is
introduced in an additive model into the degradation model.
Terefore, considering the stress efect of the external envi-
ronment acting on the slewing bearing through the blade
propeller, as a random covariate, it is introduced into the
nonlinear Wiener degradation process in the form of additive
hazard models in this study. Considering the individual dif-
ference of slewing bearing samples, the random variation of
drift coefcient, and the efect of a random covariate, the closed
expression of RUL PDF of fan slewing bearing is derived.

Te stress efect of the external environment acting on
the degradation process is set asM, and the total degradation
state of equipment is Y(t). Te actual degradation process of
slewing bearing at time t consists of two parts: self-degra-
dation at time t and the degradation of stress efect at time t.
Te degradation model of slewing bearings is as follows:

Y(t) � X(t) + M. (3)

In this study, the stress efect of the external environment
acting on the slewing bearing through the blade propeller is
considered. When the external environment changes, the
stress efect changes randomly. Ten, the degenerate state of
slewing bearing is infuenced, and the degradation of slewing
bearing itself is determined by the inherent factors of the
material. Terefore, the degeneration caused by stress and
the degradation of slewing bearing itself is independent to
each other. Since the Gamma distribution describes a
monotonically increasing change process with time and the
stress efect is a random variation, it may be nonmonotonous
and not suitable for the Gamma distribution. Most of the
external interference is assumed to be a Gaussian

distribution [26]. According to the central limit theorem, the
stress efect is supposed to be a Gaussian distribution,
M ∼ N(μm, σ2m). Since, the data-driven method is used to
estimate RUL, based on the feature data, expectation μm and
variance σm are estimated by using the maximum likelihood
function, and then the stress efect is estimated.

Combining with equations (2) and (3) in this study, the
nonlinear Wiener degradation model of slewing bearing
considering external environmental efects is established.

Y(t) � X(0) + αt
r

+ M + σB(τ(t, c)). (4)

Te PDF is given as follows. Supposing that the deg-
radation data obtained from the condition monitoring of the
product at a discrete time point tk(tk > 0) is Y(tk). If the
service life of the product is T. Lk which is the RUL at time tk,
can be expressed as Lk � T − tk. Te frst reaching failure
threshold of the product is set as D. If Y(t) exceeds D, the
product is judged to be invalid, and the defnition of Lk is
given.

Lk � inf lk; Y lk + tk( ≥D Y tk( <D
 . (5)

Firstly, when the drift coefcient α is given, without
considering the efect of external covariates, RUL PDF of
X(t) at time tk is analyzed. Once the degradation state
X(t), t≥ 0{ } reaches a failure threshold D, the system is
considered faulty. According to the defnition of frst passage
time(FPT), the RUL can be defned as follows:

T � inf t: X(t)≥D|X(0)<D{ }. (6)

Since it is difcult to obtain an accurate expression of the
failure PDF for the nonlinearWiener degradationmodel, the
following equation is used to approximate the PDF
according to literature [27].

f l | X1: k, θk(  �
1
���
2πl

√
S(l)

l
+
λ l, θk( 

σ
 exp −

S
2
(l)

2l
 . (7)

Among S(l) � 1/σ(D − Λ(l; θ)), Λ(l; θ) � 
l+tk

tk
λ(t; θ)dt,

λ(l, θk) � αrtr− 1, Λ(l; θ) � α((l + tk)r − tr
k), and Dtk

� D −

X(tk), Dk is D-value between the failure threshold and the
degenerate state value at time tk.

Hence, S(l) � 1/σ(Dtk
− α(l + tk)r + αtr

k).
Let θk � (μtk

, σtk
, r)′, the PDF approximate expression of

RUL Lk of X(t) at tk is as follows:

f lk
 X1: k, θk  �

1
����
2πlk


Dtk

− α lk + tk( 
r

+ αlkr lk + tk( 
r− 1

+ αt
r
k

lkσ
⎡⎣ ⎤⎦

• exp −
Dtk

− α lk + tk( 
r

+ αt
r
k 

2

2lkσ
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(8)

When the degradation efect of the external environment
acting on the slewing bearing is considered, according to the
defnition of FPT, the system is considered faulty, when the

degradation state Y(t), t≥ 0{ } reaches threshold D.
According to Property 1, ΔY(tk) � Y(tk) − Y(tk−1) are in-
dependent of each other and follow Gaussian distribution.
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Proof

