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e purpose of this study was to investigate how to detect abnormalities in electric submersible pumps (ESPs) in advance and how
to classify the faults by monitoring the production data before pumps break down. Additionally, a new method based on the
denoising autoencoder (DAE) and support vector machine (SVM) is proposed. Firstly, the ESP production data were processed
and fault-related features were screened using the random forest (RF) algorithm. Secondly, input data were randomly damaged by
the addition of noise, a DAE network structure was constructed, and the optimal learning rate, noise reduction coe�cient, and
other parameters were set. irdly, the real-time status of the production data of ESP was monitored with reconstruction errors to
detect the point when an abnormality occurs signifying a pending fault. Finally, SVM was used to distinguish the type of fault.
Compared with existing fault diagnosis methods, our method not only has the advantages of easy extraction of e�ective data
features, higher accuracy, and strong generalization ability but can also detect an abnormal state indicating a coming fault and
identify its type, hence enabling the preparation of an appropriate advance solution.

1. Introduction

In the oil extraction process, arti�cial lift systems are often
required when the reservoir water level is low and liquids
cannot be extracted directly to the surface. e electric
submersible pump (ESP) plays a pivotal role in the oil�eld
production process, and because it can work at high tem-
peratures and in deepwater environments, the ESP is now
widely used to increase production in high production, high-
water-bearing nonlinear �owing wells, and o�shore wells
[1]. However, when it fails, it often stops pumping and
production. Pump failure is a serious problem for operating
companies and can lead to economic losses and even loss of
human life. erefore, fault diagnosis of ESPs is one of the
key factors in ensuring stable production.

Because the operating process of the ESP is complex and
variable, it is di�cult to build an accurate model to dem-
onstrate the process. Many researchers have proposed
methods to monitor and diagnose the faulty operation of
ESPs. In general, these approaches can be classi�ed into

three types: models based on human experience, models
based on theory, and data-driven models.

With the development of sensor technology and data
acquisition systems, it has recently become possible to
continuously record various ESP data, such as inlet tem-
perature, pump frequency, motor temperature, and motor
current, during the production process. ese real-time data
are periodically stored and transmitted to the ground remote
terminal database [2]. e data-driven ESP fault diagnosis
method is then facilitated by training and self-learning based
on the normal data and the fault data. e mapping rela-
tionship between fault types and data features is used to
achieve fault diagnosis. Many data-driven models and al-
gorithms have now been developed, such as SVM [3], ANN
[4], PCA [5], and other arti�cial intelligence models. Liu
et al. proposed a chicken swarm optimization SVM model
for fault diagnosis [6]. Chen et al. proposed an improved
KNN fault detection method based on the Marxian distance
for pump faults [7]. Matheus et al. proposed a random-
forest-based approach for ESP data analysis for achieving
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multifault classification [8]. Chen et al. achieved the iden-
tification of pump fault states by XGBoost [9].

Although the fault diagnosis models for ESPs mentioned
above are meaningful and applicable, there are still some
unresolved problems. Firstly, most of these models are
shallow learning frameworks without multiple hidden
layers. +eir capabilities are limited when faced with
complex data structures. Secondly, the performance of data-
driven models is heavily dependent on the quality of the
features extracted from the process data. Manual feature
extraction requires in-depth knowledge of the expertise
background and is time-consuming and ineffective. +irdly,
most methods are used to identify and classify faults that
have already occurred and are unable to help in the pre-
vention of unnecessary losses. In fact, the transition of an
ESP from a healthy state to a failed state is a long process.
Costs can be saved by detecting abnormalities before actual
failures occur and by taking preventive measures (mainte-
nance/repair) in advance.

Autoencoder (AE) is one of the deep learning algorithms
and a common method in anomaly detection [10]. It is used
to learn low-dimensional feature representation space,
where a given data instance can be well reconstructed [11].
Hu et al. proposed a framework autoencoder (LSTM-AE)
network based on long- and short-term memory and suc-
cessfully used it for anomaly detection in power plant
equipment [12]. Wang et al. proposed an unsupervised
anomaly detection method based on a combination of
variational modal decomposition (VMD) and depth
autoencoder for anomaly detection in hydraulic turbine
units [13]. Moreover, the AE network has a powerful in-
formation capture capability. With a trained AE network,
abstract and effective features can be extracted from the raw
data to represent useful information [14]. Extracting the
depth features contained in the process data can enhance the
accuracy and robustness of the monitoring model [15–17].
Kong et al. proposed a hybrid algorithm of attention re-
current AE for feature extraction, which was successfully
applied to rotating machinery diagnosis [18]. Yu et al.
proposed a supervised convolutional autoencoder-based
feature learning method for better pretraining the network
and learning representative features [19].

