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Mechanical vibration constitutes a valuable cue for performing fault diagnosis as it is directly related to the transient regime of
rolling machinery.'is study establishes a multidomain feature fusion network (MFFN) to extract and fuse multidomain features
through a novel multistream architecture. 'ree primary features are simultaneously extracted from the time, frequency, and
time-frequency domains. 'en, highly representative features are extracted via three convolutional branches in one- or two-
dimensional spaces. A novel squeeze-connection-excitation (SCE) module is proposed to adaptively fuse features in the three
domains. 'e advantage offered by the proposed method is that it can leverage cues from the raw vibration signal, resulting in
accurate fault diagnosis. Experimental results comprehensively demonstrate and analyze the high accuracy and generalization
achieved by this MFFN-based fault diagnosis method.

1. Introduction

Rolling machinery is a foundational element in industrial
infrastructures. Machinery faults are the main factors that
significantly affect equipment and production safety. In-
telligent fault diagnosis of rolling machinery has been a topic
of interest in studies concerning vibration-based health
monitoring of mechanical systems [1]. Previously, fault
diagnosis was realized through a combination of traditional
signal processing methods, such as Fourier and wavelet
transforms (WTs), and shallow learning techniques, such as
support vector machine (SVM) [2] and Bayes classifiers [3].
In general, these methods are physically analyzable; how-
ever, they provide an inadequate representation of faults,
which may result in a low diagnosis accuracy. 'is problem
has motivated the development of deep learning-based
methods, such as deep belief networks (DBNs) [4], stacked
autoencoders (SAEs) [5], convolutional neural networks
(CNNs) [6], and long short-term memory (LSTM) [7]. 'e
high representability offered by deep learning methods
significantly improves fault diagnosis accuracy.

Recently, multistream architectures are being used for
fault diagnosis. In contrast to single-stream architectures,
multistream architectures can represent faults in terms of
multiple aspects; thus, they can achieve further enhance-
ments in the representability of intrinsic characteristics of
machinery faults. 'is property may further improve the
performance of fault diagnosis methods. However, current
multistream architectures primarily focus on the multiscale
characteristic of raw vibration signals [8] and ignore the
various physical properties observed in multiple domains. A
novel multistream architecture that can extract and fuse
multidomain features is desirable to facilitate accurate fault
diagnosis.

'is study proposes a novel multidomain feature fusion
network (MFFN) for fault diagnosis. To this end, three one-
dimensional (1D) and two-dimensional (2D) convolutional
streams are designed and combined to construct the mul-
tistream architecture. Two 1D streams manage the data in
the time and frequency domains, while a 2D stream extracts
the time-frequency feature. At the backend joint, three
representative features are fused by the squeeze-connection-
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excitation (SCE) module. Finally, the fused features are used
for fault classification.'e contributions of this study to fault
diagnosis include the following:

(i) A novel multistream architecture that can process
multidomain features in an organized and com-
prehensive manner

(ii) A novel SCE module that can adaptively fuse
multidomain features

(iii) A novel feature type that offers high representability
of fault patterns and improves the decision-making
capabilities of fault diagnosis

'e remainder of this paper is organized as follows.
Section 2 reviews related works. 'e overall framework of
MFFN is presented in Section 3. Section 4 describes the
proposed MFFN-based fault recognition method. Experi-
mental comparisons and analysis are discussed in Section 5.
Section 6 provides the summary and conclusions.

2. Related Works

Various fault diagnosis methods have been proposed to
classify faults in mechanical systems. 'ese methods gen-
erally collect vibration signals as the source data because
vibrations directly relate to the transient state of running
elements. Various existing shallow learning models, such as
the hidden Markov model [9], k-nearest neighbors [10], and
SVMs [11], have been applied in fault classification. Re-
cently, deep learning-based methods have demonstrated
excellent performance in fault diagnosis. 'e advantage
afforded by deep learning methods is the high represent-
ability of faults. For example, the DBN model [4], which is
a typical probabilistic generative model, has been introduced
to solve the problems of nonlinear dynamics and discrete
failure patterns. However, experimental results have
revealed that DBN architectures are susceptible to over-
fitting. 'e SAE method, which is a popular deep learning-
based fault diagnosis method, can incrementally learn new
samples without a retraining process [5].

Another key issue in fault diagnosis is that feature ex-
traction. Previously, temporal and frequency analyses were
the two main approaches toward fault feature extraction
[12]. However, they cannot represent the temporal variation
of a vibration signal accurately [13]. 'is problem has been
solved via methods including short-time Fourier transforms
[13], Wigner Ville distributions [14], and WTs [15]. Among
these, WT is the most practical because its relaxed structure
can decompose signals with varying temporal resolutions.
Moreover, WT can produce 2D feature maps such that
successful image classification methods can be transformed
into fault diagnosis methods.