Y tk(  � X(0) + αkt
r
k + Mk + σkBk τ tk, ck( ( ,

Y tk−1(  � X(0) + αk−1t
r
k−1 + Mk−1 + σk−1Bk−1 τ tk−1, ck−1( ( ,

ΔY tk(  � Y tk(  − Y tk−1(  � αkt
r
k − αk+1t

r
k+1 + Mk − Mk−1 + σkBk τ tk, ck( (  − σk−1Bk−1 τ tk−1, ck−1( ( ,

(9)

where

Xk − Xk−1 � αkt
r
k − αk−1t

r
k−1 + σkBk τ tk, ck( (  − σk−1Bk−1 τ tk−1, ck−1( ( . (10)

Xk − Xk−1 follows Gaussian distribution.
Since, M ∼ N(μm, σ2m), Mk − Mk−1 also follows Gauss-

ian distribution.
Hence, ΔY(tk) � Y(tk) − Y(tk−1) also follows Gaussian

distribution.
Since the efect of the external environment is a random

variation, it is difcult to obtain PDF directly. Terefore,
Y(t) reaching threshold D can be equivalent to X(t)

reaching threshold De. RUL is defned as follows:

T � inf t: Y(t)≥D|Y(0)<D{ } � inf t: X(t)≥De|X(0)<De ,

(11)

where De is the time-varying random threshold reached by
X(t), De � D − M(t), De ∼ N(D − μm, σ2m).

RUL Lk at tk is as follows:

Lk � inf lk: Y tk + lk( ≥D  � inf lk: X tk + lk( ≥De .

(12)

Next, the equivalent PDF is converted into a PDF in
which historical degradation data is used to estimate the
system RUL. It is assumed that the total degradation data
obtained in the degradation process is
Y1: k � y1, y2, . . . , yk . Te random covariates are supposed
to be Gaussian distribution, M ∼ N(μm, σ2m). μm and σ2m are
included in equation (14). Based on the data, μm and σ2m are
estimated. Te degradation state caused by external stress is
M1: k � m1, m2, . . . , mk , and the degradation state without
considering the efect of external stress is X1: k � x1,

x2, . . . , xk}. Since, y(tk) � x(tk) + m(tk), the RUL PDF can
be calculated according to Y1: k � y1, y2, . . . , yk , and PDF
is fLk|Y1: k

(lk|Y1: k). Since α and De are independent random
variables, α ∼ N(μα, σ2α) and De ∼ N(D − μm, σ2m), the
randomness of α and De should be considered in the cal-
culation process. Te full probability equation can be cal-
culated according to the following equation:

fLk|Y1: k
lk|Y1: k(  � 

+∞

−∞


+∞

−∞
fLk|α,De,Y1: k

lk|α, De, Y1: k( p De|α, Y1: k( p α|Y1: k( dDedα

� Eα|Y1: k
EDe|α,Y1: k

fLk|α,De,Y1: k
lk|α, De, Y1: k(   .

(13)

To calculate fLk|Y1: k
(lk|Y1: k), Teorem 1 is given in

[28]. □
Theorem 1. if Z ∼ N(μz, σ2z) and a, b, c, d, c ∈ R, then:

EZ (a − bZ) · exp −
(c − dZ)

2

2c
   �

�������
c

d
2σ2z + c



× a − b
dσ2zc + μzc

d
2σ2z + c

 exp −
c − dμz( 

2

2 d
2σ2z + c 

⎛⎝ ⎞⎠. (14)
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According to equation (13) and Teorem 1,
fLk|Y1: k

(lk|Y1: k) can be obtained. Assuming α ∼ N(μα, σ2α),
De ∼ N(D − μm, σ2m), then:

fLk|Y1: k
lk|Y1: k(  �

1

q

����

2πl
2
k



�������������������������
1

lk + tk( 
r

− t
r
k 

2δ2α + δ2m + lkδ
2



D − μm( lkδ
2

+ 1 − δ2m yk−

δ2m − 1  lk + tk
r

− t
r
k − lkr lk + tk(( 

r− 1
 

lk + tk( 
r

− t
r
k( δ2α D − yk − μm(  + μα δ2m + lkδ

2
 

lk + tk( 
r

− t
r
k( 

2δ2α + δ2m + lkδ
2

exp −
D − yk − μm − lk + tk( 

r
− t

r
k( μα( 

2

2 lk + tk( 
r

− t
r
k( 

2δ2α + δ2m + lkδ
2

 

