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A multi-state reliability analysis model su�ering from a dependent competing failure process is developed in this study, where the
soft failure is described by general nonlinearity random e�ect. Wiener degradation process with measurement error and the hard
failure is caused by random shock. Considering that the shock process not only may cause abrupt damage but also can accelerate
degradation, there are some correlations between soft failure and hard failure. Based on the proposed new model, the multi-state
functions are obtained under the cumulative shock model and the extreme shock model, and the system state probabilities are
given under the di�erent degradation state points. e fatigue cracks growth data example andMEMS oscillator example are given
to demonstrate the proposed newmodel. At last, some sensitivity analyses are given to illustrate the in�uence of parameters on the
state probability and the system reliability.

1. Introduction

In many actual engineering environments, system reliability
is not only related to the service time but also related to the
system state, such as humidity, wear, random shock, erosion,
and vibration, any of which can lead to system degradation.
Considering the impact of di�erent degrees of degradation,
the systems may exist in lots of di�erent medial states within
the life cycle, and di�erent degradation states can perform
various distinctive tasks. erefore, the multi-state reliability
modeling and calculation of the complex degradation system
can provide an e�ective technical approach to the reliability
theory.

 e concept of multi-state reliability is de�ned as a
complex system with a series of performance levels in its life
cycle, including in perfect function state, intermediate
unction state, and complete failure state [1]. Many study
methods are used to deal with multi-state reliability mod-
eling, such as the multi-state RBD method [2], Markov
process method [3], semi-Markov process method [4], and
some other related research about the multi-state degra-
dation reliability modeling can be found in Refs [5–9].

In real circumstances, except for performance degra-
dation, the system components are often subject to di�erent
random shocks. We know that those random shocks may
bring a faster degradation rate, resulting in the system’s
performance degradation level from one state to another.
 ere are some papers focusing on the random shock to the
multi-state reliability problem. For example, Li and Pham
[10] developed a generalized condition-based maintenance
model subject to degradation and shock, Eryilmaz [11]
studied the assessment of the multi-state shock model;
Segovia and Labeau [12] studied a multi-state reliability
model subject to the wear-out process and shock process; Li
and Pham [13] studied a multi-state failure processes reli-
ability model su�ering from the degradation and shocks. Lin
et al. [14] studied the assessment of the multi-state system
under di�erent random shocks; Pham et al. [15] presented a
model for predicting the availability and mean a lifetime of
multistage degraded systems with partial repairs.

In practice engineering applications, because the shock
process not only may cause abrupt damage but also can
accelerate the degradation, there are some correlations be-
tweendegradation failure and shock failure. Somemulti-state
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reliability analyses for the system subject to the dependent
competing failure process (DCFP) model have been studied
[16–26], suchasWang et al. [23] constructed theDCFPmodel
by using multi-state system reliability theory and line deg-
radation path; Jiang et al. [24] constructed a multi-state re-
liability analysis for DCFP with line degradation process by
using delay time theory; Li et al. [25] and Wang et al. [26]
constructed reliabilitymodel formulti-state systems by using
shock model and normal distribution model.

Considering that the nonlinearity, uncertainty, and in-
dividual differences exist extensively in the practice degra-
dation process, see Refs [27–30].)erefore, somemulti-state
complex degradation system reliability assessment models
suffering from the DCFP model are proposed in this paper,
where the degradation failure process is described by a
general nonlinear random effect. Wiener degradation pro-
cess with measurement errors and the abrupt failure process
is described by two different shock models. Based on the
proposed newmodel, the multi-state reliability functions are
given, and the system state probabilities are obtained under
the different degradation state points. At last, the fatigue
cracks growth data example and MEMS oscillator example
are given to demonstrate the proposed new model.