Although the relevant research is described above, there
is still a lack of research on the application of automatic
encoders in industrial process monitoring, especially in the
production processes of ESPs. To address the shortcomings
of manually extracted features and the importance of ad-
vance fault detection, we proposed an ESPs fault diagnosis
model based on the DAE-SVMmethod in combination with
deep learning methods, and the contributions of this paper
are as follows:

(1) +e data collected from the ESPs production system
are preprocessed by cleaning and filtering, and then
the characteristic quantities associated with the faults
are extracted.

(2) Using the data reconstruction method of DAE, we
calculated the size of the reconstruction error of the
input data and compared it with the threshold value

of normal data to determine the anomaly of the data.
+e upcoming abnormal problems are detected in
advance.

(3) Data with anomalous samples are used as input, and
the data features extracted by DAE are combined to
perform fault diagnosis by SVM model, while GA
optimization method is used to improve the per-
formance of the model. Finally, the performance of
other methods is compared.

+e rest of this paper is organized as follows. In Sections
2 and 3, a brief introduction to the theory of the integrated
learning approach is given, followed by a presentation of
data on the ESPs production process. Section 4 provides a
detailed description of the modeling process of the proposed
method. Based on this, Section 5 validates the ESPs anomaly
detection framework proposed in this paper with data from
the South China Sea oil field and compares it with other
methods. Finally, discussion and overall conclusion are
shown in Sections 6 and 7, respectively.

2. Introduction of Related Algorithms

2.1. Random Forest (RF) Algorithm. In some fault cases,
some variables may not contain information about the fault,
so redundant features must be excluded. RF [20] can analyze
the interactions between features and is good at handling
high-dimensional data and using feature importance for
feature selection [21, 22]. Its flow is shown in Figure 1.

Given a feature set F � f1, f2, f3 . . . fn , and the set of
output feature importance is defined as I � I1, I2, I3 . . . Im ,
and the importance of features is calculated as follows:

Ix �
1

M


M

i�1
R
oob
m − R

oob
mj , (1)

where Ix is the importance of the x feature, M is the number
of training samples, Roob

m is the classification accuracy of out-
of-bag data before decision tree perturbation, and Roob

mj is the
classification accuracy of out-of-bag data after decision tree
perturbation. Based on the importance of features, the top
features will be selected in descending order as the data set
for subsequent research analysis.

2.2. Autoencoder (AE). AE is a powerful tool for modeling
high-dimensional data in an unsupervised environment
[23]. Its structure is shown in Figure 2. It consists of an
encoder, which obtains a compressed code from the input
data, and a decoder, which can reconstruct the data from the
code. +e encoding is essentially an information bottle neck
that forces the network to extract the typical patterns of
high-dimensional data.

AE is a neural network approach with an operational
logic that trains the input vector to be reconstructed as an
output vector using unsupervised methods, as shown in
equations (2) and (3), respectively, where σ is the nonlinear
transformation function, and b1, b2 and W1, W2 are the bias
and weight of the neural network, respectively.
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y � fθ(x) � σ W1x + b1( , (2)

z � gθ(x) � σ W2y + b2( . (3)

+e input data are the data compressed by the encoder to
extract the values that best represent the characteristics of
the input data, which are then reconstructed by the decoder
network. A transformation from the input layer into the
hidden layer is performed using the encoder through a
nonlinear mapping. +e transformation operation is applied
to the hidden layer, and finally, the initial input space is
reconstructed using the decoder. +e reconstruction error r

is the difference between the reconstruction vector and the
input vector. To minimize the reconstruction error, an
unsupervised training process is used in the AE. +e root
mean square error is used in this paper to calculate, as in the
following equation, where N represents the data size.

r � ‖z − x‖ �

�����

1
N



N

i�1




(z − x)
2 . (4)

When only normal data are input into the model, the AE
network is trained with minimum reconstruction error to
obtain the corresponding bias b, weights W, and the
threshold α, whereas if abnormal data are input into the
trained model, a higher reconstruction error is generated.
+erefore, the reconstruction error is usually taken as an
important indicator for anomaly detection in AE networks.
+e process is shown in Figure 3.

