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Rotating machinery has played an enormous role in industrial production, and its stable operation is related to whether
production can proceed smoothly. At present, multichannel entropy-based methods are usually be adopted to analyze multi-
channel vibration signals. However, the collected signal may only have one channel in the actual situation. At this time, analyzing
only a single channel signal cannot effectively utilize the advantages of multivariate analysis. For this reason, this paper presents a
novel multivariate analysis approach and applies it to the fault diagnosis of machinery. Firstly, the parameter-optimized resonance
sparse decomposition (RSSD) algorithm is adopted to decompose the single-channel vibration signal into high and low resonance
components. +en, the two components are regarded as dual-channel vibration signals and input into the refined composite
generalized multivariate multiscale amplitude aware permutation entropy (RCGmvMAAPE) method to gain fault features.
Eventually, the features are input to the deep belief network (DBN) classifier to perform fault judgment. +e experiments of
rotating machinery are carried to verify the effectiveness of the developed approach. +e results display that the proposed fault
diagnosis method can achieve the classification accuracy of 100% and 98% when only a single-channel vibration signal is used,
which is better than the fault diagnosis method based on a multichannel vibration signal and enjoys strong stability.

1. Introduction

Rotating machinery is the most widely adopted me-
chanical equipment in the industrial sector. However,
since the working environment of rotating machinery is
mostly harsh, various types of faults are prone to occur,
resulting in serious personal and property losses [1, 2].
+erefore, it is necessary to study the general diagnostic
techniques for rotating machinery. +e internal structure
of the rotating machinery will change if there are the
faults, which exacerbate internal vibration. Consequently,
the vibration signal of the rotating machinery contains
information that can characterize the current state, which
indicates that the signals can be used for analysis to de-
termine the present status [3, 4].

+e operating conditions of rotating machinery can be
characterized by vibration during operation, but the vi-
bration is nonlinear data [5]. In order to extract the state
feature from the vibration data, effective methods must be

adopted to amplify the characteristic information and
eliminate the interference [6]. Signal decomposition algo-
rithms are typical methods for processing this kind of sig-
nals. By decomposing raw signal into several components,
these methods analyze the complexity of the signal on
multiple time scales and reduce the interference of distur-
bance components such as noise on feature extraction [7]. In
the current signal decomposition algorithms, the more
typical ones include wavelet transform (WT) and empirical
mode decomposition (EMD). Both of the above two algo-
rithms have obvious defects, which affect the reliability of
analysis. For example, WT cannot analyze the high fre-
quency components. In addition, it lacks ability to adaptively
process signals since its reliability is influenced by the
wavelet basis function. EMDdecomposes the signal based on
the local characteristics of the signal itself, so it can realize
the analysis without manually setting parameters, thereby
has the advantage of adaptive analysis. However, EMD has
serious modal aliasing and end effect defects, and the
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physical meaning of some components is not obvious, which
affects its reliability [8].

Resonance-based sparse signal decomposition (RSSD) is
a signal decomposition method based on resonance prop-
erties of signals, which can realize accurate analysis and
complexity measurement for nonlinear signals with complex
components [9, 10]. Based on the tunable Q-factor wavelet
transform (TQWT), RSSD uses the difference of quality
factor Q between the continuous oscillation signal and the
transient impact component to represent the complex signal
sparsely with high quality factor and low quality factor [11].
Different from signal decomposition approaches based on
frequency or time scale such as EMD, RSSD combines the
frequency and bandwidth of the signal simultaneously, so it
can perfectly separate the periodic pulse component and the
transient nonoscillating component in the vibration signal
[12]. Based on different quality factors, the approach divides
the composition of the signal into periodic harmonics, fault
impact, and noise and divides them into high resonance
components and low resonance components [13].+erefore,
the RSSD algorithm has a significant advantage for analyzing
the impact fault signals. Nevertheless, the excellent per-
formance of the RSSD algorithm is influenced by the quality
factor, the weight coefficient and the Lagrangian operator.
+e improper parameter settings will interfere with the
performance of RSSD [14]. +e Harris Hawk algorithm
(HHO) is a novel heuristic optimization algorithm proposed
by Mirjalili, which mainly simulate predation behavior of
Harris Hawk in nature. Compared with several other typical
optimization algorithms, the HHO algorithm performs
better and has higher search efficiency [15]. Considering the
excellent performance of HHO in the optimization problem,
combined with the RSSD algorithm, this paper proposes an
optimized RSSD based on HHO. +is method not only can
adaptively find the best combination of RSSD parameters,
but also has high optimization efficiency and excellent
generalization.

After processing the vibration signals, how to extract the
highly distinguishable features is the key to the fault diag-
nosis of rolling bearings. With the development of nonlinear
science, the feature extraction technology based on entropy
theory, such as permutation entropy (PE), amplitude-aware
permutation entropy (AAPE), and multiscale amplitude-
aware permutation entropy (MAAPE) had been favored by a
large number of researchers due to the good nonlinear data
processing performance [16, 17]. Because of the good ability
to extract the nonlinear fault information hidden in the
vibration signal, Wu used multiscale permutation entropy
(MPE) for the health detection of rolling bearings and
obtained ideal results [18]. However, the permutation en-
tropy does not consider the contribution of the amplitude of
the time series to the entropy value in the calculation, which
leads to inaccurate and sufficient analysis [19]. In this regard,
Chen proposed multiscale AAPE (MAAPE) by replacing PE
with AAPE and used it to excavate the fault characteristics of
rolling bearings [20]. Although MAAPE has better feature
extraction performance, there are still two shortcomings in
the application process as follows: (1) the coarse-grained
method adopted by MAAPE is achieved by calculating the

mean value of each coarse-grained time series, which slows
down the dynamic mutation trend of the original time series
to some extent; (2) the stability of MAAPE will decrease
significantly when the time series is short [21]. In view of the
abovementioned shortcomings, this paper proposes a re-
fined composite generalized coarse grained technology and
thus proposes refined composite generalized multiscale
amplitude aware permutation entropy (RCGMAAPE)
method.

Although RCGMAAPE enjoys excellent performance, it
is only applied to a single channel vibration data, thereby has
insufficient characterization capacity for multichannel data,
which reduces the quality of the fault information obtained
to a certain extent [22]. Reasonable use of multiple channel
fault information can achieve a more comprehensive di-
agnosis of rotating machinery faults. Based on the theory of
multidimensional embedding reconstruction, RCGMAAPE
is extended to multivariate, that is, the refined composite
generalized multivariate multiscale amplitude aware per-
mutation entropy (RCGmvMAAPE), which is adopted to
realize the complexity measurement of multichannel data.
At present, most of the feature extraction approaches based
on vibration signals are univariate analysis techniques.+ese
methods extract the single-entropy or multiscale entropy of
multiple components to mine the fault characteristics of
vibration signals, which can only effectively use the signal of
a single channel. It has been proved by experiments that
these methods also have good results and can achieve ac-
curate classification of rotating machinery fault types.
However, it can be noted that the features composed of
multiscale entropy of multiple components usually are high-
dimensional and contain more redundant information, so it
is necessary to reduce the dimensionality to improve the
classification efficiency and accuracy. To this end, this paper
develops a new feature extraction model that can realize
multivariate analysis using only a single-channel signal. +e
principle is to disintegrate the fault signal into a pair of high
and low resonance components through the parameter
optimized resonance sparse decomposition algorithm. After
that, these two components are employed as multichannel
data to form a multivariate signal. Finally, the proposed
RCGmvMAAPE method is applied to extract the fault
feature of the signal.

After obtaining the fault characteristics of rotating
machinery, selecting a suitable classifier for fault identifi-
cation is the very critical part. At present, the commonly
used classifiers include support vector machine (SVM) and
extreme learning machine (ELM), which are widely used in
pattern recognition because of their good generalization and
reliability. Nevertheless, the performance of SVM is easily
affected by the parameters, which need to be optimized [23].
ELM has high classification efficiency and excellent per-
formance. However, it is prone to large errors when dealing
with high-dimensional nonlinear classification problems
since the kernel function is not used [24]. With the con-
tinuous development of deep learning, the application of
deep learning to deal with classification problems has
gradually become a feasible solution. However, deep
learning is mainly aimed at the classification and
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identification of large batches of data, so the performance of
classification problems for small samples is not as good as
machine learning. Deep belief network (DBN) is an atypical
structure of deep learning in the processing of small samples,
which is composed of multilayer restricted Boltzmann
machines [25, 26]. DBN can effectively avoid the problem of
parameter selection by using pretraining and repeated fine-
tuning. In addition, it can be effectively used for the pattern
recognition problem of small samples, so this paper employs
it for the fault recognition of rotating machinery.