2. Model Descriptions

As shown in Figures 1 and 2, a complex system may fail due
to the DCFP: soft failure caused by continuous degradation
such as wear, corrosion, humidity, wear, and erosion, and
hard failure caused by the stress from the shock process, such
as 4random shock, vibration, and fracture. In this paper, the
soft failure process can be described as nature degradation
process and the additional abrupt increment by the shock
loads; the soft failure occurs when the total degradation Xs(t)
is above its threshold level H, where the total degradation
volume contains the nature degradation and additional
abrupt increment by the shock load. )e hard failure can be
affected by the same shock process, and hard failure happens
when the shock magnitude exceeds its threshold level D. Let
Yi and Wi (i� 1, 2, 3, ···) denote the abrupt damage size and
the magnitude of ith shock load, respectively. )ese two
types of failure processes are dependent because they suffer
the same shock. In this paper, the cumulative shock model
and the extreme shock model are used, and each shock can
bring a change to the system state.

3. System Reliability Assessment Based on the
Multi-State Theory

3.1. Shocking Process Analysis. As we know, shock is a
significant reason for system failure. In practical running
environments, many factors could bring all kinds of shocks
to systems, and those factors may come from the external
environment, such as sudden or unexpected usage loads.
Suppose that the arrives of random shocks follows a Poisson
distribution with parameter λ, then we have

P N(t) � i{ } �
(λt)

i

i!
e

−λt
, i � 0, 1, 2, . . . , (1)

where, N(t) is the shock number in (0, t]
From Figure 2, suppose T is the complex system hard

failure time and D is the hard threshold value, under the
extreme shock model, we can get

P(t≤T) � P W1 <D, W2 <D, . . . , WN(t) <D . (2)

Suppose that magnitudes of the shock Wi ∼ N(μw, σ2w),
then we can get

P(t≤T) � Φ
D − μw

σw

  

N(t)

. (3)
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Figure 1: Soft failure process.

D

W

W3

W2

W1

t1 t2 t3 t

Figure 2: Hard failure process.
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Similarly, under the cumulative shock model, we can get

P(t≤T) � P W1 + W2 + · · · + WN(t) <D . (4)

And we can get

P(t≤T) � Φ
D − N(t)μw�����

N(t)


σw

  . (5)

3.2. Degradation Process Analysis. Considering that the
dynamics characterizes the random uncertainty, the non-
linearity, the uncertainty of measurement, and individual
differences exist extensively in the practice degradation
process, a general nonlinearity random effect. Wiener
process with measurement error model M0 is expressed as
follows:

X(t) � X(0) + βΛ t, c1(  + σBB Λ t, c2( (  + ε,

β ∼ N μβ, σ2β ,

⎧⎨

⎩ (6)

where, the initial value X(0) is a constant, the Λ(t, c1) and
Λ(t, c2) are the time scale, the drift degradation rate β is a
random effect parameter, the diffusion coefficient σB is the
fixed effect parameter, B(·) is the standard Brownian mo-
tion, ε is the measurement error and ε ∼ N(0, σ2ε ). Generally,
we suppose X(0) � 0; if not, we can use a transform
X′(t) � X(t) − X(0).

If σε � 0, modelM0 reduces a random effect modelM1 as
follows:

X(t) � βΛ t, c1(  + σBB Λ t, c2( ( ,

β ∼ N μβ, σ2β .

⎧⎨

⎩ (7)

If σβ � 0, the modelM0 reduces a fixed effect model with
measurement error M2 as follows:

X(t) � βΛ t, c1(  + σBB Λ t, c2( (  + ε. (8)

If σβ � 0 and σε � 0, the model M0 reduces a fixed effect
model M3 as follows:

X(t) � βΛ t, c1(  + σBB Λ t, c2( ( . (9)

If σβ � 0, σε � 0, and c1 � c2 � c, the model M0 reduces
a fixed effect model M4 as follows:

X(t) � βΛ(t, c) + σBB(Λ(t, c)). (10)
By using a time-scale transformation, the (10) can be can

be transformed into a linear Wiener process model.

From (6), we can obtain

X(t) ∼ N μβΛ t, c1( , σ2β Λ t, c1( ( 
2

+ σ2BΛ t, c2(  + σ2ε .