⎛⎝ ⎞⎠

�
1

q

����

2πl
2
k



�������������������
1

lk + tk( 
r

− t
r
k 

2σ2α + q



D − yk − μm( lkσ
2

− lk + tk( 
r

− t
r
k( lkσ

2


−qlkr lk + tk( 
r− 1


lk + tk( 

r
− t

r
k σ2α D − yk − μm(  + μαq

lk + tk( 
r

− t
r
k 

2σ2α + q

⎫⎬

⎭

exp −
D − yk − μm − lk + tk( 

r
− t

r
k( μα 

2

2 lk + tk( 
r

− t
r
k( 

2σ2α + q 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(15)

where q � σ2m + lkσ2. Next, equation (15) is proved. Proof. In equation (8), Dtk
is replaced with De,k. According

to equation (11), we can get, De,k � De − yk. Suppose
De ∼ N(D − μm, σ2m), the result is as follows:

EDe|α,Y1: k
f lk|α, De, Y1: k(   � EDe|α,Y1: k

−
1

σ
����

2πl
3
k

 yk − De + α lk + tk( 
r

− αlkr lk + tk( 
r− 1

− αt
r
k 

⎡⎢⎢⎢⎢⎢⎢⎢⎣

· exp −
yk + α lk + tk( 

r
− αt

r
k − De( 

2

2lkσ
2

⎛⎝ ⎞⎠⎤⎥⎥⎦

� −
1

������

2πl
2
kq

3
 yk − D + μm( lkσ

2
+ αlkσ

2
lk + tk( 

r
− t

r
k(  −αqlkr lk + tk( 

r− 1
 exp −

D − p − μm( 
2

2q
 ,

(16)

where a � p − αlkr(lk + tk)r− 1, c � p, b � d � 1, c � lkδ
2,

q � δ2m + lkδ
2, and p � yk + α(lk + tk)r − αtr

k.
Furthermore, when α ∼ N(μα, δ2α), the result is as

follows:
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Eα Y1: k| EDe|α,Y1: k
f lk|α, De, Y1: k(    �

Eα Y1: k| � −
1

������

2πl
2
kq

3
 yk − D + μm( lkσ

2
+ αlkσ

2
lk + tk( 

r
− t

r
k(  −αqlkr lk + tk( 

r− 1
 exp −

D − p − μm( 
2

2q
 

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

� −
1

q

����

2πl
2
k



�������������������
1

lk + tk( 
r

− t
r
k 

2σ2α + q



yk − D + μm( lkσ
2

+ lk + tk( 
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− t
r
k( lkσ

2
− qlkr lk + tk( 
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lk + tk( 
r

− t
r
k σ2α D − yk − μm(  + μαq

lk + tk( 
r

− t
r
k 

2σ2α + q

⎧⎨

⎩

⎫⎬

⎭

exp −
D − yk − μm − lk + tk( 

r
− t

r
k( μα 

2

2 lk + tk( 
r

− t
r
k( 

2δ2α + q 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

.

(17)

where a � (D − yk − μm)lkσ2, b � ((lk + tk)r − tr
k)lkσ2

−qlkr(lk + tk)r− 1, c � D − yk − μm, d � (lk + tk)r − tr
k, and

c � q � σ2m + lkσ2. □

3. Parameter Estimation

Now, the parameters Θ � (μα, σ2α, μm, σ2m, σ2, r) in equation
(14) are estimated. Te parameter vector is
Θ � (μα, σ2α, μm, σ2m, σ2, r). Assuming that Ω � (λ0, λ1, . . . ,

λk) is a drift coefcient vector up to tk, to refect the update
process of Θ, Θk � (μα,k, σ2α,k, μm,k, σ2m,k, σ2k, rk) is used to
represent the parameter vector based on the degradation
observation value Y1: k, and the parameter estimation vector
is expressed as Θk � (μα,k, σ2α,k, μm,k, σ2m,k, σ2k, rk). To estimate
Θk, the maximum likelihood function is used to calculate.

Assuming that the degradation state data of the oper-
ating system are measured in the order of time
0< t0< t0 < t1 < ...< tk and the measurement interval is the
same. Te corresponding degradation observation value is
Y1: k � y1, y2, ..., yk . According to equations (2) and (3),
the degradation observation value can be expressed as:
Y(t) � αΛ(t; θ) + σB(t) + M(t). Assuming that, α follows
Gaussian distribution, α ∼ N(μα, σ2α), M(ti) follows
Gaussian process, M(ti) ∼ (μm, σ2m). According to the
property of the Wiener process, ΔYi follows Gaussian dis-
tribution, ΔYi ∼ N(μαi

Λ(ti) + μm1i, σi
2Pi + σ2mi

1i1i
′ + σ2αi

Λ(ti)Λ(ti)′), where 1i � (1, 1, . . . , 1)′ is a ni dimensional
vector of 1 element.