In conclusion, the main contribution of this paper is to
propose a new multivariate feature extraction method,
RCGmvMAAPE, and apply it to the fault diagnosis of ro-
tating machinery. In addition, considering that the vibration
signal may have only one channel, it cannot effectively take
advantage of the multivariate analysis method.+erefore, an
optimized RSSD is proposed to convert single-channel vi-
bration signals into dual channel signals, so as to make full
use of the advantage that the multivariate analysis method
can extract fault information from multichannel vibration
signals synchronously. +e structure of this paper is as
follows: Sections 2.1 and 2.2 mainly introduce the principle
of RSSD and the specific implementation process of opti-
mized RSSD. Sections 2.3 mainly introduces the theory of
RCGmvMAAPE and compares it with RCmvMPE,
RCmvMSE and mvMAAPE. Sections 3 introduces the
specific steps of the proposed fault diagnosis method. Sec-
tions 4 validates the effectiveness of the proposed method by
using two typical rotating machinery data. Section 5 draws
the conclusion of this paper.

2. Modified RSSD Method

2.1. Principle of RSSD. Resonance is a property of the signal.
+e larger the resonance property, the better the frequency
aggregation of the signal; the smaller the resonance property,
the better the time aggregation of the signal. +e signal
resonance sparse decomposition method sparsely decom-
poses a complex signal into high and low resonance com-
ponents according to the different signal resonance
properties. +e resonance property is represented by Q, and
the formula is as follows:

Q �
fc

BW

, (1)

where fc is the center frequency of the signal and BW is the
bandwidth.

+e resonant sparse signal decomposition method
combines the influence of frequency and bandwidth on the
signal. It can effectively separate the signals with overlapping
frequency bands and similar center frequencies using dif-
ferent quality factors. +is method first uses the two-channel
filter bank shown in Figure 1 to perform TQWTon the signal
to obtain a base function library with high and low-quality
factors. Here, H0(w) and H1(w) are low-pass and high-pass
filters, respectively; v0(n) and v1(n) are the filtered subband
signals, respectively. +e low-pass scale factor α and the

high-pass scale factor β can be obtained through the quality
factor Q and the redundancy r, as shown in (2).

β �
2

(Q + 1)α
� 1 −

β
r
. (2)

+en, the corresponding coefficients were obtained by
iteration, and the sparse decomposition objective function
was established by morphological analysis method, as
follows:

J W1, W2(  � x − S1W1 − S2W2
����

����
2
2 + λ1 W1

����
����1 + λ2 W2

����
����1,

(3)

where J is the objective function; W1 and W2 are the
transformation coefficients of the subband signals x1 and x2
under the frameworks S1 and S2, respectively; and λ1 and λ2
are the regularization parameters.

+e different values of λ1 and λ2 affect the energy dis-
tribution of sparse components. If only λ1 increases, the
energy of the corresponding component of λ1 decreases, and
the same is true for λ2. If λ1 and λ2 are increased at the same
time, the residual component energy will increase. In
equation (3), the first norm is not differentiable, making it
challenging to solve. For this reason, this paper adopts the
split augmented Lagrangian search algorithm. +e objective
function is minimized by iterative updating, and finally, the
high and low resonance components are separated.

x1 � S1W
∗
1 ,

x2 � S2W
∗
2 ,

⎧⎨

⎩ (4)

where W∗1 and W∗2 are, respectively, the transformation
matrix of the high and low resonance components when the
objective function J is the minimum; x1 and x2 are the
estimated values of high and low resonance components,
respectively.

2.2. HHO-RSSD Decomposition

2.2.1. Fitness Function. Correlation kurtosis is an index used
to evaluate the impact component content [27]. Compared
with a single kurtosis index, correlation kurtosis introduces a
correlation function based on kurtosis to perform auxiliary
operations, which can characterize the transformation of
shock components in a shock signal.+e correlation kurtosis
can be expressed as follows.

x (n)

H0 (w)

H1 (w)

v0 (n)

v1 (n)

Low scale α

High scale β

Figure 1: +e two-channel filter banks.
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CKM(T) � 
N
n�1


M
m�0 xn− MT


N
n�1 x2

n 
M+1

,

⎛⎝ (5)

where xn represents the initial time series;N is the number of
data points contained in the signal; T indicates the period of
the required pulse signal; M is the number of offset periods.

+e correlation kurtosis index is sensitive to the impact
component in the signal, and its sensitivity is related to the
settings of the parameters T and M. For a vibration signal,
when the given parameter Tmatches the period of the initial
signal, at this time, as the impact component in the signal
increases, the magnitude of the correlation kurtosis also
increases. In addition, in the decomposition process of
RSSD, more identical components may be decomposed
between high and low resonance components. To avoid this
situation, the constraint condition of cross-correlation is
introduced. Assuming there are two signals X and Y, the
correlation coefficient between the two signals is expressed
as follows:

C �


n
i�1 xi − x(  yi − y( 

�������������������������


n
i�1 xi − x( ∗

������������


n
i�1 yi − y( 

2
 ,

(6)

where C represents the correlation coefficient of the two
signals, and the value range is [− 1,1]. When C is − 1, the two
signals are negatively correlated; when C is 0, the two signals
are not correlated; when C is 1, the two signals are positively
correlated, and the two signals can be considered the same
signal. +erefore, combining the advantages of the corre-
lation kurtosis and the correlation coefficient, the maximum
ratio of the correlation kurtosis value of the low resonance
component to the correlation coefficient of the high reso-
nance component is used as the fitness function K, as
follows:

K �
CKM

C
. (7)

2.2.2. HHO Algorithm. +e Harris Hawk optimization al-
gorithm is an intelligent optimization algorithm that sim-
ulates the predation behavior of Harris Hawk. It mainly
consists of three parts: the search phase; and the conversion
and development phase.

(1) Search Phase. Harris Hawks randomly roost somewhere
and find their prey through two strategies:

X(t + 1) �
Xrand(t) − r1 Xrand(t) − 2r2X(t)


, q≥ 0.5,

Xrabbit(t) − Xm(t)  − r3 lb + r4(ub − lb) , q< 0.5,

⎧⎨

⎩

(8)

where X(t) and X(t + 1) are the positions of the individuals
in the current and next iteration respectively; t is number of
iterations; Xrand(t) is the position of the randomly selected
individual, Xrabbit(t) is the position of the prey, that is, the
position of the individual with the best fitness; r1, r2, r3, r4,
and q are all random numbers between [0,1]. q is used to

select the strategy to be adopted, Xm(t) is the average po-
sition of the individual; (ub, lb) refers to the range of the
initial random position of the eagle and the expression is as
follows:

Xm(t) � 

M

k�1

Xk(t)

M
, (9)

where Xk(t) is the position of the k-th individual in the
population and M is the population size.

(2) Search and Development Conversion Phase. +e HHO
algorithm can switch between different development be-
haviors according to the escape energy of the prey. During
the flight, the energy of the prey will be greatly reduced. In
order to simulate this situation, the energy of the prey can be
expressed as

E � 2E0 1 −
t

T
 , (10)

where E0 is the initial energy of the prey, which is a random
number between [− 1,1], which is automatically updated at
each iteration, t is the number of iterations, and T is the
maximum number of iterations.

(3) Development Phase. Define r as a random number be-
tween [0,1], used to select different development strategies.
When 0.5≤ |E|< 1 and r≥ 0.5, the soft siege strategy is
adopted for position update:

X(t + 1) � ΔX(t) − E JXrabbit(t) − X(t)


, (11)

where ΔX(t) � Xrabbit(t) − X(t) represents the difference
between the position of the prey and the current position of
the individual, and J is a random number between [0, 2].

When |E|< 0.5 and r≥ 0.5, a hard siege strategy is
adopted to update the position:

X(t + 1) � Xrabbit(t) − E|ΔX(t)|. (12)

When 0.5≤ |E|< 1 and r< 0.5, the asymptotic fast
swooping soft siege strategy is adopted for position update:

X(t + 1) �
Y, f(Y)<f(X(t)),

Z, f(Z)<f(X(t)),
 (13)

Y � Xrabbit(t) − E JXrabbit(t) − X(t)


, (14)

Z � Y + S∗ LF(2), (15)

where f is the fitness function, S is a two-dimensional
random vector, the elements are random numbers between
[0,1], and LF is the mathematical expression of Levi flight.