+e threshold selection of the AE model affects its
anomaly detection performance. In this paper, the kernel
density estimation (KDE) method is used to calculate the
threshold value of the model. KDE is a nonparametric
method for estimating the probability of a random variable.
It is not necessary to assume the form of the distribution
function of the study variables. +is method is more ob-
jective and reasonable than the threshold-setting method of
expert experience. +e kernel density estimated the
threshold as follows:

α �
1

nh


n

i�1
G

r − r
(i)

h
 , (5)
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Figure 1: Flow of random-forest-based feature selection.
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where the G(·) is the Gaussian kernel function and h is the
estimated parameter, while h> 0. n is the sample size.

To avoid the phenomenon of overfitting the AE during
data processing, DAE adds noise to the raw data. +en, the
model’s relative robustness can be improved through
encoding and decoding of corrupted data [24]. Figure 4
shows the network structure of the DAE.

In the input step, the original data are specifically
processed into data with noise as a new input, which is
encoded and decoded instead of the original data. +e
encoding and decoding process of DAE is as follows:

y′ � fθ(x) � σ W1x + b1( ,

z′ � gθ(y) � σ W2y + b2( .
(6)

+erefore, its reconstruction error is as follows:

r � gθ fθ(x)(  − x
����

���� �

�����

1
N



N

i�1




gθ fθ(x)(  − x( 
2 . (7)

2.3. Support Vector Machine (SVM). SVM [25] is a machine
learning method based on statistics. It has the advantages of
small training samples, short training time, and excellent
classification effect. For complex production equipment
such as ESPs, fast, effective, and accurate fault diagnosis is of
paramount importance. Compared with other classification
learning methods, SVM is simple to operate and does not

need to use a large amount of data to achieve high accuracy.
It applies to the case of small-scale ESPs fault data studied in
this paper and is not prone to overfitting. It also has rela-
tively good generalization ability for different working
condition problems of electric submersible pumps. In ad-
dition, the inclusion of the kernel function enables SVM to
accurately reflect the nonlinear characteristics.+erefore, we
choose SVM as the classifier for the ESP fault diagnosis study
in this paper.

SVM mainly uses maximum intervals to solve data
classification problems in pattern domains. It uses hyper-
plane to segment the samples. We suppose that there is a
data set T � (x1, y2), (x2, y2), (x3, y3) . . . (xm, ym) , where
xi ∈ RD is the eigenvector of the sample, yi � −1, +1{ }, and
i � 1, 2, 3, . . . , n. +e separation hyperplane equation is as
follows:

ωT
xi + B � 0, (8)

where the ω is the weight vector and B is the bias vector. +e
constrained optimization problem using the maximum
interval separation hyperplane with the categorical decision
function can be transformed into the following optimization
problem:

1
2
‖ω‖

2
+ C 

m

i�1
,

s.t.

yi ωT
xi + B ≥ 1 − ζ i,

ζ i ≥ 0,

i � 1, 2, 3, . . . , m.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(9)

+e penalty factor C is the penalty error on the classi-
fication. If it is too large, there will be many hyperplane
constraints, which is not good for the generalization of the
classifier. If it is too small, the classification performance of
the classifier may be poor. +e value must be chosen
according to the specific situation. A small number of sample
misclassifications are allowed, as they little impact on the
overall effect. To make the model implementation condi-
tions easier, lack variables ζ i are introduced.