Te maximum likelihood estimation method is used to
determine the estimated value of parameters in this study.

Let

Λ(t) � t
r
, Qi � ti,1, ti,2, . . . , ti,ni

 ′,

Ψi � Λ ti,1 ,Λ ti,2 , . . . ,Λ ti,ni
  ′,

Yi � yi ti,1 , yi ti,2 , . . . , yi ti,ni
  ′,

Y � Y1, Y2, . . . , Ym( .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Te total degradation state information includes the
measured values ofm products at diferent times. Product i is
measured ni times, the cumulative degradation value cor-
responding at times ti,j is yi(ti,j), j � 1, 2, . . . , ni, and i �

1, 2, . . . , m.
According to the property of the Wiener process, it is

obtained that,

ΔYi ∼ N ηi,Σi( , (19)

where ηi � μαi
Ψi + μmi

1i, Σi � σi
2Pi + σ2mi

1i1i
′ + σ2αi
ΨiΨi
′,

Pi �

ti,1 ti,1 · · · ti,1
ti,1 ti,2 · · · ti,2
⋮ ⋮ ⋮ ⋮
ti,1 ti,2 ... ti,ni

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

According to equation (19), the log-likelihood function
of Yi can be obtained as follows:

l Θi, r Yi

  � −
ni

2
ln (2π) −

1
2
ln Σi


 −

1
2

Yi − ηi( ′
−1

i

Yi − ηi( .

(20)

Furthermore, the log-likelihood function of Y is as
follows:

l Θi, r | Y(  � −ln (2π) 
m

i�1

ni

2
−
1
2



m

i�1
ln Σi


 −

1
2



m

i�1
Yi − ηi( ′

−1

i

Yi − ηi( . (21)
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where Θ � (Θ1,Θ2, . . . ,Θm)′.
r is fxed and l(Θ | X) is maximized the maximum

likelihood estimation value ( Θi | r) of Θi is obtained.

Te results are as follows:

μα | r(  �


m
i�1 Ψi
′−1

i Yi + Yi
′−1

i Ψi − Ψi
′−1

i μm1i − μm
′1i
′−1

i Ψi 


m
i�1 2Ψi
′−1

i Ψi

, (22)

σ2α | r  �


m
i�1 Yi − ηi( ′ Σ/σ2α 

− 1
Yi − ηi( 


m
i�1 ni

, (23)

μm | r(  �


m
i�1 1i
′−1

i Yi − 1i
′−1

i μαΨi + Yi
′−1

i 1i − Ψi
′μα′

−1
i 1i 


m
i�1 2 1i
′−1

i 1i 
, (24)

σ2m | r  �


m
i�1 Yi − ηi( ′ Σ/σ2m 

− 1
Yi − ηi( 


m
i�1 ni

, (25)

σ2 | r  �


m
i�1 Yi − ηi( ′ Σ/σ2 

− 1
Yi − ηi( 


m
i�1 ni

. (26)

Let ( Θi | r), i � 1, 2, . . . , m be used in equations (21) and
(27) to estimate r.

l r Xi,
Θi, i � 1, 2, . . . , m | r

 ∝ −
1
2



m

i�1
ln Σi


 −

1
2



m

i�1
Yi − ηi( ′

−1

i

Yi − ηi( . (27)

Using one-dimensional search method, the estimated
value r of r can be obtained, then r is used in equations
(22)–(26) to determine Θi.

4. Case Analysis

To verify the efectiveness of the methods, the degradation
data of fan slewing bearings obtained from the actual
measurement are used for analysis. Original data comes
from the acceleration data of fan slewing bearings pro-
vided by Yang et al. [29]. According to Lin et al. [30], the
material of the yaw and pitch bearing is 42CrMo. Te
sampling frequency of the sensor is 25.6 kHz. Te sam-
pling time and the sampling interval are 1 min and 20min,
respectively. By converting the number of sampling points
into the detection time, the curve of degradation data can
be obtained.