When |E|< 0.5 and r< 0.5, the position is updated by the
hard encircling strategy of asymptotic fast swooping:

X(t + 1) �
Y, f(Y)<f(X(t)),

Z, f(Z)<f(X(t)),
 (16)

Y � Xrabbit(t) − E JXrabbit(t) − Xm(t)


, (17)
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Z � Y + S∗LF(2). (18)

Algorithm steps:

Step 1: population initialization. According to the
upper and lower bounds of each dimension of the
search space, initialize each individual.
Step 2: calculate the initial fitness. Set the position of the
individual with the best fitness as the current prey
position.
Step 3: location update. First, update the escape energy
of the prey, and then execute the corresponding lo-
cation update strategy in the search or development
behavior according to the escape energy and the
generated random number.
Step 4: calculate fitness. Calculate the fitness of the
individual after the location update, and compare it
with the fitness value of the prey. If the fitness value of
the individual after the location update is better than
the prey, the individual location with the better fitness
value is used as the new prey location.

Repeat Steps 3 and 4, when the number of iterations of
the algorithm reaches the maximum number of iterations.
Output the current position of the prey as the estimated
position of the target.

2.2.3. HHO-Optimized RSSD Algorithm Steps. +e technical
flowchart of the proposed HHO optimization RSSD is
shown in Figure 2，and the specific optimization steps are
as follows:

(1) +e random position of the eagle was initialized, the
number of iterations T� 50, the population size
N� 20, and the three parameters were set between
0.001 and 200, and determine the fitness evaluation
function K.

(2) Preset the value range of the parameters to be op-
timized, such as the quality factor Q, the weight
coefficient A, and the Lagrangian multiplier u, and
give an initial value randomly.

(3) +e RSSD is used to decompose the vibration signal,
and the three parameters of the RSSD are optimized
through the HHO algorithm. After iteration, the
local optimal parameters are retained.

(4) HHO updates the position of the eagle through
different strategies, introduces it into the RSSD,
obtains the fitness function value, compares it with
the optimal fitness function value obtained in the
previous iteration, and obtains the optimal pa-
rameters corresponding to this optimal fitness
function.

(5) When the number of algorithm iterations reaches the
maximum number of iterations, the global optimal
fitness function value and the optimal parameter
value are output.

(6) Substitute the optimal parameter combination into
the RSSD to realize the decomposition of the vi-
bration signal.

2.3. RCGmvMAAPE

2.3.1. AAPE. AAPE is based on PE [28].+erefore, its theory
is very similar to PE similarity, and it is necessary to explain
the specific improvement method of AAPE after describing

Start

Input the vibration signal of rotating
machinery

Initialize the position of the eagle and pre-set
the value range of the parameters

Choose the range of parameters to be
optimized and select the fitness function

Use HHO to optimize RSSD parameters

Compute correlation kurtosis

Whether the
maximum number

of iterations is reached

Get the optimal parameter combination

Use the optimized RSSD to decompose the
vibration signal to obtain high and low

resonance components

End

N

Y

Figure 2: +e technical flowchart of the proposed HHO optimi-
zation RSSD.
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the theory of PE. +e foundation principle of PE is as
follows:

(1) For a one-dimensional time series x � x1, x2, . . . xi,

. . . xN} of length N, at any time point t, the recon-
struction vector ofm dimension can be generated by
the reconstruction of x

X
m,d
t � xt, xt+d, . . . , xt+(m− 2)d, xt+(m− 1)d 

t � 1, 2, . . . , N − (m − 1)d,
(19)

where m indicates the embedding dimension and d
indicates the time delay.

(2) In each reconstruction vector, according to the size
of each element, in ascending order, the permutation
of πr0 ,r1 ,···,rm− 1

can be obtained, which fulfills:

xt+ j1− 1( )d, xt+ j2− 1( )d, . . . , xt+ jm− 1− 2( )d, xt+ jm − 1( )d , (20)

where j∗ denote the index of the column of each
element in the reconstructed component. +us,
when the embedding dimension is m, there are m!
possible ordinal patterns, of which the ith permu-
tation is marked as πi.

(3) +e relative frequency of occurrence of πi in each
permutation pattern is described as

p πi(  �
g πi( 

N − (m − 1)d
, (21)

where g(πi) indicate a function that counts the
number of occurrences of πi in Xm,d

t . Whenever the
permutation order of the internal elements of Xm,d

t is
πi, the value of g(πi) linearly increases by 1.

(4) +erefore, according to the definition of entropy, PE
can be described as

PE(x, m, d) � − 

πi�m!

πi�1
p πi( ln p πi( . (22)

Although PE has excellent performance, it is still found
to have more serious defects, which makes it less reliable in
quantifying the complexity of time series. First of all, based
on the above description, PE only considers the contribution
of the ordering structure of the time series to the complexity
when calculating the probability, while the influence of the
amplitude information of each data point in the time series
on the entropy value is not calculated. Secondly, when there
are components with equal amplitude in the time series, the
influence of this group of elements on the entropy value is
not clearly stated. For this reason, by enhancing the sen-
sitivity to the amplitude and frequency of the time series,
AAPE is more comprehensive and accurate in measuring the
complexity of the time series. +e principle of AAPE is
reviewed as follows:

Supposing that the starting value of p(πm,d
i ) is 0, for the

reconstruction vector Xm,d
t , when the time t adds from 1 to

N-m+1 increasingly, the value of p(πm,d
i ) is updated when

the permutation πm,d
i changed.

p
update πm,d

i  � p πm,d
i  +

α
m



m

k�1
xt+(k− 1)d


 +

1 − α
m − 1



d

k�2
xt+(k− 1)d − xt+(k− 2)d


⎛⎝ ⎞⎠, (23)

where α ∈ [0, 1] denotes the adjustment coefficient, which is
used to adjust the weight of the time series amplitude mean
and the deviation between the amplitudes. +us, the

probability of p(πm,d
i ) occurring in the whole time series is

πm,d
i .

p πm,d
i  �

p
update πm,d

i 


N− m+1
t�1 α/m 

m
k�1 xt+(k− 1)d


 + 1 − α/m − 1

m
k�2 xt+(k− 1)d − xt+(k− 2)d


 

. (24)

+e AAPE of time series can be computed as follows:

AAPE(x, m, d, α) � − 

πk�m!

πk�1
p πk( ln p πk( . (25)

2.3.2. mvAAPE. In this part, the multivariate amplitude
perception permutation entropy is developed to quantify the

complexity of multichannel time series. +e principle of
mvAAPE can be expressed as follows [29]:

(1) Given the multivariate data X � Xc,1, Xc,2, . . . ,

Xc,i, . . . , Xc,L}c � 1, 2, . . . , q of q channels of length L
to be analyzed. Perform phase space reconstruction
on each sample, and the resulting matrix is as
follows:
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Z � Xc,i, Xc,i+d, . . . , Xc,i+(m− 2)d, Xc,i+(m− 1)d . (26)

(2) Rearrange the reconstruction vector Z into
xc,i+(j1− 1)d≤ xc,i+(j2− 1)d≤ · · · ≤xc,i+(jm− 1− 1)d≤xc,i+

(jm − 1)d} in ascending order. At this time, the
possible sorting mode πi exists m!

(3) Assume that the starting value of p(πm,d
c,i ) is zero. For

the reconstruction vector Z, when the time i grad-
ually increases from 1 to L− m+1, the value of p(πm,d

c,i )

is updated every time πm,d
c,i appears.

p
update πm,d

c,i  � p πm,d
c,i  +

α
m



m

k�1
xc,t+(k− 1)d


 +

1 − α
m − 1



m

k�2
xc,t+(k− 1)d − xc,t+(k− 2)d


⎛⎝ ⎞⎠. (27)

(4) Compute the probability of i-th sorting pattern
πi(1≤ i≤m!) in c-th channel as

p πm,d
c,i  �

p
update πm,d

c,i 


N− m+1
t�1 α/m 

m
k�1 xc,t+(k− 1)d


 + 1 − α/m − 1

m
k�2 xc,t+(k− 1)d − xc,t+(k− 2)d


 

. (28)

For q-channel time series, p(πc,i) satisfies


q
c�1 

m!
i�1p(πc,i) � 1.