(11)

In this section, suppose that each shock load will cause
additional abrupt degradation. Let the abrupt degradation be
measured sizes as Y1, Y2, . . .  and S(t) be the total damage
during (0, t], then, we can get

S(t) �


N(t)

i�1
Yi, if  N(t)> 0,

0, if  N(t) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

)en, we can obtain

XS(t) � X(t) + S(t). (13)

3.3. SystemReliabilityAnalysis. We know that the shocks not
only can reduce the system performance directly but also can
bring a faster degradation rate, resulting in the system’s
performance level from one state to another. )erefore, we
can describe the state transition chart as in Figure 3.

3.3.1. Case I: Extreme Shock Modeling. From the system
assumptions, we know that each shock can bring a change in
the system state. )at is to say, if the ith (i� 1, 2, . . ., n)
random shock occurs, the system state will divert from state
i− 1 to state i as the solid line shown in Figure 3. In addition,
in the actual arithmetic process, the dotted line expresses the
transition path from state 0 to state j in Figure 3.

)erefore, under the extreme shock, the probability at
state j can be denoted as follows:

P10 � Pr N(t) � 0, Xs(t)<H(  � Pr(N(t) � 0,

X(t) <H) � Pr(N(t) � 0)Pr(X(t) <H),
(14)

P11 � Pr N(t) � 1, Xs(t)<H, W1 <D( 

� Pr N(t) � 1, X(t) + S(t)<H, W1 <D( 

� Pr(N(t) � 1)Pr X(t) + Y1 <H( Pr W1 <D( ,

(15)

……………start State 0 State 1 State 2 State n
1st
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2nd

shock
nth
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Figure 3: State transition charts of the system.
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P12 � Pr N(t) � 2, Xs(t)<H, W1 <D, W2 <D( 

� Pr N(t) � 2, X(t) + S(t)<H, W1 <D, W2 <D( 

� Pr(N(t) � n)Pr X(t) + Y1 + Y2 <H( Pr

W1 <D( Pr W2 <D( ,

(16)

P1n � Pr N(t) � n, Xs(t)<H, W1 <D, W2 <D,(

· · · , Wn <D,  � Pr(N(t) � n)Pr

X(t) + Y1 + Y2 + · · · + Yn <H( Pr W1 <D( 

Pr W2 <D(  · · · Pr Wn <D( 

� Pr(N(t) � n)Pr X(t) + 

N(t)

i�1
Yi <H⎛⎝ ⎞⎠

Pr W1 <D(  
N(t)

.

(17)

)en, the system reliability can be calculated as follows:

R � 
n

i�1
P1i. (18)

Suppose that Yi denotes the abrupt damage size with the
distribution as follows:

Yi ∼ N μY, σ2Y i � 1, 2, . . . . (19)

)en, we can get the following:

S(t) � 
n

i�1
Yi ∼ N nμY, nσ2Y . (20)

By using (11) and (20), we can get the following:

X(t) + S(t) ∼ N μβΛ t, c1(  + nμY, σ2β Λ t, c1( ( 
2



+ σ2BΛ t, c2(  + σ2ε + nσ2Y).
(21)

)en, we can get the following:
P1n � Pr N(t) � n, Xs(t)<H, W1 <D, W2 <D, · · · ,(

Wn <D, ) � Pr(N(t) � n)Pr X(t) + 
n

i�1
Yi <H⎛⎝ ⎞⎠

Pr W1 <D(  
n

�
exp (−λt)(λt)

n

n!

Φ
H − μβΛ t, c1(  + nμY 

������������������������������
σ2β Λ t, c1( ( 

2
+ σ2BΛ t, c2(  + σ2ε + iσ2Y

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

Φ
D − μW

σW

  

n

.

(22)

)en, we can get the following:

R � 
n

i�1
P1i � Φ

H − μβΛ t, c1( 
��������������������������
σ2β Λ t, c1( ( 

2
+ σ2BΛ t, c2(  + σ2ε

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ exp (−λt) + 
n

i�1
Φ

D − μW

σW

  

i

Φ
H − μβΛ t, c1(  + iμY 

������������������������������
σ2β Λ t, c1( ( 

2
+ σ2BΛ t, c2(  + σ2ε + iσ2Y

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
exp (−λt)(λt)

i

i!
.