Deep learning-based fault diagnosis has attracted con-
siderable attention recently [16]. 'e advantage of deep
learning lies in its excellent ability to abstract signals by
performing layer-wise nonlinear calculations, thereby en-
abling the deeper layer to generate more representative
features. 'is encourages the utilization of various deep
learning methods in fault recognition.'e DBN is one of the

most widely used deep learning methods because it can
adapt to a wide range of problems, including those of
nonlinear dynamics and discrete failure patterns [17]. To
leverage valuable cues for fault diagnosis, an adaptive spa-
tiotemporal feature learning architecture with multiple
measurements was proposed [18]. Subsequently, the gen-
eralization of deep learning architecture was considered. For
example, a domain generalization-based hybrid diagnosis
network was established, which could be deployed in unseen
working conditions instead of in real-world working con-
ditions [19]. Moreover, a domain adversarial transfer net-
work has been evaluated for application in fault diagnosis,
wherein a transfer learning mechanism can be implemented
to enhance the generalization of deep learning-based fault
diagnosis [20]. Recently, a novel convolutional neural net-
work is established to diagnose faults from small samples.
Based on the domain adaption, this method won success
when the vibration data are not available in abundant [21].
Different from this previous strategy, our study in this paper
aims to solve another problem in fault diagnosis—feature
representation and fusion.

Also, other types of signal have been introduced in faults
diagnosis. For example, the thermographic information has
been utilized in fault diagnosis of ventilation in BLDC
motors [22, 23]. In contrast to the vibration signal, the
thermographic signals provide additional informative clues
which help to increase the accuracy of the fault diagnosis.
Moreover, the thermographic signal is relatively simple in
contrast to the vibration signal, such that it can better
identify the fault types. However, the main drawback of the
thermographic signal-based strategy lies in that it is com-
monly hysteretic to reflect the machinery statement. In
practice, it is observed that the temperature significantly
increases after a while of the fault occurrence. Alternatively,
the acoustic signal has been investigated in the field of fault
diagnosis [24]. 'e main advantage of the acoustic signal-
based strategy lies in the noncontact measurement that we
can efficiently deploy the acoustic sensors to diagnose faults.
However, the acoustic signal is likely affected by the envi-
ronmental noises. As the result, noise removal is the main
issue of the acoustic signal processing.

'is study aims to leverage valuable cues from multiple
domains for fault diagnosis. To this end, a novel MFFN is
proposed. 'is network comprises three streams that can
comprehensively extract highly representative features in
multiple domains, such as the temporal, frequency, and
time-frequency domains. 'e MFFN can obtain more
valuable cues for fault diagnosis than those of current single-
stream andmultistream architectures. Moreover, the novelty
of the proposed architecture lies in its ability to adaptively
fuse 1D and 2D features using the SCE block.

3. Proposed Fault Diagnosis Scheme

3.1.MFFN. To achieve high fault representability, this study
proposes a novel multistream architecture for extracting and
classifying three types of features in the temporal, time-
frequency, and frequency domains. 'e block diagram of
MFFN is shown in Figure 1. 'e sliding window block is

2 Shock and Vibration



applied to segment the vibration signal into sequence vectors
at the first stream. Time-frequency features are extracted using
WT at the second stream. 'e third stream extracts frequency
features via fast Fourier transform (FFT).'ese primary features
are subsequently enhanced in terms of their representability
through layer-wise convolutional calculations. Finally, these
highly representative features are adaptively fused via the SCE
module. 'e backend classifier is established using two fully
connected layers and a Softmax calculation block.'e data used
in this study were obtained from public datasets. 'e fault
diagnosis platform consists of a motor, torque transducer/en-
coder, dynamometer, and control electronics [21]. 'e reason
for selecting these datasets lies in that they provide a baseline to
fairly evaluate and compare different methods.