(5) +e probability of the i-th pattern πi in q-channel
time series can be computed as follows:

p πi(  � 

q

c�1
p πc,i . (29)

(6) According to the definition, mvAAPE can be
expressed as

mvAAPE(X, m, d, α) � − 
m!

i�1
p πi( ln p πi( . (30)

mvAAPE mainly integrates data from multiple channels
so that AAPE can extract more features, making the analysis
more comprehensive and accurate. However, mvAAPE can
only extract the features of the signal on a single scale. But,
the effective information contained in the actual vibration
signal is often presented on multiple scales, and it is difficult
to fully extract the fault characteristics in the vibration signal
by only carrying out a single-scale analysis. +erefore, in
order to mine the fault information of the vibration signal
from multiple scales and enhance the robustness of the
analysis, the multivariate multiscale amplitude aware per-
mutation entropy was developed.

2.3.3. mvMAAPE. +e realization principle of mvMAAPE is
to obtain multiple coarse-grained time series by performing
coarse-grained processing on the multichannel time series.
+ese coarse-grained time series respectively represent the
vibration information of the original multichannel signal at
various scales. Subsequently, based on mvAAPE to mine the

fault information in these coarse-grained time series to
realize mvMAAPE analysis. +e basic implementation
principle of mvMAAPE is described as follows.

(1) For q channel time series U � uk,1, uk,2, . . . ,

uk,i, . . . , uk,L} with data points L. +e multivariate
coarse-grained time series at scale factor τ is com-
puted as

y
τ
k,j �

1
τ



jτ

i�(j− 1)τ+1
uk,i 1≤ j≤

L

τ
, 1≤ k≤p, (31)

Where τ is the scale factor, the coarse grained time
series is the raw time series when τ � 1.When τ > 1,
the original time series is divided into coarse-grained
time series of length L/τ.

(2) Compute the mvAAPE of each multivariate coarse-
grained time series, and get the mvMAAPE of U as
follows:

mvMAAPE � mvAAPE y
τ
k,j, m, d, α . (32)

By extending mvAAPE from single-scale analysis to
multiscale, more information can be obtained from multi-
variate coarse-grained time series of different scales, which is
called multivariate multiscale amplitude aware permutation
entropy analysis. However, in the abovementioned multi-
variate coarse-grained time series with a scale factor of τ,
only the information of the multivariate coarse-grained time
series starting from uk,1 is considered, and the information of
the remaining τ − 1 multivariate time series is not used.
mvMAAPE does not consider the relationship between
adjacent coarse-grained time series, resulting in a lack of
statistical information.
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2.3.4. RCGmvMAAPE. To overcome the shortcomings of
mvMAAPE, a new entropy method is proposed, which is
called RCGmvMAAPE. Compared with mvMAAPE,
RCGmvMAAPEmainly made two improvements. Firstly, to
reduce the large variance of mvFE when the scale factor is
large, this paper adopts refined composite analysis to achieve
coarse graining of time series, which can reduce the de-
pendence of entropy value on the length of time series data
and achieve stable results even when the length of time series
to be analyzed is short. Secondly, in order to accurately
describe the dynamic changes of the time series, the second-
order moment (root mean square) is used to replace the first-
order moment (mean) used in the traditional coarse-
graining method, so that it has a stronger fault feature
extraction ability. +e principle of RCGmvMAAPE is as
follows:

(1) For the n-channel multivariate time series
X � xk,b 

L

b�1, k � 1, 2, . . . , n with data point L, the
multivariate coarse grained time series is calculated
by using root mean square instead of mean value at
scale factor τ. +e elements in the a-th coarse-
grained time series Yτ

a � yτ
k,i,1, yτ

k,i,2, . . .  are
expressed as follows:

y
τ
k,i,a �

������������

1
τ



a+iτ− 1

b�a+τ(i− 1)

x
2
k,b




1≤ i≤
L

τ
, 1≤ k≤ n, 1≤ a≤ τ.

(33)

For a scale factor τ, there will be τ diverse coarse-
grained multivariate time series, as present in
Figure 3.

(2) For each coarse-grained multivariate time series,
calculate the marginal relative frequencies
p(πj).+en the average relative frequency p(πj) can
be calculated as follows

p πj  �
1
τ



τ

a�1
pa πj . (34)

(3) +erefore, the RCGmvMAAPE of the multichannel
time series can be described as follows:

RCGmvMAAPE � − 

πj�m!

πj�1
p πj  lnp πj . (35)

2.3.5. Parameter Selection and Performance Analysis. In the
RCGmvMAAPE algorithm, there are five parameters that
need to be set in advance, namely the embedding dimension
m, the time delay d, the adjustment coefficient a, the length
of the time seriesN and the scale factor S. For the embedding
dimension m, too small value will result in too few states
contained in the reconstruction vector, and the algorithm
losses its effectiveness, making it impossible to detect dy-
namic mutations in the time series. Conversely, if m is too
large, the reconstruction of the phase space will homogenize

the time series, which not only increases the amount of
calculation but also fails to highlight subtle changes in the
time series. +erefore, consider setting the embedding di-
mension m as 5. +e time delay has little effect on the
performance of the algorithm, so set it as d� 1. +e value of
the adjustment coefficient is usually a� 0.5. In addition, the
scale factor S cannot be set too large; otherwise, it will
produce more redundant information and affect the effi-
ciency of the analysis. On the contrary, too small value will
make the information extraction insufficient and affect the
effectiveness of the analysis, so this article is set as S� 20.+e
length of the time series also has a certain degree of influence
on the performance of the algorithm. Without loss of
generality, three-channel Gaussian white noise signals are
used for analysis, the lengths are respectively
N � 256, 512, 1024, 2048, 4096, 8192, and their
RCGmvMAAPE is calculated under the condition that other
parameters are the same. Figure 4 shows the entropy values
under different lengths. From Figure 1, when the length
N≥ 2048, the entropy curve is smoother and the fluctuation
is small. At this time, the RCGmvMAAPE of the white noise
signals of different lengths has a small difference and the
performance is relatively stable, so N� 2048 is selected.

+is part is mainly based on simulation signals to verify
the excellent performance of RCGmvMAAPE in measuring
the complexity of multichannel vibration signals. +e
RCGmvMAAPE method is compared with other typical
multivariate analysis methods through four different mul-
tichannel signals. White Gaussian noise (WGN) and 1/f
noise are two time series used to construct multichannel
simulation signals.+e irregularity ofWGN is higher than 1/
f. Compared with WGN, the power spectrum of 1/f noise is
more complex, so more mode information is integrated.+e
generation of WGN is random, so the probability of its state
transition matrix is approximately equal. On the contrary, 1/
f is a long-range correlation signal, and the irregularity of 1/f
noise is low than that of WGN. +erefore, 1/f noise is more
complicated than WGN.

Without loss of generality, multichannel signals with
three different channels are generated based on WGN and
1/f noise, which are (a) three channel WGN; (b) two
channel WGN and one channel 1/f; (c) one channel WGN
and two channel 1/f; (d) three channel 1/f.
RCGmvMAAPE, RCmvMPE, RCmvMSE and mvMAAPE
were studied, respectively. +e data length of each channel
is N � 2 048. +e mean and standard deviation curves of
RCGmvMAAPE, RCmvMPE, RCmvMSE and mvMAAPE
of the four synthetic signals are shown in Figure 3. It can
be seen from Figure 5 that compared with the other three
methods, the standard deviation of RCGmvMAAPE is
significantly smaller, which shows that RCGmvMAAPE is
more stable when measuring the complexity of multi-
channel time series. In addition, RCGmvMAAPE and
RCmvMPE methods can clearly distinguish four kinds of
multichannel synthetic signals, while mvMAAPE method
cannot effectively separate (a), (b), and (c), which indi-
cates that the coarse grainization method based on refined
composite generalized processing can obtain more ac-
curate results, thus effectively measuring the complexity
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Figure 3: Continued.
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Figure 3: Illustration of refined composite coarse-grained approach for multivariate time series with scale factor 2. (a) First coarse-grained
time series; (b) second coarse-grained time series. Figure is reproduced from Fuming Zhou 2020.
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of time series. Besides, RCmvMSE has a poor distinction
between (c) and (d), which is mainly because the method
is mainly based on multivariate sample entropy to realize
its function, and sample entropy has many defects when
processing time series, so RCmvMSE has a poor perfor-
mance. In conclusion, compared with the other three
multivariate analysis methods, RCGmvMAPE improves
its ability to extract feature information from multi-
channel vibration signals by adopting refined generalized
composite coarsing processing, so it can better measure
the complexity of multichannel signals.