By introducing LaGrange functions and using the radial
basis function (RBF) K(xi, xj) as the kernel function of the
inner product algorithm of this algorithm, the interval
maximization problem can be obtained

K xi, xj  � exp −c xi − xj

�����

�����
2

 ,

L(α) � 
m
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αi −

1
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αiαjyiyjK xi, xj ⎛⎝ ⎞⎠,

s
m

i�1
αiyi � 0, 0≤ αi ≤C, i � 1, 2, 3, . . . , m,
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Normal datasets X
Datasets with abnormal data

Calculate the deviation, weight, and threshold 

Start

' {x(1), ..., x(n) }X =

' {x(1), ..., x(n) }X =

r(1),..., r(n)

r(i) ≤ α

End

 is normalx(i) x(i)  is anomaly

Reconstructing the dataset

Calculate reconstruction error

Figure 3: Autoencoder-based anomaly detection flow.
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where the c is kernel function parameter. αi and αj corre-
spond to the LaGrange multipliers of xi and xj, respectively.
+us, the optimal classification function of the SVM can be
found as follows:

f(x) � sgn 
m

i�1
aiyiK xi, xj  + B⎛⎝ ⎞⎠. (11)

In summary, the penalty factor C and kernel function
parameters c in SVM are the main parameters that affect its
performance. +erefore, in this paper, to improve the
identification of ESP faults, a genetic algorithm (GA) was
introduced to find the optimal combination of parameters in
a certain interval range. GA is a computational model of
biological evolution that simulates natural selection and
genetic mechanisms as in Darwinian biological evolution,
and operates as a method for optimal selection by simulating
the natural evolutionary process [26, 27]. +e process is
shown in Figure 5.

3. Data Analysis

+eESP data sets were obtained from the China Offshore Oil
Development and Production Database. +e data set used
for the experiments covers four different operating condi-
tions of the ESP, and each operating condition is composed
of 22 different features.

+ese 22 characteristics are as follows: wellhead tem-
perature (WT), bottomhole flow pressure (BFW), water
content (WC), casing pressure (CP), daily gas production
(DGP), daily water production (DWP), daily oil production
(DOP), daily liquid production (DLP), gas-oil ratio (GOR),
oil-gas ratio (OGR), water-gas ratio (WGS), oil density
(OD), oil pressure (OP), pump inlet temperature (PIT),
pump voltage (PV), pump current (PC), pump frequency
(PF), motor temperature (MT), test water volume (TWV),
test oil volume (TOV), test gas volume (TGV), and test
liquid volume (TLV). +ese features are all thermodynamic
parameters of the ESP.

+e four operating conditions include the normal state
along with three different abnormal states: column leakage,

overload pump stopping, and underload pump stopping. All
conditions contain normal and abnormal data, except for the
first condition, which contains entirely normal data. +e
detection of abnormalities and fault diagnosis of other
conditions can be achieved by solving the parameters, such
as threshold value, in the normal condition data.

Condition 1. Normal state: ESP is in healthy condition.

Condition 2. Column leakage: lines break, disconnect, wear
and corrode, and resulting in leaks.

Condition 3. Overload pump stopping: overload current
setting is not reasonable, motor is impaired, the pump is
mixed with impurities, and overload shutdown occurs.

Condition 4. Underload pump stopping: underload current
setting is not reasonable, and pump or separator shaft is
broken due to insufficient fluid supply from the ground.

We selected samples from a subset of the ESP production
data to constitute a training set and a test set. +ere are four
data sets in Table 1. To validate the effectiveness of the
proposed model, the proportion of samples in each set is
different.

4. Method Based on DAE and SVM

+e DAE-SVM-based method is divided into the following
five steps, and its flow is shown in Figure 6.

(1) Step 1: we conduct data preprocessing of the col-
lected data, including data cleaning, missing value
filling, and abnormal value processing.

(2) Step 2: we use random forest to filter out the relevant
feature variables of the fault as the input data of DAE,
which is used to exclude the irrelevant features and
improve the accuracy of the model with time saving.

(3) Step 3: we build a DAE model from healthy data, use
DAE for data reconstruction and feature extraction
of relevant features, and obtain fault detection

Raw data x

Data with noise x Hidden layer data h Reconstructed data z

Loss (x, z)

σ (W1x + b1) σ (W2y + b2)

Figure 4: Denoising autoencoder (DAE) network structure.
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thresholds based on reconstructed data and low-
dimensional features.

(4) Step 4: we use the data with fault samples as input to
the DAE model to detect the faults.