3.2. Primary Feature Extraction. 'e primary feature ex-
traction process is shown in Figure 2. 'e sliding window is
used for extracting temporal features. L denotes the window
length, and M is the sliding step. 'e frequency spectrum is
extracted via the following FFT:

X(k) � 
N−1

n�0
x(n)e

− j2π/Nkn
, k � 0, 1, . . . , N − 1, (1)

where N denotes the length of the signal segmentation.
A limitation of FFT is that it analyses the frequency

spectrum pattern of the vibration signal exclusively from
a global perspective; therefore, it is not suitable for an
amplitude-modulated or nonstationary signal. 'is draw-
back can be addressed by wavelet package transform (WPT),
which is a time-frequency analysis method that can analyze
vibration signals with flexible temporal resolutions at both
high and low frequencies [15]. 'erefore, theWT is operated
with a wavelet packet tree that decomposes a signal into
several levels of wavelet packets. A three-layer wavelet packet
tree is used in our method. As a result, eight sub-bands are
obtained, and the energy value of each sub-band signal can
be calculated through the following equation:
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where C
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n(t)(n � 3, j � 0, 1, . . . , 7) is the reconstructed

sub-band signal, Ni is the length of the reconstructed signal,

and xk
j(k � 1, 2, . . . , r) is the amplitude of the jth recon-

structed signal. 'e energy spectrum feature of a sub-band
signal can be presented through a normalized value, as
shown in the following:
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where Er is the square root of the summed square values of
the sub-band signal energy and is expressed as follows:
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3.3. Extraction and Fusion of Highly Representative Features.
In the first and third streams, two 1D-CNNs are connected
to the primary feature extractor to manage features in the
temporal and frequency domains, while a 2D-CNN is
connected to the WT module to process the feature in the
time-frequency domain.'ese highly representative features
are then fused at the backend joint by the SCE module. In
general, there are four successive phases in the SCE module,
namely, squeeze, connection, excitation, and reweight, as
shown in Figure 3.'e feature matrices of the three domains
are the input to the SCE module. 'e temporal, frequency,
and time-frequency feature matrices are presented as
follows:

X �

x11 · · · x1C1

⋮ ⋱ ⋮

xL11 · · · xL1C1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(5)

where L1, L2, and L3 are the feature dimensions and C1, C2,
and C3 are the number of feature channels.
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Figure 1: Block diagram of multidomain feature fusion network.
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3.4. Squeeze. A pooling operation is applied to squeeze the
feature matrix. As a result, three 1D feature vectors are
generated to present the feature matrix across three do-
mains, shown as follows:

lj � Fsq(X) �
1
L1



L1

i�1
xij, j � 1, 2, . . . , C1( , l � l1, l2, . . . , lC1

 ,

mj � Fsq(Y) �
1
L2



L2

i�1
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 ,
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L3

i�1
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 .

(6)

3.5. Connection. 'e feature vectors are fused by the fol-
lowing concatenation operation:

p � Fc(l,m,n)

� l1, l2, . . . , lC1
, m1, m2, . . . , mC2

, n1, n2, . . . , nC3
 

� p1, p2, . . . , pC( ,
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.

(7)

3.6. Excitation. Multilayer mapping is performed to achieve
excitation, as follows:

q � Fex(p,W) � σ W2δ W1p( ( . (8)

In the above equation, σ is the sigmoid function, δ is the
ReLU activation function, and W,W1, andW2 are the full-
connection weights.

3.7. Reweight. 'e learned weight is added to feature
channels to generate the weighted feature for final
classification:

K � Fr(J, q) � J × q. (9)

'e advantage of the reweight calculation is similar to
that of the global average pooling operation in the squeeze
process that can generate channel-wise statistics. Sub-
sequently, this global information is embedded by the
excitation process to generate the channel descriptor q,
which comprehensively captures channel-wise de-
pendencies. As a result, the most important feature can be
emphasized by multiplying the feature channels with the
channel descriptor. In this regard, SCE blocks intrinsically
introduced dynamics conditioned on the input, thereby
helping boost feature discriminability of specific fault
patterns [5].
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Figure 3: SCE module.
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Figure 2: Primary feature extraction: (a) temporal feature, (b) frequency feature, and (c) time-frequency feature.
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4. MFFN-Based Fault Diagnosis

'e MFFN-based fault diagnosis method comprises four
modules. 'e first module performs primary data pro-
cessing, wherein the physical significance of the vibration
signal is presented with respect to the temporal, frequency,
and time-frequency features. In the second module, the
high-representation features are extracted through
layer-wise mapping. Adaptive feature fusion is realized
in the third module, wherein the most credible factor is
enhanced, while feature redundancy is reduced con-
siderably. Finally, the fourth module is designed for fault
classification, wherein a shallow architecture is estab-
lished with two fully connected layers and a Softmax
calculation block. 'e details of our proposed MFFN are
presented in Table 1.