3. The Proposed Fault Diagnosis Model

According to the previous analysis, RCGmvMAAPE can
effectively measure the complexity of multichannel time
series. +e HHO-RSSD can adaptively decompose the vi-
bration signal into high and low resonance components, and
has excellent time-frequency analysis performance. +ere-
fore, a new fault diagnosis technology for rotatingmachinery
was developed. First, HHO-RSSD and RCGmvMAAPE are
adopted to extract high-quality features that characterize the
fault state from the signals of rotating machinery.
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Figure 5: RCGmvMAAPE, RCmvMPE, RCmvMSE, and mvMAAPE of four multichannel synthetic signal.
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Subsequently, a deep belief network classifier with excellent
generalization performance is used to identify the types of
faults. +e technical implementation process is shown in
Figure 6. +e detailed steps are as follows:

(1) Under a given sampling frequency, the vibration data
of the rotating machinery in different fault states are
collected through the accelerometer and divided into
training samples and test samples.

(2) HHO algorithm is used to optimize the key pa-
rameters of RSSD and find the best combination of
parameters. Subsequently, the optimized RSSD is
used to decompose the vibration signal to obtain
high and low resonance components containing rich
vibration information to highlight the fault
components.

(3) +e high and low resonance components are used as
multichannel data to construct a multivariate time
series, and then the RCGmvMAAPE of the multi-
variate time series is calculated to generate fault
features.

(4) +e deep belief network classifier is trained through
the training data set to obtain the best classifier
model.

(5) +e remaining test data set is input to the trained
DBN classifier model for fault identification.
According to the output result of the DBN classifier,
the fault type of the rotating machinery is judged.

4. Experimental Verification

To validate the validity and reliability of the approach raised
in this paper for the health recognition of general rotating
machinery, experiments were carried out using two typical
rotating machinery vibration data, rolling bearings and
gears. +e rolling bearing data is offered by the public data
set, and the gear vibration data is collected on the QPZZ-II
vibration test platform.

4.1. Case 1

4.1.1. Data Collection. To test the effectiveness of the raised
approach of fault diagnosis for rotating machinery, firstly,
experiments are carried out adopting rolling bearing data.
+e experimental data used the typical vibration data set of
rolling bearings offered by the Electrical Laboratory of Case
Western Reserve University [30]. +e structure of the
platform is shown in Figure 7. Seen from Figure 7, the vi-
bration acquisition platform is composed of components
such as a motor, a drive end bearing, a fan end bearing, and
an accelerometer. +e bearing model adopted in the ex-
periment is 6205-2RS-JEM SKF. +e running power of the
motor is 0 horsepower and the rotating speed is 1797 rpm.
+e vibration data is collected by sensors installed at the
drive end and the fan end.+e sampling frequency is 12 kHz,
and the sampling time for each working condition is 10 s.
Different types of single-point faults are set up on the rolling
bearings by EDM. +e fault diameters are 0.1778mm,

0.3556mm and 0.5334mm, and the fault depth is
0.2794mm. +e fault diameter represents the severity of the
fault of the rolling bearing. Experiments were performed for
both fan and drive end bearings with outer race faults lo-
cated at 6 o’clock. +e fault data used in this experiment
includes four types of normal, inner race fault, outer race
fault, and ball fault. Each fault type contains three different
severity, so a total of ten types of vibration data are included.
+e vibration data of each working condition is divided into
58 groups of nonoverlapping samples, and the number of
data points contained in each sample is 2048. Randomly
select 28 groups of samples as the training set, and the
remaining 30 groups as the test set. +e brief information of
the data used is displayed in Table 1.

4.1.2. Analysis and Feature Extraction. Figure 8 presents the
waveform of the vibration data adopted in the experiment.
+e waveform is a nonlinear modulation signal with
complex components and contains a large number of ir-
regular impact components. +erefore, it is hard to easily
judge the status of fault of the rolling bearing by observing
the waveform of the vibration signal, and further processing
of the vibration signal is required to obtain more failure
information.

+is part mainly studies how to obtain the best RSSD
algorithm. First input the rolling bearing vibration signal to
HHO-RSSD to perform signal decomposition. Taking the
normal state as an example, the iterative process ends when
the value of the correlation kurtosis is the smallest.

Rotating machinery vibration signal

Training sample set Testing sample set

Decompose vibration signal based
on HHO-RSSD

Select high and low resonance components as
multi-channel data

Use RCGmvMAAPE to extract fault features
from multi-channel data

Train the DBN
classifier

Testing the DBN
classifier

Output the fault
severity

Figure 6: +e technical implementation process.
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Subsequently, after HHO optimized RSSD, a set of best
parameter combinations were obtained, which are
Q1 � 11.206, Q2 � 0.958, A1 � 0.92, A2 � 0.16, u� 0.456.
Figure 9 is the evolution curve of fitness value in the op-
timization process of HHO. Seen from Figure 9, HHO can
reach the local optimum relatively quickly, and then jump
out quickly and reach the global optimum, and the final
convergence value is also small, which shows that HHO has
higher optimization performance. +en, the optimal pa-
rameter combination obtained by optimization is input into
the RSSD, and the vibration signal is decomposed to acquire
the high and low resonance components. +e RSSD de-
composition result of Nor is shown in Figure 10.

+e high and low resonance components are taken as a
multichannel time series, and then RCGmvMAAPE is
adopted to excavate the fault features of the constructed
multivariable data to construct the fault samples. In addi-
tion, to validate the effectiveness of the raised
RCGmvMAAPE approach, it is compared with RCmvMPE,
RCmvMSE, mvMAAPE and RCGMAAPE. +e entropy
results of seven methods are displayed in Figures 11(a)∼
Figures 11(g). Here, Figures 11(a)–11(d) are the analysis

results of four multivariate analysis methods on multivariate
data composed of high resonance components and low
resonance components; Figure 11(e) and Figure 11(f ) are the
results of using the univariate analysis method RCGMAAPE
to analyze the high and low resonance components, re-
spectively; Figure 11(g) is the analysis result of
RCGmvMAAPE on the multivariate data composed of the
vibration signals of the drive end bearing and the fan end
bearing. By comparing Figures 11(a)–11(d), the advantages
of RCGmvMAAPE in measuring the complexity of multi-
channel data over the other three methods can be validated.
By comparing Figure 11(a) and Figures 11(e) and 11(f), it
can be proved that using RCGmvMAAPE to analyze mul-
tichannel data is better than RCGMAAPE to analyze single-
channel data. In addition, the comparison between
Figure 11(a) and Figure 11(g) can prove that after proper
processing, only a single-channel vibration signal can also
achieve good results. Seen from Figure 11, compared with
several other feature extraction models, the standard devi-
ation of the entropy value of Figure 11(a) is smaller and the
performance is more stable. On most scales, the ability of
Figure 11(b) to distinguish between bearing faults is not

Fan end bearing Electric motor Drive end bearing Torque sensor Power tester

Figure 7: +e fault simulation test platform of rolling bearing.

Table 1: +e brief information of the data.
Working condition Fault Diameter (mm) Abbreviation Training Sample Testing Sample Label
Normal Nor 28 30 1

Inner race fault

0.1778 IRF1 28 30 2
0.3556 IRF2 28 30 3
0.5334 IRF3 28 30 4
0.1778 ORF1 28 30 5

Outer race fault
0.3556 ORF2 28 30 6
0.5334 ORF3 28 30 7
0.1778 BF1 28 30 8

Ball fault 0.3556 BF2 28 30 9
0.5334 BF3 28 30 10

Shock and Vibration 13



satisfactory. Especially for IRF1 and BF1 samples, the curves
of these two samples have obvious aliasing, so it is difficult to
distinguish these two fault states. Figure 11(c) has a relatively
obvious degree of discrimination, but its entropy deviation is

obviously larger, that is, the error is larger. Compared with
Figure 11(a), Figure 11(d) has significantly worse ability to
distinguish samples from each state, and the entropy de-
viation is also larger, which indicates that its performance is
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Figure 11: Continued.
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unstable and its reliability is low. +e entropy curves of the
six samples in Figure 11(e) are obviously aliased, and the
ability to distinguish these samples is very poor. Figure 11(f )
has excellent performance, but it can be found that its
entropy deviation is slightly larger than that of Figure 11(a),
and the stability is insufficient, so its performance is weaker
than Figure 11(a). Figure 11(g) can effectively distinguish
between ORF1 and ORF3 samples, while the ability to
distinguish other samples is weaker than Figure 11(a). But it
can be found that the entropy deviation of Figure 11(g) is
smaller, that is, the stability and reliability are better. +is is
mainly because the vibration signal of the fan end also
contains the vibration information of the bearing during
operation. As the Figure 11(g) integrates the information of
two bearings, it has a relatively excellent effect. In summary,
using RCGmvMAAPE to analyze multichannel data com-
posed of high and low resonance components can achieve
very excellent results, and the effect is even better than that of
data composed of vibration signals from the drive end and
the fan end.