(5) Step 5: we use the data features extracted by the DAE
as input to the SVM for training, diagnosis, and
classification.

5. Example Analysis

+e ESP history database contains a large number of process
variables that reflect the actual production conditions of
ESP. To improve the data quality of the monitoring model
and the accuracy of the model, the data must be pre-
processed and then scaled to [0, 1] by

xnorm �
xi − xmin( 

xmax − xmin( 
, (12)

where xnorm indicates the result of the variable normaliza-
tion, and xmax and xmin represent the maximum and
minimum values of the i-th variable, respectively.

Complex industrial processes have many data features,
and if all the data were analyzed directly, irrelevant infor-
mation would not only interfere with the experimental
results but also increase the model training time. +erefore,
data features of high importance must be selected and ir-
relevant information removed to improve the model per-
formance. +e random forest algorithm was used to select
fault-related features, and then, the relevant features were
selected as the input for the DAE model, according to the
importance of the features. +e results of the data feature
selection are shown in Table 2 and Figure 7. +e bars are
arranged according to the weightings of features.

+e weightings analysis shows that the importance level
dropped significantly after test oil volume (TOV). +e first
14 variables were selected as the model features via analysis.
+e runtime of the DAEmodel using the filtered feature data

Table 1: Train sets and test sets.

No.
Train set Test set

Normal (%) Abnormal (%) Total Normal (%) Abnormal (%) Total
1 100 0 1250 100 0 1170
2 86.0 14.0 830 67.0 33.0 490
3 63.5 36.7 970 69.3 30.7 410
4 75.6 24.4 920 71.0 29.0 280

Cγ

Support vector machine(SVM) parameter
encoding and initialization

Optimizing the parameters of 
improved SVM Model with GA 

Population

A chromosome in the population

Value of parameter 
represented by this

chromosome 

Value of parameter 
represented by this

chromosome 

Training SVM model

Calculation the fitness function

Selection operation
crossover operation and

mutation operation

Optimal the SVM parameters obtained

Is stop condition satisfied

Optimal SVM model obtained

Training
data sets

N

Y

Figure 5: Optimizing the parameters of improved SVM with GA.
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of the random forest algorithm was 75.36 s. +e runtime of
the model without the filtered feature data was 101.74 s. +is
shows that the random forest algorithm can effectively re-
duce the runtime of the model.

We considered that the different number of implied
layers affects the efficiency of the model, and we selected five
implied layers, each containing 10, 8, 6, 8, and 10 nodes, as
well as selected ReLU function as the activation function of
the model. DAE network is used as fault detection and
feature extractor. +e appropriate hyperparameters have a
great impact on the DAE network. +e hyperparameters are
usually chosen empirically. However, there is a large ran-
domness in this approach. Different hyper parameters of the

DAE network are changed so that the better hyper pa-
rameters are selected to be applied to DAE.We will compare
different optimization algorithms, learning rate, batch size,
and denoising parameter, by selecting the model’s optimal
parameters to achieve the desired state. +e parameters are
selected as shown in Table 3.

For the optimization algorithm, the comparison results
are shown in Table 4. +e experiments showed that the
optimizer Adam achieved the best accuracy, training time,
and testing time, so optimizer Adam was chosen as the
optimization algorithm for the DAE network. For the
learning rate, batch size, and denoising parameter, the re-
sults in Figure 8 are obtained by the grid search method, and

Start

Select ESP data from database

Related data collection

Delete outliers
Data preprocessing

Process missing values

Standardize data

Delineate datasets

Related data by RF

Anomaly Detection

Sample data with faults

The DAE model

Extraction characteristics

Calculate reconstruction error

Healthy datasets

Setting network parameters

Training the DAE model

Calculate the threshold

Anomaly Detection

Fault classification

Input
Characteristics

Abnormal ?Continue production

Fault classification

Maintenance

End

Output Condition N
SVM N

Output Condition 3

Condition N ?

Output Condition 2
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SVM 1 Y  Y
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Figure 6: ESP abnormal detection and fault diagnosis flow chart.
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Figure 7: Ranking the importance of variables in ESP.

Table 3: Parameters’ selection.