5. Experimental Evaluation and Discussion

5.1. Setup. To evaluate the performance of the proposed
MFFN, experiments were conducted on defective bearing
datasets provided by the Case Western Reserve University
Bearing Data Center (CWRU dataset) [25], Jiangnan
University (Jiangnan dataset) [26], and Paderborn Uni-
versity (Paderborn dataset) [27]. 'e bearing system
platform in the Case Western Reserve University Bearing
Data Center includes a 2 HP motor, torque transducer,
dynamometer, and load motor. 'e vibration signal was
collected via an accelerometer at a sampling frequency of
12 kHz. In addition to the normal state, nine categories of
fault state data were included in this database: single-point
faults with sizes of 0.007, 0.14, and 0.021 were individually
identified on the inner race (IR), outer race (OR), and
rolling elements (REs), respectively. For each state, 120,000
samples were collected in 10 s. 'e data from Jiangnan
University include four categories of running states: the
normal state and fault states separately seeded on the
bearing at IR, OR, and RE. All data were collected at
a 50 kHz sampling frequency at rolling speeds of 600, 800,
and 1000 rpm. For the normal state, 1800 samples were
randomly collected, while 600 samples were collected for
each fault state. 'e data from the Paderborn University
were provided via measurements concerning six healthy
and 26 damaged bearings at IR and OR. All data were
collected at a 64 kHz sampling frequency at rolling speeds
of 900 and 1500 rpm. For each state, 256,0000 samples are
collected in 4 s. 'e training and testing samples for ex-
perimental evaluations are shown in Tables 2 to 4.

5.2. Model Pretraining and Fine-Tuning. An adequate
number of epochs in the training period is important for
model training. Excessive epochs may result in overfitting,
while the learning outcome may be poor in the case of
insufficient epochs. Figure 4 illustrates the training times of
the three datasets and reveals that that the MFFN can
converge rapidly on all three datasets. 'irty iterations are

sufficient for model learning with the CWRU and Jiangnan
datasets, while 25 iterations are required for model learning
with the Paderborn dataset.

5.3. MFFN-Based Fault Diagnosis. Confusion matrices were
utilized for evaluating the performance of the proposed
MFFN. Figure 5(a) presents the confusion matrix for the
CWRU dataset. 'is result demonstrates that our fault di-
agnosis method is highly accurate. Only two samples were
erroneously classified; the rest were identified correctly. 'e
classification results regarding the Jiangnan dataset are
satisfactory (Figure 5(b)); only one sample was misclassified.
A similar outcome was observed in the results on the
Paderborn dataset (Figure 5(c)) with one error.

5.4. Comparison against Existing Deep Learning Methods.
We evaluated the proposed MFFN by comparing it to state-
of-the-art methods. 'e temporal-, frequency-, and time-
frequency feature-based methods are comprehensively
catalogued for experimental comparison. For example, the
1D-CNN was used to classify 1D temporal features [28] and
denoted as “TF+ 1D-CNN.” Furthermore, temporal fea-
ture +WDCNN (TF+WDCNN) [29], frequency
feature + 1D-CNN (FF + 1D-CNN) [30], frequency featur-
e + SDAE (FF + SDAE), time-frequency feature + 2D-CNN
(TFF + 2D-CNN), and time-frequency feature +VGG16
(TFF +VGG16) [31] were included in the experimental
comparison. Each dataset was divided into 10 subsets for
experimental evaluation with respect to working conditions.
Figure 6 reveals that no salient performance variation was
observed among the 10 evaluations for MFFN; the maxi-
mum differences among evaluations were 0.08% on the
CWRU dataset, 0.12% on the Jiangnan dataset, and 0.13% on
the Paderborn dataset. 'us, experimental analysis demon-
strates the stability of our MFFN compared with that of the
other methods, which exhibit lesser model stability owing to
significant performance variations across tested subsets.

'e average accuracies of the compared fault diagnosis
methods are listed in Table 5. Two observations can be made
based on this table. First, the feature in the time-frequency
domain outperforms the temporal- and frequency-domain
features. 'is is because the time-frequency domain feature
can identify details of the frequency spectrum of the vi-
bration signal, which facilitates an improved fault diagnosis.
Second, fusing features in multiple domains is preferable for
fault diagnosis. 'is is because the feature fusion results can
represent machinery faults from multiple aspects and allow
more valuable cues to be leveraged for fault diagnosis. As
a result, intraclass fault differences are enlarged, while in-
terclass clustering is enhanced, which theoretically explains
the better performance of the proposed MFFN.

5.5. Visualization. Aiming to comprehensively understand
the benefits of our proposedMFFN, the t-SNE technique was
applied to reduce the dimensionality of the learned features
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Table 1: Parameters of MFFN.