To compare the performance of the abovementioned
seven feature extraction models from a more intuitive
perspective, the t-stochastic neighbor embedding (t-SNE)
method is used for auxiliary analysis. +e t-SNE approach is
adopted to project the original features into a two-dimen-
sional space. +e visualization of the features extracted by
the seven methods is 1 in Figure 12. Observed from Fig-
ure 12, the features of the same category in Figure 12(a) are
accurately clustered, and samples of different categories are
separated from each other, that is, the features are highly
distinguishable. However, the distinguishability of features
extracted based on other six models is weak, and some

samples are aliased with each other, which makes it difficult
to distinguish their categories. Comparing Figures 12(e) and
12(f), It can be observed that the visualization effect of
Figure 12(f ) is better than Figure 12(e), which shows that the
low resonance component contains more fault information,
so the extracted quality is higher. In addition, by comparing
Figures 12(a) and 12(g), it can be found that the visualization
effect of Figure 12(a) is better, while the BF2 and BF3
samples in Figure 12(g) show obvious aliasing, and the
distribution of samples in the same category is relatively
scattered, without obvious clustering center. +erefore, by
visualizing the features, it can be proved that using
RCGmvMAAPE to extract features from multivariate data
composed of high resonance components and low resonance
components has a better effect, which proves the reliability
and effectiveness of the raised approach.

4.1.3. Fault Recognition. To quantify the performance of the
above seven feature extraction models on rolling bearing
fault diagnosis, the state features excavated by the seven
approaches are input into the DBN recognizer for fault
classification. +e confusion matrix is a tool for describing
the performance of a classification model. It contains in-
formation about the actual and predicted classifications
completed by the classification model, which can be used to
evaluate the performance of the classification model. By
observing the confusion matrix, the detailed classification
results of each category can be clear.+e confusion matrix of
the seven feature extraction models is displayed in Figure 13.
Observed from Figure 13, the proposed fault diagnosis
method achieves the best fault recognition rate, and samples
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Figure 11: +e entropy results of rolling bearing data analyzed by using seven methods.
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Figure 12: Continued.
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of all categories are accurately classified. However, the
classification accuracy of several other feature extraction
models is lower than the proposed method. Corresponding
to the previous analysis, the classification accuracy of
Figure 13(e) is poor, and only a fault recognition rate of
90.33% has been achieved. Except for the Nor, IRF3 and
ORF1 samples, the fault recognition rates of the other
categories of samples are all lower than 100%.+is is because

after RSSD decomposes the vibration signal, most of the
vibration information is concentrated in the low resonance
component, and the high resonance component contains
less fault information, so the features extracted from the high
resonance component have lower quality. In addition, by
comparing Figures 13(a) and 13(g), it can be noticed that the
multichannel data composed of vibration signals from the
driver end and fan end does not achieve the best recognition
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Figure 12: +e two-dimensional feature visualization map obtained by t-SNE.
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Figure 13: Continued.
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effect, and its performance is weaker than the multichannel
data composed of high resonance components and low
resonance components. +is proves that the RSSD de-
composition can eliminate the interference in the signal. In
summary, the proposed feature extraction model has ex-
cellent performance and can accurately identify various
types of faults.

+ere may be errors in performing only a single clas-
sification experiment, and the performance of the proposed
method cannot be reliably evaluated. +erefore, 20 trials was
repeated to reduce the deviation caused by randomness and
other factors. +e results of seven feature extraction models
in 20 trials are shown in Figure 14 and Table 2. Seen from
Figure 14 and Table 2, the raised approach has the highest
accuracy rate, and the average accuracy rate is 100%, that is,
there are no misclassified samples in each classification.
However, the classification accuracy of the other methods
fluctuates, and the effect of each classification cannot be
accurately estimated, that is, the stability is poor. Besides,
comparing the feature extraction methods based on
RCmvMSE and mvMAAPE, it can be found that the per-
formance of the latter is better than the former. +is shows
that although the former adopts a fine composite coarse-
graining process with excellent performance, mvAAPE has a
stronger feature extraction performance thanmvSE, so it can
make up for the shortcomings of the traditional coarse-
graining process. In addition, the diagnostic performance of
each model is consistent with the previous visual analysis,
that is, the performance of the model can be roughly judged
by observing the distribution of each feature. In general, the
proposed feature extraction model still has the best per-
formance after many experiments, which proves its
reliability.

+is part mainly verifies the advantages of using RSSD to
preprocess the signal. Typical signal decomposition

techniques such as EEMD, LMD, and LCD are used to
process vibration signals. Here, the first two components
decomposed by each method are regarded as the compo-
nents containing the main fault information to construct a
multivariate signal. +e subsequent processing steps are
same with the presented approach. +e diagnostic results of
the four signal decomposition approaches under 20 trials are
shown in Figure 15. Seen from Figure 15, the signal de-
composition method based on HHO-RSSD achieves the best
results, proving that the parameter-optimized RSSD has
great application potential. +e accuracy of the other three
methods fluctuates, and the possibility of misclassification
appears in each trial. +e reason for this phenomenon is that
the components decomposed by these three methods are of
low quality, which affects the quality of extracted features. In
short, as long as the parameters of the RSSD are reasonably
selected, it can achieve very excellent results.

To explore the superiority of the DBN over other
typical classifiers, the state features excavated by the
proposed method are input into the typical recognizer.
+e selected classifiers are SVM, ELM, and Back Propa-
gation Neural Network (BP). For convenience, the pre-
vious seven feature extraction models are marked as
(a)–(g). +e number of training samples and test samples
remains the same. +e results of these seven feature ex-
traction models using different classifiers are shown in
Table 3. Seen from Table 3, the DBN recognizer used is the
best. +e average recognition accuracy of DBN for the
seven feature extraction models is 96.38%, which is higher
than the other three classifiers, which proves its effec-
tiveness and advantages. In addition, no matter what
classifier is used, the recognition rate of the feature ex-
traction model (a) is also the highest, with an average
accuracy rate of 99.34%, which proves the advantages of
this model over other models once again.
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Figure 13: +e confusion matrix of the seven feature extraction models.
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4.2. Case 2

4.2.1. Data Acquisition. +e gearbox vibration data was
collected on the QPZZ experimental platform [31]. +e
appearance and structure of the gearbox platform are dis-
played in Figure 16. +e platform is made up of gearboxes,
motors, bases and sensors. +e sensor is arranged directly
above the gear box. +e rotating speed of the motor is set to
880 rpm. Five operating states were set up in the experiment:
normal, gear pitting fault, gear broken tooth fault, gear
wearing fault, gear pitting fault coupling with wearing fault.
+e brief information of the experimental data is displayed
in Table 4. +e sampling frequency of the sensor is set to
5.12 kHz, and the sampling time is 6 s. Due to the small
amount of data, to ensure the accuracy of analysis, a sliding
sampling method is adopted to select samples. +e signal of
the bearing Y on the motor side of the input shaft is used for
analysis. In the subsequent multichannel analysis, the

vibration signals of the input shaft motor side bearing Y and
the output shaft load side bearing Y are selected for analysis.
+e collected vibration signals are divided into 52 groups of
samples after sliding sampling. Each group contains 2048
data points, of which 22 groups are adopted as the training
data, and the remaining samples are adopted as the test data.
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Figure 14: +e diagnostic result of the seven feature extraction models in 20 trials.

Table 2: Recognition result of seven methods in 20 trials.