No. Parameter Scope
1 Optimization algorithm SGD, Adagrad, AdaDelta, RMSProp, and Adam
2 Learning rate [0.01, 0.02, 0.03, 0.04, 0.05, 0.06]
3 Batch size [4, 8, 16, 32, 64, 128]
4 Denoising parameter [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Table 2: Description of the variables of the ESP.

No. Symbol Variable name (unit) Score
1 DLP Daily liquid production (m3/day) 0.38765
2 WT Wellhead temperature (°C) 0.15278
3 TWV Test water volume (m3/day) 0.10888
4 WGR Water-gas ratio (%) 0.06667
5 PC Pump current (A) 0.05613
6 PV Pump voltage (V) 0.03703
7 OP Oil pressure (kPa) 0.03141
8 OGR Oil-gas ratio (%) 0.03131
9 TLV Test liquid volume (t) 0.02459
10 DWP Daily water production (m3/day) 0.02244
11 DGP Daily gas production (m3/day) 0.02192
12 DOP Daily oil production (m3/day) 0.02021
13 WC Water content (wt%) 0.01251
14 TOV Test oil volume (t) 0.01157
15 GOR Gas-oil ratio (%) 0.00533
16 BFP Bottomhole flow pressure (kPa) 0.00220
17 CP Casing pressure (kPa) 0.00189
18 OD Oil density (k/l) 0.00151
19 PIT Pump inlet temperature (°C) 0.00132
20 PF Pump frequency (MHz) 0.00122
21 MT Motor temperature (°C) 0.00093
22 TGV Test gas volume (t) 0.00050
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it can be clearly obtained that the model can reach the
optimal state when the learning rate is 0.03, the batch size is
64, and the denoising parameter is 0.3. +erefore, the pa-
rameters of the model are selected as shown in Table 5.

Using the well 831353407 as an example, the threshold
and reconstruction errors are calculated to detect its pro-
duction anomalies, as shown in Figure 9, where the value
represented by the red dashed line is the threshold value
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Figure 8: Results of different learning rates, batch size, and denoising parameters of grid search method.

Table 5: Model training process final parameter.

Layer Name Parameter for layer Other parameters
1 Input layer Nodes� 14
2 Hidden layer (1) Nodes� 10 Activation�ReLU
3 Hidden layer (2) Nodes� 8 Optimizer�Adam
4 Hidden layer (3) Nodes� 6 Learning rate� 0.03
5 Hidden layer (4) Nodes� 8 Batch size� 64
6 Hidden layer (5) Nodes� 10 Denoising parameter� 0.3
7 Output layer Nodes� 14

Table 4: +e experiment result of different optimization algorithms.

No. Optimization Iterations Accuracy (%) Training time (s) Test time (s)
1 SGD 200 0.9812 83.172 1.3689
2 Adagrad 200 0.9267 77.122 1.2125
3 AdaDelta 200 0.9832 85.241 1.2489
4 RMSProp 200 0.9745 79.356 1.3458
5 Adam 200 0.9889 74.876 1.1478
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Figure 9: Detection of pump damage time of well 831353407 by DAE.
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Figure 10: Detection of pump damage time of well 831352627 by DAE.
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Figure 11: Detection of pump damage time of well 951352447 by DAE.

10 Shock and Vibration



obtained from the health data, and the value represented by
the solid line is the reconstruction error of the data points.
When the reconstruction error is below the threshold value,
the well is in a normal state. Conversely, a fault will occur
when the reconstruction error exceeds a threshold value.
Figures 10–12, showing wells 831352627, 951352447, and
951412537, respectively, also show that the DAE model
performs well in detecting anomalies before faults occur.

In the experimental results, it can be seen that the DAE
model proposed in this paper has the potential to be used as a
technique for detecting ESP anomalies and for detecting
dynamic changes so that failures pending in the ESP can be
detected earlier. As shown in Table 6, the detection time is
slightly earlier than the actual ESP braking time, which
indicates that the features extracted using the DAE model
can represent the original data to a greater extent. Moreover,
the model reconstructs the data with maximal proximity to
the original data. +is also provides more recognizable
features for the SVM classifier and effectively improves the
accuracy of the classifier.