(23)

3.3.2. Case II: Cumulative Shock Modeling. Similarly, under
the cumulative shock, the probability at state j can be
denoted as follows:

P20 � Pr N(t) � 0, Xs(t)<H(  � Pr(N(t) � 0)Pr(X(t) <H), (24)

P21 � Pr N(t) � 1, Xs(t)<H, W1 <D( 

� Pr N(t) � 1, X(t) + Y1 <H( Pr W1 <D( 

� Pr(N(t) � n)Pr X(t) + Y1 + Y2 <H( Pr W1 + W2 <D( 

� exp (−λt)(λt)Φ
H − μβΛ t, c1(  + 2μY 

�������������������������������
σ2β Λ t, c1( ( 

2
+ σ2BΛ t, c2(  + σ2ε + 2σ2Y

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ × Φ
D − 2μW�

2
√

σW

  ,

(25)
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P22 � Pr N(t) � 2, Xs(t)<H, W1 + W2 <D( ,

� Pr N(t) � 2, X(t) + S(t)<H, W1 + W2 <D( ,

� Pr(N(t) � n)Pr X(t) + Y1 + Y2 <H( Pr W1 + W2 <D( ,

�
exp (−λt)(λt)

2

2
Φ

H − μβΛ t, c1(  + 2μY 
������������������������������
σ2β Λ t, c1( ( 

2
+ σ2BΛ t, c2(  + σ2ε + σ2Y

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ × Φ
D − 2μW

σW

  ,

(26)

P2n � Pr N(t) � n, Xs(t)<H, W1 + W2 + · · · + Wn <D( 

� Pr(N(t) � n)Pr X(t) + Y1 + Y2 + · · · + Yn <H(  · Pr W1 + W2 + Wn <D( 

� Pr(N(t) � n)Pr X(t) + 

N(t)

i�1
Yi <H⎛⎝ ⎞⎠ × Pr 

N(t)

i�1
Wi <D⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

�
exp (−λt)(λt)

n

n!
Φ

H − μβΛ t, c1(  + nμY 
�������������������������������
σ2β Λ t, c1( ( 

2
+ σ2BΛ t, c2(  + σ2ε + nσ2Y

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ × Φ
D − iμW�

n
√

σW

  .

(27)

)en, we can get the following:

R � 
n

i�1
P2i � 

n

i�1

exp (−λt)(λt)
i

i!
Φ

H − μβΛ t, c1(  + iμY 
������������������������������
σ2β Λ t, c1( ( 

2
+ σ2BΛ t, c2(  + σ2ε + iσ2Y

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ Φ
D − iμW�

i
√

σW

  . (28)

4. Numerical Example

4.1. An Nonlinear Wiener Process about the Fatigue Crack
Growth Data. In this section, fatigue crack growth data sets
[23, 25, 26] are used to verify the proposed models and
methods. )is data set consists of 12 experimental samples,
and Table 1 lists all the data set information. In order to
verify the proposed model, relevant information about the
shock process needs to be given. In this paper, reasonable
assumptions are made for the information on the shock
process based on real data characteristics and literature.

From Table 1 and Refs [23, 25, 26], we can find the
degradation path of the fatigue crack growth, which is
nonlinear. )erefore, the nonlinear degradation models can
be used to describe the degradation path. In order to use the
model M0, M1, M2, M3, and M4, we use a transformation
X′(t) � X(t) − 0.9 to deal with the fatigue crack growth data
and letΛ(t) � Λ(t, c) � tc in the modelM0,M1,M2,M3, and
M4.

We know that the performance of the degradationmodel
depends strongly on the appropriateness of the model de-
scribing a product’s degradation path. In order to compare
the performances of some alternative models, Spiegelhalter
et al. [31] proposed the deviance information criterion (DIC)
to select the best-fitting model by using the Bayesian ap-
proach, and a smaller value of DIC indicates a better model.
Based on the models M0, M1, M2, M3, and M4, by using the
MCMCmethod, we can get the value of DIC under different
models as shown in Table 2.