During the test, the a1 data, a2 data, and a3 data are
vibration data collected by three sensors. Te 3 groups of
data have a small initial amplitude, gentle growth in the
middle period, and a sharp increase in the later period.Tese
are consistent with the general trend of signal change during
device degradation. Terefore, the 3 groups of data are
selected for the experimental validation.Te 3 groups of data
are ftted (see Figure 2).Te characteristics of the 3 groups of

data are extracted separately, then the characteristics are
used for the parameter estimation. a1 characteristics value is
used to test for RUL estimation.

Te key to describing the RUL of slewing bearing is
the extraction of the feature of the degraded state. In
practice, it is difcult to obtain direct data to characterize
the operating state. Usually, indirect data are used for
analysis. Te vibration data monitored by the sensor is
used to characterize the running state in this study. At
present, the commonly used characteristics [31] of signals
include maximum, peak value, variance, root mean
square (RMS), and kurtosis (see Table 1). Te sensitivity
of each signal characteristic value to the change of fan
slewing bearings operating state is diferent. By calcu-
lating the correlation coefcient between each charac-
teristic value and the original signal, the characteristic
value characterizing the original information is selected.
According to equation (28), the correlation coefcient is
calculated, and the correlation coefcient of the diferent
signal characteristic values and the original signal is
shown (see Table 1).

Corr �


n
i�1 Xi − X(  xi − x( 

�������������������������


n
i�1 Xi − X( 

2
• 

n
i�1 xi − x( 

2
 . (28)
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Tese formulations are used to obtain the characteristic
value of the original signal at point i(i � 1, . . . , n). n is the
total number of data. xi represents the original data signal
value at point i, X is the mean of an characteristic value in
the time domain, Xi is a characteristic value of the original
signal at point i, and Δt is the sampling time.

Considering that the vibration signal obtained has the
efect of positive and negative values, the RMS is one of the
important indicators to characterize the degree of the signal,
which can better refect the change of slewing bearing
performance state, and it is easy to calculate. Terefore, the
RMS is only selected for feature extraction in this study.

Te characteristic values extracted from the 3 groups of
degradation data are shown (see Figure 3). Te curve
contains the degradation data of 12000min from the be-
ginning of the run-in stage to the completion of the fatigue
life test.

Te overall change trend of the whole curve after re-
moving individual singular points refects the corresponding
relationship between the wear of the monitoring points of

the experimental slewing bearings and the vibration energy.
Te whole curve reaches a stable phase at the beginning of
the run-in stages. After 9000min, the gear wear and the
amplitude increase signifcantly until failure occurs.

(1) When the monitoring time t is 0–1000min, the
slewing bearings are in the run-in stages.

(2) When the monitoring time t is 1000–9000min, the
slewing bearings are in the normal wear stage.

(3) When the monitoring time t is 9000–12000min, the
characteristic value increases dramatically. It can be
seen from the results after the fatigue failure of the
fnal slewing bearings that the wear intensifes until
the fault occurs at 12000min.

According to the degradation characteristics, when the
monitoring time t is 0.3 × 103 min, the equipment starts to
enter the degradation state. Terefore, the RUL estimation
begins at 0.3 × 103 min. In [8], many destructive experi-
ments are used to obtain the failure threshold. For the same
class of fan slewing bearing, the average value of the failure
threshold which is calculated based on the failure threshold
of the samples is 2.3 × 10− 3mm · s− 2.

5. Remaining Useful Life Estimation

5.1. PDF of Y(t) Degradation Incremental Simulation. To
verify the rationality of equation (4), Monte Carlo simulation
is used to ft the PDF of Y(t) model. Te a1 characteristic
value is used as test data to verify. Ten, y(tk) − y(tk−1) is
calculated, Δy(tk) � y(tk) − y(tk−1). Firstly, according to
Δy(tk), the occurrence frequency of Δy(tk) in each interval is
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Figure 2: Te 3 groups of data are collected. (a) Te a1 original signal. (b) Te a2 original signal. (c) Te a3 original signal.

Table 1: Time domain characteristic indexes and correlation
coefcient.