When an abnormal condition is detected in an ESP, the
fault should be classified. Using machine learning methods
to identify the faults that occur not only reduces the time
spent on manual inspection and enables faster repair of
faults but also reduces the errors generated by manual labor
and facilitates effective maintenance of the ESP. In the ex-
periments of this paper, the DAE model not only detected
anomalies based on reconstruction errors but also extracted
more robust advanced data features through its excellent

feature learning capability. +e ESP data features extracted
using DAE can be used as the input data for the classifier
SVM, by which means fault classification and diagnosis can
be achieved.

When using SVM models for classification, it should be
ensured that the model has optimal parameters so that the
classification accuracy can be maximized. +e RBF was
chosen as the kernel function of SVM in this experiment, but
in the selection of RBF, the penalty factor C and the kernel
parameter c must be considered. Since there is no a priori
knowledge about the optimal choice of parameters, the
genetic algorithm (GA) was chosen to find the optimal
parameters in the experiments. +e GA calculates the re-
lationship between each parameter value and the fitness
value. +e parameter that returns the maximum value of
fitness after multiple searches is the optimal parameter in the
model. After several experiments, it was found that the
accuracy of SVM reached the highest value at about 40 to 50
iterations, as shown in Figure 13, and the optimal solution
for two parameters was thereby obtained.

+e model with the obtained optimal parameters was
used for classification, and the experimental results are
shown in Figure 14. Figure 14(a) shows the abstract feature
two-dimensional effect of the original data. It is evident that
although there are certain boundaries for different ESP
working conditions, there is still a significant data overlap.
Figure 14(b) shows the results after the classification by the
DAE-SVM feature extraction proposed in this paper. +e
different ESP working conditions show a certain pattern.
Although there is still a small amount of data overlap at some
boundaries, most of the data for different working condi-
tions can be clearly separated. It is also further shown that
the method proposed in this paper can overcome the noise
in ESP industrial production data, obtain fault-related in-
formation effectively, and facilitate the accuracy of the
classification model.

To visually show the effectiveness of the diagnostic
model in this experiment, four indicators, mean absolute
error (MAE), root mean squared error (RMSE), mean
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Figure 12: Detection of pump damage time of well 951412537 by DAE.

Table 6: Comparison between ESP anomaly detection time and
actual failure time by DAE model.

Well DAE model predictions Actual failure time
831353407 6 June 2019 9 June 2019
831352627 19 June 2019 23 June 2019
951352447 26 May 2018 1 June 2018
951412537 7 July 2018 10 July 2018
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Figure 14: Feature 2-dimensional visualization: (a) raw data and (b) DAE-SVM classification.

Table 7: Accuracy rates and evaluation index corresponding to different data.

Accuracy (%) MAE RMSE MAPE R2

Overall 97.61 0.0270 0.0256 0.1391 96.87
Condition 1 93.11 0.0289 0.0320 0.1559 95.33
Condition 2 96.81 0.0306 0.0543 0.2474 96.71
Condition 3 95.01 0.0457 0.0461 0.1339 94.33
Condition 4 94.19 0.0363 0.0231 0.3579 97.34
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absolute percentage error (MAPE), and R squared (R2), were
used to evaluate the prediction effect, which was calculated
as follows:

MAE �
1
m
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(13)

where m is the number of predicted points, i is the serial
number of predicted points, yi is the actual value, yi is the
average value of yi, and yi is the predicted value. +e
values of MAE and MAPE are in [0, +∞), and their values
are the smaller the better. Similarly, smaller RMSE means
higher accuracy. R2 describes the ability of the prediction
model to fit the actual data curve, the larger the better, and
it takes values in the range (−∞, 1). +e results of the
evaluation metrics are shown in Table 7, and the pre-
diction accuracy for overall fault classification is relatively
high for all. We also calculated its classification for each
category, and the classification accuracy and evaluation
indexes have good performance, which shows that the
proposed method in this paper has excellent classification
effect and anti-interference ability in dealing with ESP
faults.
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Figure 15: Classification accuracy of different methods.
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Figure 16: Classification accuracy of 4 conditions using different methods.
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To quantitatively analyze the superiority of the DAE-
SVM method proposed in this paper for ESPs fault diag-
nosis, this paper is compared with SVM, RF, XGBoost, and
KNN methods used for fault diagnosis in recent years. +is
paper is based on 14 statistical features for each fault
sample. +en, the extracted 14 features are input into 5
methods. All methods were executed in Python 3.8.5 en-
vironment on a laboratory computer with an AMD Ryzen 7
5800H CPU running at 2.9 GHz and 32GB of RAM. +e
accuracy experimental results of the 5 methods are shown
in Figure 15. Comparing the results, it was obvious that the
accuracy of the DAE-SVM proposed in this paper was
significantly better than other intelligent algorithms, and it
also converged faster than other methods. We also con-
ducted an experimental comparison for the classification of
a single working condition, and the experimental results
are shown in Figure 16 and Table 8. +e results showed that
the classification model based on DAE-SVM not only
performed well in the overall working condition of the
ESPs but also outperformed the other models in the single
working condition.