From Table 2, we can find the modelM0 with the lowest
values of DIC, therefore, modelM0 is the best-fitting model.
)en, by using the MCMC method, we can get the esti-
mation of unknown parameters under the model M0 as
shown in Table 3.

)en, similarly to Refs [25, 26], we suppose
Wi∼N(0.06,0.25), Yi∼N(0.04,0.15), H�2.2, D�2.0, and
λ�1.0×10−5. According to Eqs.(24)–(27), under the cumu-
lative shock, the probability for the component in the
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Table 1: Fatigue crack growth data from test samples.

Test sample
Cycle/104

0 1 2 3 4 5 6 7 8 9 10 11 12
1 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72
2 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34 1.42 1.52 1.67
3 0.90 0.93 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65
4 0.90 0.93 0.97 1.00 1.03 1.07 1.10 1.16 1.22 1.29 1.37 1.48 1.64
5 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26 1.31 1.40 1.52
6 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.21 1.27 1.33 1.40 1.49
7 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27 1.33 1.40 1.49
8 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.11 1.16 1.22 1.26 1.33 1.40
9 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20 1.24 1.32 1.38
10 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35
11 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.20 1.25 1.31
12 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29

Table 2: Comparison of different models.

Model M0 M1 M2 M3 M4

DIC −784.3 −779.5 −755.1 −752.9 −733
Ranking 1 2 3 4 5

Table 3: Estimation results of the unknown parameters.

Parameter Mean Standard error MC error 95% HPD interval
μβ 0.020020 0.002668 1.084E-4 (0.014280, 0.02499)
σβ 0.006386 0.001559 1.667 E-5 (0.004103, 0.01021)
σB 0.004968 0.001082 5.871 E-5 (0.003388, 0.00768)
c1 1.353000 0.046430 0.002557 (1.278000, 1.47100)
c2 2.042000 0.194400 0.010460 (1.620000, 2.38800)
Ε 6.554 E-9 4.958 E-8 2.988 E-9 (0.0000, 4.818 E-8)

State = 0
State = 1
State = 2

State = 3
State = 4

2 4 6 8 10 12 14 16 18 200
Cycle 
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Figure 4: Probability curves in different states.
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Figure 5: Sensitivity analysis of state 2 on λ.
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probability of being in state 0, 1, 2, 3, and 4 can be calculated
as follows:

P0 � exp −1.0 × 10− 5
t Φ

H − 0.02002 × t
1.353

����������������������������������������������

0.006386 × t
1.353

 
2

+ 0.0049862 × t
2.042

+ 6.554 × 10− 9
 

2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

P1 � exp −1.0 × 10− 5
t  1.0 × 10− 5

t  Φ
D − 0.06

0.5
  

×Φ
H − 0.02002 × t

1.353
− 0.04

����������������������������������������������������

0.006386 × t
1.353

 
2

+ 0.0049862 × t
2.042

+ 6.554 × 10− 9
 

2
+ 0.15

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

P2 �
exp −1.0 × 10− 5

t  1.0 × 10− 5
t 

2

2
Φ

D − 2 × 0.06
�
2

√
× 0.5

  

×Φ
H − 0.02002 × t

1.353
− 2 × 0.04

�������������������������������������������������������

0.006386 × t
1.353

 
2

+ 0.0049862 × t
2.042

+ 6.554 × 10− 9
 

2
+ 2 × 0.15

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

P3 �
exp −1.0 × 10− 5

t  1.0 × 10− 5
t 

3

6
Φ

D − 3 × 0.06
�
3

√
× 0.5

  

×Φ
H − 0.02002 × t

1.353
− 3 × 0.04

�������������������������������������������������������

0.006386 × t
1.353

 
2

+ 0.0049862 × t
2.042

+ 6.554 × 10− 9
 

2
+ 3 × 0.15

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

P4 �
exp −1.0 × 10− 5

t  1.0 × 10− 5
t 

4

24
Φ

D − 4 × 0.06
�
4

√
× 0.5

  ,

×Φ
H − 0.02002 × t

1.353
− 4 × 0.04

�������������������������������������������������������

0.006386 × t
1.353

 
2

+ 0.0049862 × t
2.042

+ 6.554 × 10− 9
 

2
+ 4 × 0.15

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(29)