Feature Feature expression Corr
Maximum Xmax � max |xi|  0.87
Peak value Xp−p � max(xi) − min(xi) 0.82

Variance σ2 � 1/n
n
i�1(xi − X)2 0.86

RMS XRMS(Δt) �
���������
1/n 

n
i�1 x2

i


1.00

Kurtosis K � 1/n
n
i�1(xi − X)4/(1/n 

n
i�1 (xi − X)2)2 0.58
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used to replace the probability, and the histogram is obtained.
To facilitate the analysis, the histogram is represented by b1.
Secondly, the curve is ftted from the probability histogram,
which is represented by b2. Tirdly, the expectation and
variance of Δy(tk) are calculated as 0.0047 and 0.0021, re-
spectively. Te PDF curve obeying the Gaussian distribution
of expectation and variance is obtained, and the PDF curve is
represented by b3 (see Figure 4).

As can be seen from Figure 4, through comparative
analysis, b2 and b3 curves are close to each other. Terefore,
the ftted curves follow the Gaussian distribution, and
equation (4) proposed in this study can ft the degradation
process of slewing bearing.

5.2. Experimental Verifcation. To facilitate analysis, the
method proposed in this study is recorded as the M1 model
and the traditional nonlinear Wiener degradation model is
recorded as the M2 model [32]. Te random Wiener deg-
radation process of theM2model can be expressed as follows:

X(t) � X(0) + μt
r

+ σB(t). (29)

Te parameter that is needed to be estimated is Θ′ �
(μ, σ2, r). In [14, 23], the nonlinear Wiener model with
proportional hazard models is recorded as the M3 model.
Te RUL estimation of the fan slewing bearing begins at the
monitoring time t. In the early stage, the degradation data is
limited. To ensure the accuracy of the ftting efect, the a1, a2,

and a3 data are used for training the initial parameter es-
timation before the monitoring time t, Θ � (μα, σ2α, μm, σ2m,

σ2, r), and the accuracy of the model is improved. Te
remaining data of a1 data are selected for testing the RUL
estimation after the monitoring time t. Terefore, the
generalization abilities of the algorithms is actually assessed.
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Figure 3: Feature extraction. (a) a1 characteristic value. (b) a2 characteristic value. (c) a3 characteristic value.
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Figure 4: PDF of Monte Carlo simulation results.
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Te estimated parameter values at diferent monitoring
points are shown in Tables 2 and 3.

Meanwhile, to compare the performance of the M1
model, M2 model, and M3 model, the Akaike information
criterion (AIC) and Log-LF are introduced as the criteria to
evaluate the ftting degree of modeling methods. Te cal-
culation equation is as follows:

AIC � 2(c − ln (L(θ | Y))), (30)

where c is the number of unknown parameters in the model
and L(θ | Y) is the likelihood function value.

Te Log-LF can skew the observations when overftting
occurs. In contrast to the Log-LF model, the AIC tries to fnd
themost ftting model based on themodel complexity and the
correlation simultaneously. Tis would avoid overftting is-
sues, which are caused mainly by the high nonlinear and
complex data [33]. Terefore, in this study, the Log-LF and
AIC are calculated at 300min, 2000min, and 4000min, re-
spectively. And the Log-LF and AIC are used simultaneously
to validate the ftting accuracy of three models. Te AIC and
Log-LF comparison of the three models is shown in Table 4.

In Tables 2 and 3, it can be concluded that the pa-
rameters, Θ � (μα, σ2α, μm, σ2m, σ2, r), are constantly updated
with the increase of the monitoring time and degradation
data. At each time, the AIC value of the M1 model is less
than that of the M2 model and M3 model, and the Log-LF
value of the M1 model is greater than that of the M2 model
and M3 model. At the same time, the AIC value of the M3
model is less than that of the M2 model, and the Log-LF
value of the M3 model is greater than that of the M2 model.
Terefore, the ftting efect of the M1 model is better than
that of the M2 model and M3 model and the ftting efect of
the M2 model is the worst.

To verify the efectiveness of the M1 model in this study,
RUL estimation results at diferent observation times are
compared between theM1model, M2model, andM3model
(see Figure 5).

In Figure 5, the RUL estimation of the M1 model is
compared with the RUL estimation of the M2 model, the M3
model and the real RUL. At the same, compared with the M2
models without considering the efects of the covariates, the

RUL of theM1model andM3model considering the efects of
the covariates has a higher estimation accuracy. Te RUL
estimation of the M1 model introducing the additive hazard
model is more accurate than the RUL estimation of the M3
model introducing the proportional hazards model. Te RUL
estimation of the M2 model has the largest error. Te esti-
mated value of the M1 model that is proposed in this study is
closer to the real value and has higher accuracy. In the early
stage, less data is used, and the error is large. As the system
running time increases, more monitoring data will be ob-
tained, the estimated results will be more converged.Te curve
of RUL PDF becomes narrower and higher, and the variance
becomes smaller. Hence, the uncertainty of estimation be-
comes smaller, and RUL estimation results are more accurate.
It indicates that the RUL estimation of the M1 model is closer
to the real value, and it has the best estimation efect.