Methods

Accuracy obtained
using diverse
approaches (%) SD

Max Min Mean
+e presented approach 100 100 100 0
RCmvMPE 100 97 98.42 0.786
RCmvMSE 94.67 92.33 93.55 0.744
mvMAAPE 97 95 96.08 0.639
RCGMAAPE_High 92 89 90.63 0.885
RCGMAAPE_Low 98 96.33 97.08 0.483
RCGmvMAAPE_Drive_Fan 100 98 99.02 0.669
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4.2.2. Feature Excavation. Figure 17 shows the waveforms of
vibration data in five states of the gearbox. Similarly, due to
the lack of obvious rules and characteristics of the waveform,
it is hard to easily judge the fault status. +erefore, it is
necessary to carry out subsequent processing on the data to
acquire more and more distinguishable features.

Similarly, this part first studies how to obtain the best
parameters of RSSD. First, input the gear vibration signal
into HHO-RSSD for decomposition, and execute the pa-
rameter optimization process. Taking the Nor signal as an
example, the optimization process ends when the correlation
kurtosis value is the smallest. +en, after parameter opti-
mization, a set of optimal parameters was obtained,
Q1 � 9.336, Q2 � 1.319, A1 � 1.23, A2 � 0.11, and
u � 0.377,respectively. Figure 18 is the evolution curve of
fitness value in the optimization procedure of HHO. Seen
from Figure 18, HHO could quickly reach a local optimal
value, and this value is finally determined to be the global
optimal value. +erefore, this shows that HHO can optimize
the target from the global scope, so as to find an optimal

solution.+en, the optimal parameter combination obtained
by optimization is input into the RSSD, and the vibration
signal is decomposed to acquire the high and low resonance
components. +e RSSD decomposition result of Nor is
shown in Figure 19.

+e high and low resonance components are taken as a
multichannel time series. +en, RCGmvMAAPE is adopted
to excavate the fault features of the constructedmultivariable
data to construct the fault samples. Moreover, to validate the
superiority of the raised RCGmvMAAPE approach, it is
compared with RCmvMPE, RCmvMSE, mvMAAPE, and
RCGMAAPE. +e entropy results of seven methods are
displayed in Figures 20(a)∼20(g). Here, the method used in
each figure is consistent with the previous experiment. Seen
from Figure 20, compared with several other feature ex-
traction models, the standard deviation of the entropy value
of Figure 20(a) is smaller and the performance is more stable.
+e distinguishability of several other features is also very
strong, but the entropy deviation is generally large, and the
error bar has obvious aliasing.+is phenomenon proves that

Table 3: +e diagnostic results obtained by combining seven models with four classifiers.

Classifier model +e accuracy of test sample with different feature extraction model (%) Average accuracy(a) (b) (c) (b) (e) (f ) (g)
DBN 100 98.67 93.33 96 91.33 96.67 98.67 96.38
SVM 100 97.67 94.67 93.33 90 95.33 97.33 95.48
ELM 99.67 95.33 91 95.33 88.67 94.67 97 94.52
BP 97.67 92 89.33 92.67 90.67 93.33 96 93.10
Average accuracy 99.34 95.92 92.08 94.33 90.18 95 97.25 _

AC motor Iron base Gearbox Sensor position MPB

Figure 16: +e gearbox test platform.

Table 4: +e brief information of gear vibration data.
Fault state Abbreviation Training sample Testing sample Label
Normal Nor 22 30 1
Gear wearing fault WF 22 30 2
Gear pitting fault PF 22 30 3
Gear tooth breaking fault TBF 22 30 4
Gear pitting & wearing fault PWF 22 30 5
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although the features have obvious discrimination, the
performance fluctuates greatly, which is not conducive to
subsequent classification. +e proposed model can distin-
guish each fault state better, and has a small entropy de-
viation on most scales, so it has not only strong separability,
but also has stable performance.

Similarly, t-SNE is used for auxiliary analysis to intui-
tively compare the performance of the above seven feature
extraction models.+e visualization of the features extracted
by the seven methods is displayed in Figure 21. Observed
from Figure 21, the WF sample and the TBF sample in
Figure 21(a) are partially aliased, and the distribution of
these two categories is relatively scattered, that is, the
samples of these two categories have poor separability. +e
distinguishability of features extracted based on other

feature extraction models is worse, and some samples do not
even have cluster centers. Comparing Figures 21(a) and
21(g), Figure 12(g) has a better visualization effect. +e
clusters of the five categories are relatively scattered, but the
distribution of samples of the same category is relatively
scattered, and there is no obvious cluster center. By visu-
alizing the features, the quality of the features extracted by
each model can be roughly judged, and then the perfor-
mance of the model can be judged. +erefore, it can be
verified that the features of Figure 21(a) have better quality,
which proves the superiority of the presented approach.

4.2.3. Fault Recognition. For the sake of quantifying the
performance of the above seven fault feature extraction
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Shock and Vibration 25



0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
RC

m
vM

SE

2 4 6 8 10 12 14 16 18 200
Scale factor

Nor
WF
PF

TBF
PWF

(c)

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

m
vM

A
A

PE

2 4 6 8 10 12 14 16 18 200
Scale factor

Nor
WF
PF

TBF
PWF

(d)

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

RC
G

M
A

A
PE

2 4 6 8 10 12 14 16 18 200
Scale factor

Nor
WF
PF

TBF
PWF

(e)

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

RC
G

M
A

A
PE

2 4 6 8 10 12 14 16 18 200
Scale factor

Nor
WF
PF

TBF
PWF

(f )

Figure 20: Continued.

26 Shock and Vibration



2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

RC
G

m
vM

A
A

PE

2 4 6 8 10 12 14 16 18 200
Scale factor

Nor
WF
PF

TBF
PWF

(g)

Figure 20: +e entropy results of gearbox data analyzed by adopting seven approaches.
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models on rolling bearing fault diagnosis, the features ex-
cavated by the seven approaches are input into the DBN
recognizer for fault classification. +e confusion matrix of
the seven feature extractionmodels is presented in Figure 22.
Observed from Figure 22, some WF samples and TBF
samples were misclassified. One WF sample was mis-
classified to TBF, and two TBF samples were misclassified to
WF. +e accuracy of a single classification is 98%, which is
still reliable. +e performance of several other feature ex-
traction models is weaker than the proposed model, which is
also consistent with the previous t-SNE analysis. In addition,
the fault recognition rate of Figure 22(g) is better than
Figure 21(a), reaching 98.67%. +is is mainly because the
gear vibration data usually includes multiple channels, and
its operating information is distributed in multiple direc-
tions. Key feature will inevitably be missed when the signal
of a single channel is used for analysis. Although
Figure 22(g) only analyzes the original multichannel vi-
bration signal without corresponding processing, the rich
vibration information contained in the multichannel signal
can provide enough features for judging the fault state. +e
proposed feature extraction model only uses a single-
channel vibration signal, but can achieve a fault recognition
rate of 98%, which is satisfactory to a certain extent.
Comparing Figure 22(e) and Figure 22(f), the analysis of low
resonance components has achieved better results, which is
also consistent with the results of the previous experiment.
+is shows that the main fault information after RSSD
decomposition is concentrated on the low resonance
component, while the high resonance component contains
less fault information.

By comparing Figures 22(a) and 22(f), it can be found
that only a single experiment may not be able to estimate the
effectiveness of the approach reliably, that is, a single

experiment has strong randomness. +erefore, 20 trials was
repeated to reduce the deviation caused by randomness and
other factors. +e results of seven feature extraction models
in 20 trials are shown in Figure 23 and Table 5. Seen from
Figure 23 and Table 5, the proposed model achieves the best
classification results, with an average accuracy rate of
98.10%, of which the highest is 100% and the lowest is 96%.
Although the recognition rate has obvious fluctuations, it is
generally reliable. +e other six methods fluctuate sharply,
especially the fifth feature extraction model, with a standard
deviation as high as 2.191. Such a high deviation proves that
the performance of the method is quite unstable, and the
classification result is not very reliable. In addition, it can be
found that the performance of the method proposed in this
paper is better than that of the seventh model, which is
consistent with the previous analysis, that is, a single ex-
periment is not convincing. As the number of classifications
increases, the proposed model has higher stability and
performance. +erefore, it can be guaranteed that it is re-
liable in most classifications, while the performance stability
of the seventh model is weaker than the proposed model, so
the overall performance of the proposed method is excellent.