Module Name Size/step/number Parameter size Output size

1D-CNN

Input_1 — 0 (None,4096,1)
ResBlock_1 3/1/16 912 (None,4096,16)
ResBlock_2 3/1/16 1568 (None,4096,16)
ResBlock_3 3/1/4 441 (None,4096,4)
Max_Pooling 2/1/- 0 (None,2048,4)

2D-CNN

Input_2 — 0 (None,128,128,3)
Conv2D_1 30/5/256 691200 (None,20,20,256)
Conv2D_2 6/2/256 2359552 (None,8,8,256)
Inception_1 (1,3,5,7)/1/32 688768 (None,8,8,128)
Reshape_1 — 0 (None,2048,4)

SCE

Global_Average_Pooling_1 — 0 (None,4)
Global_Average_Pooling_2 — 0 (None,4)
Global_Average_Pooling_3 — 0 (None,4)

Concatenate_1 — 0 (None,2048,12)
Concatenate_2 — 0 (None,12)

Dense_1 6/-/- 78 (None,6)
Dense_2 12/-/- 84 (None,12)
Multiply — 0 (None,2048,12)

Classifier
Flatten_1 — 0 (None,24576)
Dense_3 100/-/- 2457700 (None,100)
Dense_4 10,4,3/-/- 1010,404,303 (None,10),(None,4),(None,3)

Table 4: Samples in the Paderborn dataset.

Category Normal Outer race Inner race
Label 0 1 2
Training 1200 1200 1200
Validation 400 400 400
Testing 400 400 400

Table 2: Samples in the CWRU dataset.

Category Normal Outer race Inner race Rolling element
Size — 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Label 0 1 2 3 4 5 6 7 8 9
Training 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200
Validation 400 400 400 400 400 400 400 400 400 400
Testing 400 400 400 400 400 400 400 400 400 400

Table 3: Samples in the Jiangnan dataset.

Category Normal Outer race Inner race Rolling element
Label 0 1 2 3
Training 1200 1200 1200 1200
Validation 400 400 400 400
Testing 400 400 400 400
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to two for facilitating map generation. 'e resulting 2D
feature maps are shown in Figure 6, wherein different colors
represent various fault or normal categories. As shown in
Figure 7, after MFFN feature learning, a fault-category
clustering effect is observed in contrast to the raw

distribution, along with linear margins between fault cate-
gories. 'is result is desirable and enables simpler classifi-
cation. 'is further demonstrates that using the MFFN
architecture can significantly improve the accuracy of fault
diagnosis.
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Figure 4: Training-time investigation for CWRU, Jiangnan, and Paderborn datasets. CWRU: (a) accuracy and (b) loss; Jiangnan:
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Figure 5: Confusion matrices for (a) CWRU, (b) Jiangnan, and (c) Paderborn datasets.
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Figure 6: Experimental comparisons on (a) CWRU, (b) Jiangnan, and (c) Paderborn datasets.

Table 5: 'e average performance in different domains.

Input Model
Average accuracy

CWRU (%) Jiangnan (%) Paderborn (%)

TF WDCNN 99.78 99.74 99.73
1D-CNN 99.81 99.80 99.77

FF SDAE 99.69 99.71 99.78
1D-CNN 99.75 99.74 99.72

TFF VGG16 99.84 99.85 99.82
2D-CNN 99.87 99.86 99.84

TF + FF+TFF MFFN 99.95 99.92 99.91
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6. Conclusions

A novel MFFN-based fault diagnosis method is proposed.
'e proposed MFFN can fuse features in different domains,
such as the temporal, frequency, and time-frequency do-
mains. Sufficient cues are comprehensively leveraged
through the deep learning process of MFFN. 'e main
contribution of MFFN is that it can improve the repre-
sentability of faults, leading to a significant improvement in
the accuracy of fault diagnosis. 'eoretically, features in
multiple domains depict faults from multiple perspectives,

which are complementary in physical significance. More-
over, the importance of features in multiple domains
varies with respect to the tasks on hand. Intrinsically, our
proposed MFFN adopts a feature fusion strategy using
adaptive weights. Features extracted in multiple domains
are weighted and fused, leading to a comprehensive
utilization of their advantages. Consequently, MFFN
achieves higher accuracy compared with existing
architectures.

Using our proposed MFFN, exceptional accuracy can
be achieved, enabling its utilization in many practical
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Figure 7: Feature visualization with (a) raw data on the CWRU dataset, (b) learned features on the CWRU dataset, (c) raw data on the
Jiangnan dataset, (d) learned features on the Jiangnan dataset, (e) raw data on the Paderborn dataset, and (f) learned features on the
Paderborn dataset.
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applications. In our future work, we will train the MFFN
model to handle more signal types, such as thermal imaging
and acoustic data, which contain much more valuable
features for diagnosing faults. Moreover, we will evaluate
MFFN in real-world applications, especially in online fault
diagnosis.
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