In addition, the accuracy of theM1model is verifed.Te
RUL estimation results of the M1 model at diferent times
are displayed in Figure 6. At the same time, it is compared
with the RUL estimation results of the M2 model in Figure 7
and the RUL estimation results of the M3 model in Figure 8.
From the results, it can be concluded that the RUL esti-
mation accuracy of slewing bearings is signifcantly im-
proved by using the M1 model method.

Te accuracy of the M1 method is illustrated further by
the mean square error (MSE) of RUL estimation (see Ta-
bles 5, 6, and Figure 9).

Table 2: Parameter estimation of the M1model and M2model.

Measurement time (×103min)
M1 Model M2 Model

μα σ2α μm σ2m σ2 r μ σ2 r

0.3 3.6591 0.5331 3.6826 0.4502 0.4316 0.8963 2.8723 0.9989 0.5510
2 1.9072 0.2033 1.8821 0.1752 0.2530 0.5853 1.4816 0.9561 0.6808
4 1.5077 0.1827 1.5075 0.1752 0.2461 0.2003 0.8764 0.8249 0.5099

Table 3: Parameter estimation of the M3 model.

Measurement time (×103min)
M3 Model

μα σ2α μm σ2m σ2 r

0.3 3.6030 0.4413 3.5734 0.4878 0.5089 1.1156
2 1.7030 0.0973 1.7034 0.1018 0.1019 0.1706
4 1.3530 0.0843 1.3534 0.0858 0.0879 0.1106

Table 4: AIC comparison between M1 model, M2 model, and M3
model.

Measurement time (×103min) Model log-LF AIC

0.3
M1 −109.8223 231.6446
M2 −131.4121 268.8242
M3 −117.8287 246.8738

2
M1 −537.4369 1086.8738
M2 −599.2191 1204.4382
M3 −551.4359 1114.8718

4
M1 −881.8127 1775.6254
M2 −985.0085 1976.0170
M3 −912.2839 1836.5678
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Figure 5: Continued.
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MSE(k) � 
∞

0
lk −lk 

2
fLk

lk Y1: k

 dlk. (31)

Equation (32) is a discrete form of equation (31). In the
experimental verifcation,MSE is calculated using equation (32).

MSE(k) �
1
n



n

k�1
lk − lk 

2
, (32)

where lk represents the estimated RUL at tk,lk represents the
real RUL at time tk, and n is the total number of predictions
at time tk.

According to equation (32), RUL MSE can be calculated
at each time. In Figure 9 and Tables 5 and 6, it can be
obtained from that when the observation time is
0.3×104min, the relative error and MSE are relatively large.
With increasing observation data, the relative error andMSE
gradually decrease. It indicates that RUL estimation is more
accurate. At time 11× 104min, since, the slewing bearings is
on the verge of failure, the relative error increases. But MSE
still tends to decrease. At the same time, compared to the
estimation results of the M2 model and the M3 model, the
M1 method has higher accuracy and can be efectively used
to ft the degenerative process of fan slewing bearing.

1.5

1

0.5

0

RU
L 

PD
F

10

5

0

t (10 3min)
RUL (103min)

0
5

10
15

20

-*
-o

M1 model RUL
real RUL

Figure 6: RUL estimation of the M1 model in a1 sample.
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Figure 5: Comparison of RUL between the M1 model, M2 model, and M3 model at diferent times. (a) tk � 0.3 RUL estimation. (b) tk � 2
RUL estimation. (c) tk � 4 RUL estimation. (d) tk � 6 RUL estimation. (e) tk � 7 RUL estimation. (f ) tk � 8 RUL estimation. (g) tk � 9 RUL
estimation. (h) tk � 10 RUL estimation. (i) tk � 11 RUL estimation.
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Figure 7: RUL estimation of the M2 model in a1 sample.
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Figure 8: RUL estimation of the M3 model in a1 sample.

Table 5: Error analysis of RUL estimation value of the M1model and M2 model.