6. Discussion

Compared with other methods, the innovation of the
method proposed in this paper is mainly reflected in the
following two stages.

In terms of anomaly detection, we used the data re-
construction method of DAE to detect the anomalies of the
ESPs precisely and early, which can assist the technicians to
better manage the operating status of the electric sub-
mersible pump.+is can be seen in Figures 7–10 and Table 3
in the paper. At the fault diagnosis level, the method of using
the data features extracted by DAE as input to the SVM
classifier is proposed for fault diagnosis, while the genetic

algorithm is used to optimize the penalty factor and kernel
function parameters to improve the performance of the
learning method.

However, the method proposed in this paper has good
results in electric submersible pump fault diagnosis, but
there is a long running time in the optimization process. And
the amount of data used in the experiment is limited, which
may lead to other problems when dealing with large
amounts of data. We will try more data later to improve the
running speed of the model and the feasibility of coping with
large amounts of data, which is the main research direction
in the future.

7. Conclusion

We proposed a fault diagnosis method based on DAE-SVM
for the ESPs fault problem. We used DAE to compare the
errors generated by data reconstruction with the threshold
values specific to normal data to determine in advance
whether there is an abnormality. +en, we combined the
data features extracted by DAE and used SVM classifier to
classify the faults. Experiments have shown that the method
is able to detect the presence of anomalies in advance and
performs well in fault diagnosis.

It is very interesting and innovative to explore new
applications for online real-time intelligent diagnosis and
hardware implementation using deep learningmethods such
as DAE-SVM. We will continue to study this topic in the
future. We also hope that this paper will provide a new idea
in the field of electric submersible pump failure.

Data Availability

Data can be made available upon reasonable request.

Table 8: Comparison of different methods in evaluation index.

Methods Conditions
Condition 1 Condition 2 Condition 3 Condition 4 Average value

DAE-SVM

MAE 0.0289 0.0306 0.0457 0.0363 0.0354
RMSE 0.0320 0.0543 0.0461 0.0231 0.0389
MAPE 0.1559 0.2474 0.1339 0.3579 0.2238
R2 (%) 95.33 96.71 94.33 97.34 95.93

SVM

MAE 0.0268 0.0359 0.0475 0.0512 0.0403
RMSE 0.0421 0.0435 0.0641 0.0631 0.0532
MAPE 0.2559 0.5474 0.3339 0.2579 0.3488
R2 (%) 96.33 93.71 91.33 92.34 93.43

KNN

MAE 0.0368 0.0451 0.0395 0.0212 0.0357
RMSE 0.0368 0.0569 0.0577 0.0571 0.0521
MAPE 0.0168 0.0259 0.0475 0.0562 0.0366
R2 (%) 94.33 92.71 92.33 96.34 93.93

RF

MAE 0.0489 0.0572 0.0699 0.0469 0.0557
RMSE 0.0268 0.0469 0.0498 0.0757 0.0498
MAPE 0.0168 0.0259 0.0475 0.0562 0.0366
R2 (%) 91.33 94.73 95.12 93.72 93.73

XGB

MAE 0.0227 0.0401 0.0427 0.0437 0.0373
RMSE 0.0414 0.0661 0.0397 0.0358 0.0458
MAPE 0.2510 0.4221 0.3137 0.4271 0.3535
R2 (%) 94.62 94.82 95.12 94.55 94.78
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