+is part mainly verifies the advantages of using RSSD to
preprocess the signal. Typical signal decomposition tech-
niques such as EEMD, LMD, and LCD are used to process
vibration signals. Here, the first two components decom-
posed by each method are regarded as the components
containing the main fault information to construct a mul-
tivariate signal. +e subsequent processing steps are same
with the presented approach. +e diagnostic results of the
four signal decomposition approaches under 20 trials are
shown in Figure 24. Seen from Figure 24, the signal de-
composition method based on HHO-RSSD achieves the best
results, proving that the parameter-optimized RSSD has
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Figure 21: +e two-dimensional feature visualization map obtained by t-SNE.
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Figure 22: Continued.
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great application potential. +e accuracy of the other three
methods fluctuates, and the possibility of misclassification
appears in each trial. +is proves that HHO-RSSD has ex-
cellent signal analysis performance. By decomposing the
signal, it can reduce the influence of interference compo-
nents in the signal on feature extraction. +erefore, it is
necessary and effective to use HH0-RSSD to process the
signal.

Similarly, this part is used to study the advantages of
choosing DBN as a classifier, so three typical classifiers are
also selected for comparison. Here, the ratio of the test and
training samples remains the same. Similarly, for

convenience, the previous seven feature extraction models
are marked as (a)–(g). +e results of these seven feature
extraction models using different classifiers are shown in
Table 6. Seen from Table 6, the DBN recognizers obtain the
highest recognition rate.+e average recognition accuracy of
DBN for the seven feature extraction models is 93.71%,
which is higher than the other three classifiers, which proves
its effectiveness and advantages. In addition, no matter what
classifier is used, the recognition rate of the feature ex-
traction model (a) is also the highest, with an average ac-
curacy rate of 99%, which proves the advantages of this
model over other models once again.
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Figure 22: +e confusion matrix of the seven feature extraction models.
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Table 5: Recognition result of seven methods in 20 trials.

Methods Accuracy obtained using diverse approaches (%) SDMax Min Mean
+e presented approach 100 96 98.10 1.247
RCmvMPE 96.67 92 94.73 1.400
RCmvMSE 92 87.33 89.73 1.520
mvMAAPE 90 83.33 86.70 2.124
RCGMAAPE_High 90.67 82.67 87.47 2.191
RCGMAAPE_Low 96.67 91.33 93.73 1.696
RCGmvMAAPE_Drive_Fan 99.63 94.67 96.88 1.701
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5. Conclusion

At present, typical health detection approach on the basis of
signal processing and entropy are usually as follows: (1)
Multiscale entropy of a single component; (2) Single entropy
of multiple components; (3) Multiscale entropy of multiple
components;+ese three types have some defects that can be
improved. For example, the fault features extracted by the
first two approaches are not comprehensive and sufficient,
which may cause information omission. Although the third
method can extract very comprehensive features, it may
cause the dimensionality to be too large, and usually requires
dimensionality reduction. +us, a novel multiscale feature
extraction method is proposed. First, the RSSD algorithm
optimized by HHO is adopted to decompose the single-
channel signal into high and low resonance components.
+en use these two components as multichannel data and
perform RCGmvMAAPE analysis to extract fault features.
Eventually, the features are input to the DBN classifier for
identification. Based on two rotating machinery vibration
data sets, six different feature extraction models are utilized
to compare with the presented approach. Experimental
results show that the raised model can obtain a higher fault
recognition rate and a higher utilization rate of information
when only using a single channel vibration signal. Subse-
quently, to prove the superiority of the RSSD, three classic
signal decomposition algorithms were used for comparative
analysis, and the results proved that HHO-RSSD has sat-
isfactory performance.
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available from the corresponding author upon request.

Conflicts of Interest

+e author declares no conflicts of interest.

References

[1] R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for
fault diagnosis of rotating machinery: A review,” Mechanical
Systems and Signal Processing, vol. 108, pp. 33–47, 2018.

[2] K. Li, L. Su, J. Wu, H. Wang, and P. Chen, “A rolling bearing
fault diagnosis method based on variational mode decom-
position and an improved kernel extreme learning machine,”
Applied Sciences, vol. 7, no. 10, 2017.

[3] Z. Feng and M. J. Zuo, “Vibration signal models for fault
diagnosis of planetary gearboxes,” Journal of Sound and Vi-
bration, vol. 331, no. 22, pp. 4919–4939, 2012.

[4] L. You, W. Fan, Z. Li, Y. Liang, M. Fang, and J. Wang, “A fault
diagnosis model for rotating machinery using VWC and
MSFLA-SVM based on vibration signal analysis,” Shock and
Vibration, vol. 2019, 2019.

[5] X. Yang, J. Yan, H. Zhu, Y. Cao, and L. Shao, “Research on
fault diagnosis of hydraulic pump using convolutional neural
network,” Journal of Vibroengineering, vol. 18, no. 8,
pp. 5141–5152, 2016.

[6] W. Zhang and J. Zhou, “A comprehensive fault diagnosis
method for rolling bearings based on refined composite
multiscale dispersion entropy and fast ensemble empirical
mode decomposition,” Entropy, vol. 21, no. 7, p. 680, 2019.

[7] Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical
mode decomposition in fault diagnosis of rotating machin-
ery,” Mechanical Systems and Signal Processing, vol. 35,
pp. 108–126, 2013.

[8] W. Y. Liu, Q. W. Gao, G. Ye, R. Ma, X. N. Lu, and J. G. Han,
“A novel wind turbine bearing fault diagnosis method based
on Integral Extension LMD,” Measurement, vol. 74, pp. 70–
77, 2015.

[9] I. W. Selesnick, “Resonance-based signal decomposition: A
new sparsity-enabled signal analysis method,” Signal Pro-
cessing, vol. 91, no. 12, pp. 2793–2809, 2011.

[10] B. Chen, B. Shen, F. Chen et al., “Fault diagnosis method based
on integration of RSSD and wavelet transform to rolling
bearing,” Measurement, vol. 131, pp. 400–411, 2019.

[11] P. Ma, H. Zhang, W. Fan, and C. Wang, “Early fault diagnosis
of bearing based on frequency band extraction and improved
tunable Q-factor wavelet transform,” Measurement, vol. 137,
pp. 189–202, 2019.

[12] W. Huang, H. Sun, and W. Wang, “Resonance-based sparse
signal decomposition and its application in mechanical fault
diagnosis: A review,” Sensors, vol. 17, no. 6, p. 1279, 2017.

[13] N. Chai, M. Yang, Q. Ni, and D. Xu, “Gear fault diagnosis
based on dual parameter optimized resonance-based sparse
signal decomposition of motor current,” IEEE Transactions on
Industry Applications, vol. 54, no. 4, pp. 3782–3792, 2018.

[14] Y. Lu, J. Du, and X. Tao, “Fault diagnosis of rolling bearing
based on resonance-based sparse signal decomposition with
optimal Q-factor,” Measurement and Control, vol. 52,
pp. 1111–1121, 2019.

[15] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: Algorithm and ap-
plications,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[16] Y. Li, X. Wang, Z. Liu, X. Liang, and S. Si, “+e entropy
algorithm and its variants in the fault diagnosis of rotating
machinery: review,” Ieee Access, vol. 6, pp. 66723–66741, 2018.

[17] Z. Huo, M. Martinez-Garcia, Y. Zhang, R. Yan, and L. Shu,
“Entropy measures in machine fault diagnosis: Insights and
applications,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 6, pp. 2607–2620, 2020.

[18] S.-D. Wu, P.-H. Wu, C.-W. Wu, J.-J. Ding, and C.-C. Wang,
“Bearing fault diagnosis based on multiscale permutation

Table 6: +e recognition results of seven models with four recognizers (%).

Classifier model +e recognition rate of the test sample with different feature extraction model Average accuracy(a) (b) (c) (b) (e) (f ) (g)
DBN 99.33 94.67 92 89.33 88.67 94 98 93.71
SVM 100 93.33 92.67 86.67 87.33 92 96 92.57
ELM 98 95.33 90.67 88 84.67 94 96.67 92.48
BP 98.67 92.67 88.67 86 88.67 91.33 94 91.43
Average accuracy 99 94 91 87.5 87.34 92.83 96.17 _

Shock and Vibration 33



entropy and support vector machine,” Entropy, vol. 14,
pp. 1343–1356, 2012.

[19] B. Fadlallah, B Chen, A Keil, and J Pŕıncipe, “Weighted-
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