Measurement time
(×104min)

M1 Model
(103mm·s−2)

Relative error
(%)

MSE
(10−3)

M2 Model
(103mm·s−2)

Relative error
(%)

Real values
(103mm·s−2)

MSE
(10−3)

0.3 7 40 22.09 3.55 70 11.7 66.4
2 6.6 34 11.56 4.24 58 10 33.2
4 5.23 35 7.67 3.51 56 8 20.2
6 4.77 21 1.51 3.14 48 6 8.18
7 3.89 22 1.23 2.68 46 5 5.38
8 3.16 21 0.71 2.31 42 4 2.86
9 2.55 15 0.20 2.01 33 3 0.98
10 1.79 11 0.04 1.45 28 2 0.30
11 0.83 17 0.03 0.63 37 1 0.14
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To further illustrate the efectiveness of the M1 model in
predicting the RUL of fan slewing bearing, a predictionmodel
of fan slewing bearing based on convolutional neural net-
works (CNN) is established and compared with the prediction
method proposed in this paper. Firstly, in the fatigue test of
slewing bearing, the degenerate state characteristic value
before the monitoring time t is selected as the input vector of
network training. Secondly, the three-layer CNN neural
network is established and used to train data. Finally, the
prediction curve of the degradation state at the current time is
obtained by using the trained network (see Figure 10).

Te predicted value is compared with the actual value
through a simulation example (see Figure 10). Compared
with diferent monitoring points at 9, 10, and 11, with the
increase of training data, the error of RUL of the CNN
model decreases gradually. In Figure 10(c), at the mon-
itoring time 11 × 103 min, the average failure time of the
slewing bearing predicted by the CNN model is 12.28 ×

103 min. Compared with the CNN model, the average
failure time predicted by the M1 model is 11.78 × 103 min,
and the average actual failure time of the slewing bearing
is 12 × 103 min. It can be seen that at the same monitoring

Table 6: Error analysis of RUL estimation value of the M1 model and M3 model.

Measurement time
(×104min)

M1 Model
(103mm·s−2)

Relative error
(%)

MSE
(10−3)

M3 Model
(103mm·s−2)

Relative error
(%)

Real values
(103mm·s−2)

MSE
(10−3)

0.3 7 40 22.09 5.43 54 11.7 39.31
2 6.6 34 11.56 5.13 49 10 23.72
4 5.23 35 7.67 3.87 52 8 17.06
6 4.77 21 1.51 3.57 41 6 5.90
7 3.89 22 1.23 3.04 39 5 3.84
8 3.16 21 0.71 2.57 36 4 2.04
9 2.55 15 0.20 2.22 26 3 0.61
10 1.79 11 0.04 1.68 16 2 0.10
11 0.83 17 0.03 0.73 27 1 0.07
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Figure 9: RUL MSE comparison.
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point, the prediction accuracy of RUL based on the M1
model proposed in this paper is higher than that using the
CNN model.

6. Conclusions

For the nonlinear and nonmonotonic nature of the degra-
dation process of the fan slewing bearing, and to improve the
accuracy of RUL estimation of the fan slewing bearing, the
nonlinear Wiener process is selected to describe the deg-
radation process of the fan slewing bearing. Ten, at the
same time, the efect of the external environment acting on
the degradation of fan slewing bearing is analyzed. Tere-
fore, the stress efect of the external environment (such as
wind speed and change of wind direction) acting on the

slewing bearing through the blade propeller, which is used as
a random covariate, is introduced into the nonlinear Wiener
degradation process in the form of additive hazard model.
Meanwhile, an approximate expression is derived for RUL
PDF based on the frst-reach time by considering the ran-
dom variation in the drift coefcients, the individual vari-
ance, and the random variation of the covariate. Te
parameters of the degenerate models,
Θ � (μα, δ2α, μm, δ2m, δ2, r), are estimated by maximum like-
lihood estimation using vibration data. In this study, the a1
sample data are tested for RUL. It is shown that as the
observation time and observation data increases, the pa-
rameters, Θ � (μα, δ2α, μm, δ2m, δ2, r), are constantly updated,
and the error of RUL estimation results gradually decreases.
Compared with the nonlinear Wiener model that does not
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Figure 10: Te degenerate states of the CNN model at diferent times. (a) tk � 9. (b) tk � 10. (c) tk � 11.
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consider the efect of the external environment, and the
nonlinear Wiener model with proportional hazard models,
the RUL estimation results of the proposed method have
high accuracy and small relative errors and MSE. Terefore,
the proposed method improves the reliability of the model
estimation, and it can efectively be used to model the de-
generative process of fan slewing bearing.
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