If we let the vertical axis denote the probability of the
system performance, and the horizontal axis denotes time.
)en, Figure 4 shows the probability curve in every state i
(i� 0, 1, 2, 3, 4) as a function of time t. From Figure 4, we
know that when the system reaches state 2, the probability of
the system performance is approximately 0.26 at 2×104
cycle. Moreover, with the increase of time and the number of
shocks, we can find the probabilities of the system perfor-
mance gradually decreasing.

In order to analyze the probability of the system per-
formance better in the different states, the sensitivity analysis
method is used in this paper. Take state 2 as an example, the
sensitivity analysis about the different parameters is plotted
in Figures 5–7. From Figures 5–7, we can find that the failure
threshold H(or D) and the arrivals rate λ of random shocks
all have an important effect on the probability of the system
performance.

In addition, based on (27), the system reliability can be
obtained as follows:

R � 
n

i�1
Pi �Φ

H −0.01835× t
1.396

�����������������������������

0.00639× t
1.396

 
2

+0.006412 × t
1.851

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

· exp −1.0×10−5
t  + 

n

i�1
Φ

D −0.06
0.5

  
i

·Φ
H −0.01476× t

1.491
− i ×0.04

������������������������������������

0.00639× t
1.396

 
2

+0.006412 × t
1.851

+ i ×0.15
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

×
exp −1.0×10−5

t  −1.0×10−5
t 

i

i!
.

(30)

Similarly, according to the parameter estimation results
in Table 3, the solid curve of the system reliability R(t) based
on the nonlinear random effect Wiener process is plotted in
Figure 8. From Figure 8, we can find that the reliability of the
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system almost keeps 1 when t< 0.8×104 cycles, and when
t> 0.8×104 cycles, the reliability decline rapidly. )e dotted
curve of the system reliability R(t) based on the normal
process in Ref [25] is also plotted in Figure 8. Compared with
two different degradation models, the normal process as-
sumption underestimates the system’s reliability.

)e sensitivity analysis for the system reliability R(t)
based on the nonlinear random effect Wiener process about
the different parameters is plotted in Figures 9–11. From
Figures 9–11, we can find that the failure threshold H (or D)
and the arrivals rate λ of random shocks all have an

important effect on the probability of the system perfor-
mance. We can also find that the reliability curves shift to the
left when the shock arrival rate λ increases from 1.2 to 1.8,
but the reliability curves shift to the right when the failure
thresholdH increases from 2.0 to 2.2 orD increases from 1.8
to 1.2.

4.2. A Real Example of MEMS Oscillators. A MEMS oscil-
lator is a time device and is widely used in electronic
systems, transfer systems, and measure systems. )e
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Figure 6: Sensitivity analysis of (P)2 on (D).
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Figure 7: Sensitivity analysis of (P)2 on (H).
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Figure 8: )e curve of system reliability R(t).

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle 

H = 2.0
H = 2.1
H = 2.2

Re
lia

bi
lit

y

Figure 9: Sensitivity analysis of R(t) on H.
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electronic system is a typical system which is subjected to
both mechanical and voltage shocks. As we know, on
account of operating losses, the mass of MEMS oscillators
will decrease over time, and the loss of mass can increase
the frequency of vibration. In this paper, similarly to Ref
[32, 33], we use a fixed effect Wiener processM4 as shown
in (10) to describe the nature process and use the Poisson
process in (1) to describe the shock process. )e pa-
rameters of the Wiener process and Poisson shock process
are shown in Table 4.

Similarly, according to Eqs.(14)–(17), under the ex-
treme shock, the probability of the component in the
probability of being in state 0, 1, 2, 3, and 4 can be cal-
culated as follows:

P0 �exp(−0.013t)Φ
H−0.9×t

�����
202×t

 ,

P1 �exp(−0.013t)(0.013t)Φ
H−0.9×t−400

����������
202×t+152

  Φ
D−72.6

6.3
  ,

P2 �
exp(−0.013t)(0.013t)

2

2
Φ

H−0.9×t−2×400
������������
202×t+2×152

  Φ
D−72.6

6.3
  

2
,

P3 �
exp(−0.013t)(0.013t)

3

6
Φ

H−0.9×t−3×400
������������
202×t+3×152

  Φ
D−72.6

6.3
  

3
,

P4 �
exp(−0.013t)(0.013t)

4

24
Φ

H−0.9×t−4×400
������������
202×t+4×152

  Φ
D−72.6

6.3
  

4
.

(31)

Figure 12 shows the probability curve of MEMS oscil-
lator in every state i (i� 0, 1, 2, 3, 4) as a function of time t.
From Figure 12, we know that when the system reaches state
4, the probability of the system performance is

approximately 0.195 at 300 months. Take state 4 as an ex-
ample, the sensitivity analysis about the different parameters
is plotted in Figures 13–15. From Figures 13–15, we can find
that the failure threshold H(or D) and the arrivals rate λ of
random shocks all have an important effect on the proba-
bility of the system performance.

)en, based on (23), the reliability of the system which is
the total probability of different states can be obtained as
follows:

R � 

N(t)

i�1
Pi � Φ

H − 0.9 × t
������
202 × t

  exp (−0.013t)

+ 
m

i�1
Φ

D − 72.6
6.3

  
i

Φ
H − 0.9 × t − 3 × 400

��������������
202 × t + 3 × 152

 

×
exp −1.0 × 10− 5

t  −1.0 × 10− 5
t 

j

j!
.

(32)
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Figure 10: Sensitivity analysis of R(t) on D.
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Figure 11: Sensitivity analysis of R(t) on λ.

Table 4: Parameter values of the Wiener process and Poisson
process.

Parameter Values Sources
H 4100 Ref [32, 33]
D 92 Ref [32, 33]
Λ 0.013 Ref [32, 33]
Μ 0.9 Ref [32, 33]
Σ 20 Ref [32, 33]
μW 72.6 Ref [32, 33]
σW 6.3 Ref [32, 33]
μY 400 Ref [32, 33]
σY 15 Ref [32, 33]
c1� c2 1.0 Ref [32, 33]
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Figure 12: Probability curves in different states.
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Figure 13: Sensitivity analysis of (P)4 on (H).
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Figure 14: Sensitivity analysis of (P)4 on (D).
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Figure 15: Sensitivity analysis of (P)4 on λ.
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Similarly, the curve of the system reliability R(t) is plotted
in Figure 16 by using the estimation results in Table 4. From
Figure 16, we can find that the reliability of the system almost
keeps 1 when t< 230 months, and when t> 230 months, the
reliability declines rapidly. )e sensitivity analyses about the
different parameters are plotted in Figures 17–19. From
Figures 17–19, we can find that the reliability curves shift to
the right when parameterH increases from 3100 to 4100 orD
increases from 84 to 92, but the reliability curves shift to the
left when the shock arrival rate λ increases from 0.013 to
0.033.

5. Conclusions

)is paper studied a multi-state complex degradation system
reliability assessment model suffering from the DCFP model
with nonlinear random effect Wiener process with mea-
surement error and random shocks. Different from the
traditional multi-state system model, the transmission
time from state i to i+1 is a random variable. By using the
multi-state system reliability theory, the system state
probabilities are obtained under the different degradation
state points, and then the system reliability is obtained. Two

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 t 

Re
lia

bi
lit

y

Figure 16: )e curve of the system reliability R(t).
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Figure 17: Sensitivity analysis of R(t) on H.
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Figure 18: Sensitivity analysis of R(t) on D.
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Figure 19: Sensitivity analysis of R(t) on λ.
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numerical examples of fatigue crack growth and MEMS
oscillators are given to illustrate the model and method. By
analyzing the influence of different parameters on the state
probability and the system reliability, some sensitivity an-
alyses are obtained. In future research, some other stochastic
processes and shock models are worth investigating.
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